Recent Progress in Electrically Conductive and Thermally Conductive Lubricants: A Critical Review
Abstract
:1. Introduction
2. Classification of Lubricants and Lubrication
2.1. Metallic Lubrication
2.2. Soft Metals
2.3. Ionic Grease Lubrication
2.4. Ionic Liquid Lubrication
Lubricants | Lubricant Material | Application | Tribological Behavior | Ref. | |
---|---|---|---|---|---|
COF | WR | ||||
Automatic transmission fluid (ATF) with 1% N-hexyl-N-methylpiperidinium bis(2-ethylhexyl)phosphate ([P6,6,6,14][BEHP]) at load 5N | Ionic liquid | Power steering systems | 0.15 | Wear volume 1.9 µm3 | [100] |
Choline-based stearic acid ([Ch][SA]) | Ionic liquid | Industrial lubrications, bio-based lubricants, automotive lubrication, aerospace | 0.11 | Wear volume is 11 × 10−4 mm3 | [99,101,102] |
Choline-based palmitic acid ([Ch][PA]) | Ionic liquid | Metalworking and cutting Fluids, forming and stamping, anti-seize and assembly lubrications | 0.30 | Wear volume is 14 × 10−4 mm3 | [99,102,103] |
Choline-based lauric acid ([Ch][DA]) | Ionic liquid | Metalworking and cutting fluids, industrial lubrication | 0.35 | Wear volume is 9 × 10−4 mm3 | [99,102] |
Combination of black carbon and 1% alkyl-phosphonium-based IL trihexyltetradecyl-phosphonium docusate ([][DOC]-[CB]) | Ionic liquid | Bearings and electrically loaded bearings, self-lubrication | 0.55 | Wear volume 0.05 mm3 | [7] |
Combination of carbon nanotubes and 1% alkyl-phosphonium-based IL trihexyltetradecyl-phosphonium docusate ([][DOC]-[CTN]) | Ionic liquid | To improved creep resistances and strength, applied in electrically loaded bearings, self-lubricating | 0.59 | Wear volume 0.059 mm3 | |
1,2-dimethyl-3-propylimidazolium tetrafluoroborate ([im]BF4) | Ionic liquid | Metalworking and cutting fluids, corrosion protection, electrical contacts, energy storage systems, applicable in industries such as aerospace and automotive | 0.07 | 0.05/10−4 mm | [66] |
1-ethyl-3-hexylimidazolium tetrafluoroborate (L206) | Ionic liquid | Used in gears, bearings, and chains | 0.039 | Wear scar 0.30 mm | [98] |
1-ethyl-3-octylimidazolium tetrafluoroborate (L208) | Ionic liquid | Used as electrolytes, used in gears, bearings, and chains | 0.039 | Wear scar 0.27 mm | [98] |
1-ethyl-3-hexylimidazolium-bis(trifluoromethylsulfonyl)-imide (L-F206) | Ionic liquid | Pump, membranes | 0.08 | Wear volume 0.1 × 10−4 mm3 | [104,105] |
1-ethyl-3-hexylimidazolium tetrafluoroborate (L-B206) | Ionic liquid | Aviation, space technology, automobile industry | 0.045 | Wear volume 0.2 × 10−4 mm3 | [104,106] |
1-hexyl-3-methylimidazolium tetrafluoroborate ([hmim][PF6]) | Ionic liquid | Tribological applications, electrical contacts, gears, bearings, and chains | 0.056 | 1.8 × 1010 mm3/mm | [107] |
1-hexyl-3-methylimidazoliumhexafluorophosphate ([hmim][BF4]) | Ionic liquid | Applied for separation of organic compounds, electrochemical cells | 0.048 | 2.4 × 1010 mm3/mm | [107] |
Motor oil SAE 30 with 0.3% Cu additive | liquid | High-temperature applications, marine and aerospace applications | 0.023 | Wear path is 33 m | [108,109] |
1-octyl, 3-methyl (L106) at 100 °C | Ionic liquid | High-temperature turbine and space applications, solar energy | 0.08 | 7.27 × 10−4 mm3/m | [110,111] |
1-octyl, 3-methyl (L108) at 100 °C | Ionic liquid | Automotive lubrication, electrical contacts | 0.04 | 5.22 × 10−4 mm3/m | [110] |
Polyethylene glycol (PEG)-based 1-ethyl-3-methylimidazolium cations (([C1imC10imC1]) and bis(trifluoromethylsulfonyl)imide anions (NTf2) [2,2′-methyl-[C1imC10imC1](NTf2)2]) | Ionic liquid | Lubricants and tribology, biocompatible lubricants, energy storage systems, extraction and separation processes, green chemistry and catalysis | 0.12 | 1 × 10−8 mm3/Nm | [66] |
Polyethylene glycol (PEG)-based 1-ethyl-3-methylimidazolium cations ([C1imC10imC1]) with methyl substitution | Ionic liquid | High-temperature lubrication, metalworking and cutting fluids, corrosion protection | 0.13 | 25 × 10−8 mm3/Nm | |
Polyethylene glycol (PEG)-based 1-ethyl-3-methylimidazolium cations ([C1imC10imC1]) with methyl substitution at the 2 and 2′ positions, and tetrafluoroborate anions (BF4-) ([2,2′-methyl-[C1imC10imC1](BF4)2]) | Ionic liquid | Electrical contacts, corrosion protection, lubricants and tribology | 0.11 | 6 × 10−8 mm3/Nm |
3. Enhancing Conductivity of Lubricants
3.1. Carbon Nanomaterials
3.2. Metallic Nanomaterials
3.3. Metal Oxide Nanomaterials
Lubricants | Additives | Additives Concentration | Testing Method | Tribological Properties | Ref. | |
---|---|---|---|---|---|---|
Coefficient of Friction | Wear Rate | |||||
Polyalphaolefin oil (PAO) | SWNT | 0.5 wt% | Block on ring test apparatus UMT-3 at 200 rpm, load 300 N, contact pressure 220 MPa | 0.034 | 7790 μm2 scar area | [118] |
Polyalphaolefin oil (PAO) | MWNT | 0.5 wt% | Block on ring test apparatus UMT-3, at 200 rpm, load 300 N, contact pressure 220 Mpa | 0.013 | 7151 μm2 scar area | [118] |
PEG200 oil | Reduced graphene oxide | 0.2 mg mL−1 | Ball-on-disc nano-tribometer. Load 500 mN | 0.06 | [30] | |
Esterified bio-oil | Graphene/MoS2 mass ratio 3:2 | 0.5 wt% | MQ-800 four-ball tribometer test. At load 300 N, 1000 rpm | 0.017 | Wear scar diameter 0.43 mm | [119] |
10 W40 engine oil | (Zinc oxide) ZnO/MWCNTs (multiwalled carbon nanotubes) hybrid nanomaterial mix 3:2 | 0.25 wt% | Ball-on-disk tribotester, linear reciprocating. Load 35 N. Engine oil contains hybrid nanomaterials of zinc oxide and MWCNTs | 0.044 | Wear volume 0.09 mm3 | [120] |
Hydraulic oil | Graphene oxide sheets include regular edges (RG) | 1 wt% | Reciprocating tribometer (UMT-3) in ball on disk mode. 2 N of load at 0.5 Hz | 0.0614 | Wear scar depth 0.151 µm | [31] |
water | Functionalized graphene oxide (ILCAs-GO) using 1-hydroxyethyl-3-methyl imidazole tetrafluoroborate | 0.8 mg/mL | CETR UMT-3 multi-function sliding test. For 5 N Load. In water, graphene oxide was functionalized by hydroxyl-terminated ionic liquids | 0.172 | Wear volume 0.6 × 105 mm3 | [121,122] |
Aviation Lubricant (4010 AL) | Graphene | 0.075 wt% | Four-ball tester. Ceramic Si3N4/steel GCr15 tribo-pairs. Activate 392 N and 1450 rpm. | 0.068 | Wear scar depth 0.516 µm | [123] |
BS6500 oil | Bi 7–65 nm | 900 mg/L | Four ball tester at 1200 rpm, 392 N, 75 °C, and 30 min | 0.052 | 454 µm scar diameter | [124] |
Teboil Ward and Chevron Taro 30 DP 40 | Cu | 3 wt% | Pin-on-disk tribometer, 0.02 mm/s, load 0.1–180 mN, 75 °C | 0.11 | 0.018 mg wear signal | [125] |
SAE 10 mineral oil | Co | 0.5 wt% | Four ball tester at 1420 min−1, load 150 N, 75 °C, 60 min | Wear scar diameter 0.54 mm | [32] | |
Base oil | Al2O3 | 0.1 wt% | Four ball tester at 147 N, 1450 rpm, 75 °C, 30 min | 0.057 | Wear scar diameter 348.09 µm | [126] |
Mineral oil | Nano-sized titanium dioxide (TiO2) | 0.25 wt% | Reciprocating pin-on-disk at 0.05 m/s, load 14.7 N, 30 min | 0.09 | [25] | |
Pure lubricant oil | ZnAl2O4—95 nm | 0.1 wt% | Four ball tribometer at 147 N, 1450 rpm, 348 K, 1800 s | 0.0643 | Wear scar diameter 257.05 µm | [127] |
API SL/CF 10W-40 engine oil | FeS | 2 wt% | Pin-one-disc system at load 50 N, 150 rpm, 20 min | 0.018 | [128] | |
Blend of PAO 4 and PAO 40 | IF-MoS2 | 1 wt% | High frequency reciprocating rig (HFRR) at load 10 N, 80 °C | 0.06 | Wear scar depth 1.2 µm | [129] |
Dioctylsebacate (DOS) | MoS2 50–100 nm | 2 wt% | Reciprocating ball-on-disc tribometer at load 7.84 N, 0.1 m/s, 60 °C, 75 min | 0.095 | Wear scar diameter 220 µm | [130] |
Paraffin oil | Nanocomposite of Ag and Graphene (with laser irradiation) 56 nm | 0.1 wt% | Four ball tribometer at 392 N, 1200 rpm, 30 min | 0.061 | Wear scar diameter 0.496 mm | [26] |
10w40 engine oil | Nano-Ag/MWCNTs 5–15 nm | 0.18 wt% | Four-ball machine operating at 392 N, 1200 RPM, 75 °C, and 60 min | 0.053 | Wear scar diameter 0.35 mm | [27] |
Engine oil for Diesel engine (CD 15W-40) | 185.96 nm layered double hydroxide (LDH)-la-doped Mg/Al | 100 mL of oil with 0.5 g of LDH | Four ball tester at 392 N, 1200 rpm, 60 min | 0.093 | [33] |
Lubricants | Additives | Additives Concentration | Method | Thermal Conductivity (W/mK) | Ref. |
---|---|---|---|---|---|
Polyalphaolefin oil (PAO) | SWNT | 11.60 wt% | Hot DiskTM thermal constants analyzer, 0.0471/K TCR, kapton disk type. Temperature range between 100 °C and 177 °C. | 0.26 | [131] |
Polyalphaolefin oil (PAO) | MWNT | 19.00 wt% | Hot DiskTM thermal constants analyzer, 0.0471/K TCR, kapton disk type. Temperature range between 100 °C and 177 °C. | 0.27 | [131] |
SAE 20 W50 engine oil | MWCNTs | 0.1 wt% | KD2-Pro equipment for analyzing the thermal properties and transient hot wire system at temperature 20 °C. | 0.19 | [132] |
Diesel oil (DO) | Surfactant oleic acid -MWCNT | 0.5 wt% | KD2 Pro thermal analyzer. All samples’ thermal conductivity was measured four times, with the findings being reported as an average. Temperature range between 5 °C and 100 °C. | 0.293 | [133] |
Diesel oil (DO) | Hexylamine -MWCNT | 0.5 wt% | Thermal tester KD2 Pro. Four measurements were made to determine the thermal conductivity of each sample, and the average amount of data is presented at 80 °C. | 0.321 | |
TIM silicone grease | MWCNTs | 2–3 µm in Strong acid/base | T-type thermocouples at 0.05 °C, 10 Kpa contact pressure, two copper plates and the heat flux, the equivalent thermal conductivity and resistance of the composites. | 4.267 | [134] |
Krytox XHT750 | Helix MWNT | 15 wt% | Hot Disk™ thermal constants analyzer: 3.189 mm sensor radius, 6 mm measurement depth, room temperature, 0.012 W power, 10 s, 0.0471/K TCR, and Kapton disk type. temperature range between 16.85 °C and 86.85 °C. | 0.19 | [135] |
PAO Durasyn 166 | MWNT-OH | 7.5 wt% | Hot Disk™ thermal constants analyzer: Measurement parameters: room temperature, 6 mm measurement depth, 0.012 W power, 10 s duration, 3.189 mm sensor radius, 0.0471/K TCR, and Kapton disk type, temperature range between 16.85 °C and 86.85 °C. | 0.31 | [135] |
Durasyn 166 PAO | Pr-24-XT-HHT CNF Pyrograf | 10 wt% | Thermal constants analyzer Hot DiskTM: 6.18 mm measurement depth, room temperature, 0.012 W power, 10 s, 3.189 mm sensor radius, 0.0471/K TCR, Kapton disk type, temperature range between 16.85 °C and 86.85 °C. | 0.68 | [135] |
Petro-Canada N650HT | IMERYS Su-per 65 Carbon Black, 0.75 weight percent, MWNT-OH | 6.8 wt% | Hot Disk™ thermal constants analyzer: 3.189 mm sensor radius, 6 mm measurement depth, room temperature, 0.012 W power, 10 s, 0.0471/K TCR, and Kapton disk type, temperature range between 16.85 °C and 86.85 °C. | 0.30 | [135] |
ROYCO 808 | MWNT-OH | 7.5 wt% | Hot Disk™ thermal constants analyzer: 3.189 mm sensor radius, 6 mm measurement depth, room temperature, 0.012 W power, 10 s, 0.0471/K TCR, Kapton disk type, drift, temperature range between 16.85 °C and 86.85 °C. | 0.32 | [135] |
Ethylene glycol | MWNT | 12.5 wt% | Hot Disk™ thermal constants analyzer: Measurement parameters: room temperature, 6 mm measurement depth, 0.012 W power, 10 s duration, 3.189 mm sensor radius, 0.0471/K TCR, and Kapton disk type, temperature range between 20 °C and 22 °C. | 0.38 | [135] |
MG Chemicals Silicone Heat Transfer Compound | Pyrograf Pr-19-XT-HHT CNF | 5 wt% | Thermal constants analyzer Hot DiskTM: 6.18 mm measurement depth, room temperature, 0.012 W power, 10 s, 3.189 mm sensor radius, 0.0471/K TCR, Kapton disk type, temperature range between 20 °C and 22 °C. | 1.70 | |
Discarded silicon oil from a water bath heater | CNF-19 | 4.9 wt% | Hot Disk™ thermal constants analyzer: 3.189 mm sensor radius, 6 mm measurement depth, room temperature, 0.012 W power, 10 s, 0.0471/K TCR, and Kapton disk type, temperature range between 20 °C and 22 °C. | 0.51 | |
NYE 758 G grease | CNF-19 | 5 wt% | Hot Disk™ thermal constants analyzer: Measurement parameters: room temperature, 6 mm measurement depth, 0.012 W power, 10 s duration, 3.189 mm sensor radius, 0.0471/K TCR, and Kapton disk type, temperature range between 20 °C and 22 °C. | 0.48 | |
Valvoline cerulean grease | CNF-19 | 3.7 wt% | Hot Disk™ thermal constants analyzer: 6 mm measurement depth, room temperature, 3.189 mm sensor radius, 0.0471/K TCR, Kapton disk type, drift, 0.012 W power, temperature range between 20 °C and 22 °C. | 0.35 | |
R-134a nano-refrigerant | Al2O3 | 5 wt% | Thermal constants analyzer at 26.85 °C. temperature. | 0.0985 | [136] |
R-134a nano-refrigerant | Spherical ZnO | 10 wt% | KD2 pro thermal analyzer (Decagon Devices) at Temperature range between 9.85 °C and 33.85 °C. | 0.095 | [137] |
R-134a nano-refrigerant | Cube ZnO | 10 wt% | KD2 pro thermal analyzer (Decagon Devices) at Temperature range between 9.85 °C and 33.85 °C. | 0.105 | |
Heat transfer oil | Ag—20 nm | 0.72 wt% | a Decagon Devices KD2 Pro KS-1 thermal analyzer. The maximum variance for the transient hot wire approach is 5.0%. 0.02 to 2.00 thermal conductivity is acceptable at 99.85 °C temperature. | 0.165 | [138] |
SAE 20 W50 | CuO | 0.1 wt% | KD2 Pro equipment for analyzing the thermal properties and the transient hot wire system for measuring thermal conductivity at 20 °C temperature. | 0.172 | [139] |
Ethylene glycol (EG) | ZnO—30 nm | 10.5 wt% | Using a transient hot-wire mechanism, the thermal conductivities of the nanofluids were determined with an accuracy of 2–3% and a measurement range of 0.001–20 W/mK, at 55 °C temperature. | 0.287 | [140] |
SAE 20 W50 | carbon nanoballs (CNBs)—70 nm | 0.1 wt% | The KD2-Pro is used for measuring thermal conductivity of base oil and nanofluids. at 20 °C temperature. | 0.1954 | [28] |
SAE 20 W50 | Fullerene—10 nm | 0.1 wt% | Base oils and nanofluids are measured for their thermal conductivity using the KD2-Pro. at 20 °C temperature. | 0.172 |
Lubricants | Additives | Additives Concentration | Characterization Method | Electrical Conductivity (Ω·cm) | Ref. |
---|---|---|---|---|---|
Diesel oil (DO) | surfactant oleic acid -MWCNT | 0.5 wt% | Electrical property analyzer at 80 °C | 476.3 μS/ cm | [133] |
Diesel oil (DO) | Hexylamine-MWCNT | 0.5 wt% | Electrical property analyzer at 80 °C | 409.2 μS/ cm | |
Diesel oil (DO) | surfactant oleic acid-graphene nanoplatelets | 0.5 wt% | Electrical property analyzer at 80 °C | 492.6 μS/ cm | |
Diesel oil (DO) | Hexylamine-graphene nanoplatelets | 0.5 wt% | Electrical property analyzer at 80 °C | 429.9 μS/ cm | |
Diesel oil (DO) | surfactant oleic acid-graphene nanoplatelets/MWCNT | 0.5 wt% | Electrical property analyzer at 80 °C | 482.2 μS/ cm | |
50% Ethylene Glycol, 50% Water | MWNT-OH | 5.68 wt% | Keithley digit multimeter for electrical resistivity measurement | 11.9 | [141] |
Epoxy with Ag flakes | diethylene glycol butyl ether (DGBE) | 2 pph | The four-point probe on a Keithley 2000 multimeter was used to gauge the bulk resistance of the ECA samples. | 3.4 × 10−3 | [142] |
Glycerol | MWNT-OH, 3% Cu (Nano) | 4.5 wt% | Keithley digit multimeter for electrical resistivity measurement | 178 | [141] |
Glycerol | CNF | 12 wt% | Keithley digit multimeter for electrical resistivity measurement | 175 | [141] |
75% Glycerol, 25% Water | MWNT-OH | 4.5 wt% | Keithley digit multimeter for electrical resistivity measurement | 10 | [141] |
Polyalphaolefin oil (PAO) | SWNT | 11.60 wt% | Using volume resistivity test cells provided by Electro-Tech Systems, Inc. | 3000 | [131] |
Polyalphaolefin oil (PAO) | MWNT | 19.00 wt% | Using volume resistivity test cells | 4000 | [131] |
Polyalphaolefin oil (PAO) | Helix MWNT | 20 wt% | Keithley digit multimeter for electrical resistivity measurement | 2700 | [141] |
Polyalphaolefin oil (PAO) | CNF-MWNT-OH | 4.48 wt% | Keithley digit multimeter for electrical resistivity measurement | 138 | |
Petro-Canada N650HT | MWNT | 8.4 wt% | Keithley digit multimeter for electrical resistivity measurement | 7880 | |
Petro-Canada N650HT | MWNT-OH | 7.5 wt% | Keithley digit multimeter for electrical resistivity measurement | 22.4 | |
ROYCO 500 | MWNT-OH | 7.5 wt% | Keithley digit multimeter for electrical resistivity measurement | 80 | |
Vaseline oil | oleic acid | 2 wt% | MTE-3 device, the loads ranged from 10 to 60 cN, with sliding velocities between 0.05 and 4.3 mm/s and currents under 1 mA | 0.52 Ωm | [143] |
4. Tribological Behavior of Different Conductive Lubricants
4.1. Tribological Behavior of Conductive Solid Lubricants
4.2. Tribological Behavior of Conductive Liquid and Semisolid Lubricants
5. Characteristics of Lubricants for Advance Application
6. Lubricating Mechanism of Conductive Lubricants
6.1. Lubricating Mechanism of Conductive Solid Lubricants
6.2. Lubricating Mechanism of Conductive Liquid Lubricants
7. Superlubricity of Conductive Lubricants
8. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
COF = Coefficient of Friction | WR = Wear Rate |
EVs = Electric Vehicles | EHV = Electric Hybrid Vehicles |
ICEVs = Internal Combustion Engine Vehicles | EHL = Elastohydrodynamic Lubrication |
PAO = Polyalphaolefin Oil | IL = Ionic Liquid |
DO = Diesel Oil | PAG = Polyalkylene Glycol |
EMI = Electromagnetic Interference | PFPE = Perfluoropolyethers |
MACs = Multiply-Alkylated Cyclopentanes | SiHC = Silahydrocarbons |
MoS2 = Molybdenum Disulfide | MoSe2 = Molybdenum Diselenide |
References
- Chinnachamy, R.; Durairaj, V.; Saravanamuthu, M.; Rajagopal, V. Evaluation of the effect of silver nanoparticles on the tribological and thermophysical properties of bio-lubricants. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2023, 237, 410–417. [Google Scholar]
- Woydt, M. The importance of tribology for reducing CO2 emissions and for sustainability. Wear 2021, 474, 203768. [Google Scholar]
- Sawyer, W.G. Leonardo da Vinci on Wear. Biotribology 2021, 26, 100160. [Google Scholar] [CrossRef]
- Kumar, N.; Goyal, P. Experimental study of Carbon Nanotubes to enhance Tribological Characteristics of Lubricating Engine Oil SAE10W40. IOP Conf. Ser. Mater. Sci. Eng. 2022, 1225, 012052. [Google Scholar]
- Ahmed, N.S.; Nassar, A.M. Lubrication and lubricants. In Tribology: Fundamentals and Advancements; Intech Open: Rijeka, Croatia, 2013; pp. 55–76. [Google Scholar]
- Kaneta, M.; Matsuda, K.; Nishikawa, H. Effects of thermal properties of contact materials and slide-roll ratio in elastohydrodynamic lubrication. J. Tribol. 2022, 144, 061603. [Google Scholar]
- Gatti, S.F.; Gatti, F.; Amann, T.; Kailer, A.; Moser, K.; Weiss, P.; Seidel, C.; Rühe, J. Tribological performance of electrically conductive and self-lubricating polypropylene–ionic-liquid composites. RSC Adv. 2023, 13, 8000–8014. [Google Scholar]
- Mustafa, W.A.A.; Dassenoy, F.; Sarno, M.; Senatore, A. A review on potentials and challenges of nanolubricants as promising lubricants for electric vehicles. Lubr. Sci. 2022, 34, 1–29. [Google Scholar]
- Parenago, O.P.; Lyadov, A.S.; Maksimov, A.L. Development of Lubricant Formulations for Modern Electric Vehicles. Russ. J. Appl. Chem. 2022, 95, 765–774. [Google Scholar] [CrossRef]
- Wu, L.; Yan, J.; Cao, Z.; Xia, Y.; Wu, H. Investigation on the electrical conductivity and tribological properties of NbSe2-doped lubricating grease. Mater. Res. Express 2022, 9, 085201. [Google Scholar] [CrossRef]
- Hilton, M.R.; Fleischauer, P.D. Applications of solid lubricant films in spacecraft. Surf. Coat. Technol. 1992, 54, 435–441. [Google Scholar]
- Voevodin, A.; Muratore, C.; Aouadi, S. Hard coatings with high temperature adaptive lubrication and contact thermal management: Review. Surf. Coat. Technol. 2014, 257, 247–265. [Google Scholar] [CrossRef]
- Aouadi, S.M.; Gao, H.; Martini, A.; Scharf, T.W.; Muratore, C.J.S.; Technology, C. Lubricious oxide coatings for extreme temperature applications: A review. Surf. Coat. Technol. 2014, 257, 266–277. [Google Scholar] [CrossRef]
- Xiao, S.; He, X.; Zhao, Z.; Huang, G.; Yan, Z.; He, Z.; Zhao, Z.; Chen, F.; Yang, J. Strong anti-polyelectrolyte zwitterionic hydrogels with superior self-recovery, tunable surface friction, conductivity, and antifreezing properties. Eur. Polym. J. 2021, 148, 110350. [Google Scholar] [CrossRef]
- Xu, D.; Wang, Y.; Su, Y.; Li, J. Real time numerical simulation of thermal conductivity of marine gas turbine lubricating oil under complex sea conditions. Therm. Sci. 2021, 25, 4075–4081. [Google Scholar] [CrossRef]
- Song, J. Research progress of ionic liquids as lubricants. ACS Omega 2021, 6, 29345–29349. [Google Scholar] [PubMed]
- Zaharin, H.; Ghazali, M.; Rasheed, A.; Khalid, M.; Otsuka, Y. Tribological Performance of Hybrid Ti3C2/Graphene Additive on Outboard Engine Oil. In Proceedings of the 3rd Malaysian International Tribology Conference, Langkawi, Malaysia, 28–30 September 2020; pp. 146–153. [Google Scholar]
- Li, P.; Zhang, Z.; Yang, M.; Yuan, J.; Jiang, W. Synchronously improved thermal conductivity and tribological performance of self-lubricating fabric liner composites via integrated design method with copper yarn. Tribol. Int. 2021, 164, 107204. [Google Scholar] [CrossRef]
- Gonda, A.; Capan, R.; Bechev, D.; Sauer, B. The Influence of Lubricant Conductivity on Bearing Currents in the Case of Rolling Bearing Greases. Lubricants 2019, 7, 108. [Google Scholar] [CrossRef] [Green Version]
- Kudelina, K.; Asad, B.; Vaimann, T.; Rassõlkin, A.; Kallaste, A.; Van Khang, H. Methods of Condition Monitoring and Fault Detection for Electrical Machines. Energies 2021, 14, 7459. [Google Scholar] [CrossRef]
- Abdollahzadeh Jamalabadi, M.Y.; Alamian, R.; Yan, W.-M.; Li, L.K.B.; Leveneur, S.; Safdari Shadloo, M. Effects of Nanoparticle Enhanced Lubricant Films in Thermal Design of Plain Journal Bearings at High Reynolds Numbers. Symmetry 2019, 11, 1353. [Google Scholar] [CrossRef] [Green Version]
- Narita, K.; Takekawa, D. Lubricants Technology Applied to Transmissions in Hybrid Electric Vehicles and Electric Vehicles; 0148-7191; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2019. [Google Scholar]
- Sampathkumar, S. Effect of diamond like carbon coatings on reducing sliding fit joint interfacial wear damage on Al5083 alloy. Mater. Today Proc. 2023. [CrossRef]
- Ngaile, G.; Botz, F. Performance of Graphite and Boron-Nitride-Silicone Based Lubricants and Associated Lubrication Mechanisms in Warm Forging of Aluminum. J. Tribol. 2008, 130, 021801. [Google Scholar] [CrossRef]
- Ingole, S.; Charanpahari, A.; Kakade, A.; Umare, S.S.; Bhatt, D.V.; Menghani, J. Tribological behavior of nano TiO2 as an additive in base oil. Wear 2013, 301, 776–785. [Google Scholar] [CrossRef]
- Wang, L.; Gong, P.; Li, W.; Luo, T.; Cao, B. Mono-dispersed Ag/Graphene nanocomposite as lubricant additive to reduce friction and wear. Tribol. Int. 2020, 146, 106228. [Google Scholar] [CrossRef]
- Meng, Y.; Su, F.; Chen, Y. Effective lubricant additive of nano-Ag/MWCNTs nanocomposite produced by supercritical CO2 synthesis. Tribol. Int. 2018, 118, 180–188. [Google Scholar] [CrossRef]
- Ettefaghi, E.-o.-l.; Rashidi, A.; Ahmadi, H.; Mohtasebi, S.S.; Pourkhalil, M. Thermal and rheological properties of oil-based nanofluids from different carbon nanostructures. Int. Commun. Heat Mass Transf. 2013, 48, 178–182. [Google Scholar] [CrossRef]
- Kwak, Y.; Cleveland, C.; Adhvaryu, A.; Fang, X.; Hurley, S.; Adachi, T. Understanding Base Oils and Lubricants for Electric Drivetrain Applications; 0148-7191; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2019. [Google Scholar]
- Gupta, B.; Kumar, N.; Panda, K.; Dash, S.; Tyagi, A.K. Energy efficient reduced graphene oxide additives: Mechanism of effective lubrication and antiwear properties. Sci. Rep. 2016, 6, 18372. [Google Scholar] [CrossRef]
- Mao, J.; Zhao, J.; Wang, W.; He, Y.; Luo, J. Influence of the micromorphology of reduced graphene oxide sheets on lubrication properties as a lubrication additive. Tribol. Int. 2017, 119, 614–621. [Google Scholar] [CrossRef]
- Padgurskas, J.; Rukuiza, R.; Prosyčevas, I.; Kreivaitis, R. Tribological properties of lubricant additives of Fe, Cu and Co nanoparticles. Tribol. Int. 2013, 60, 224–232. [Google Scholar] [CrossRef]
- Meng, Y.; Su, F.; Chen, Y. Supercritical Fluid Synthesis and Tribological Applications of Silver Nanoparticle-decorated Graphene in Engine Oil Nanofluid. Sci. Rep. 2016, 6, 31246. [Google Scholar] [CrossRef] [Green Version]
- Dai, W.; Kheireddin, B.; Gao, H.; Liang, H. Roles of nanoparticles in oil lubrication. Tribol. Int. 2016, 102, 88–98. [Google Scholar] [CrossRef]
- Singh, A.; Chauhan, P.; Mamatha, T. A review on tribological performance of lubricants with nanoparticles additives. Mater. Today Proc. 2020, 25, 586–591. [Google Scholar] [CrossRef]
- Shahnazar, S.; Bagheri, S.; Abd Hamid, S.B. Enhancing lubricant properties by nanoparticle additives. Int. J. Hydrogen Energy 2016, 41, 3153–3170. [Google Scholar] [CrossRef]
- Tung, S.C.; Woydt, M.; Shah, R. Global insights on future trends of hybrid/EV driveline lubrication and thermal management. Front. Mech. Eng. 2020, 6, 571786. [Google Scholar] [CrossRef]
- Shah, R.; Tung, S.; Chen, R.; Miller, R. Grease performance requirements and future perspectives for electric and hybrid vehicle applications. Lubricants 2021, 9, 40. [Google Scholar] [CrossRef]
- Koch, J.; Schuettler, M.; Pasluosta, C.; Stieglitz, T. Electrical connectors for neural implants: Design, state of the art and future challenges of an underestimated component. J. Neural Eng. 2019, 16, 061002. [Google Scholar] [CrossRef] [PubMed]
- Angadi, S.V.; Jackson, R.L.; Pujar, V.; Tushar, M.R. A comprehensive review of the finite element modeling of electrical connectors including their contacts. IEEE Trans. Compon. Packag. Manuf. Technol. 2020, 10, 836–844. [Google Scholar] [CrossRef]
- Chen, Y.; Jha, S.; Raut, A.; Zhang, W.; Liang, H. Performance characteristics of lubricants in electric and hybrid vehicles: A review of current and future needs. Front. Mech. Eng. 2020, 6, 571464. [Google Scholar] [CrossRef]
- Marine World. Marine Engineering Study Material. Available online: https://marineengineeringstudymaterial.wordpress.com/2020/10/02/lubrication-system-2/ (accessed on 21 May 2023).
- Aurolube. What Are the Different Types of Lubricants and What Are Their Applications? Available online: https://aurolube.com/blog/different-types-of-lubricants-and-their-applications/ (accessed on 21 May 2023).
- Singh, R.; Dureja, J.S.; Dogra, M.; Gupta, M.K.; Mia, M.; Song, Q. Wear behavior of textured tools under graphene-assisted minimum quantity lubrication system in machining Ti-6Al-4V alloy. Tribol. Int. 2020, 145, 106183. [Google Scholar] [CrossRef]
- Du, C.; Sheng, C.; Liang, X.; Rao, X.; Guo, Z. Effects of temperature on the tribological properties of cylinder-liner piston ring lubricated with different oils. Lubricants 2023, 11, 115. [Google Scholar] [CrossRef]
- Yu, H.; Chen, H.; Zheng, Z.; Qiao, D.; Feng, D.; Gong, Z.; Dong, G. Effect of functional groups on tribological properties of lubricants and mechanism investigation. Friction 2023, 11, 911–926. [Google Scholar] [CrossRef]
- Birleanu, C.; Pustan, M.; Cioaza, M.; Molea, A.; Popa, F.; Contiu, G. Effect of TiO2 nanoparticles on the tribological properties of lubricating oil: An experimental investigation. Sci. Rep. 2022, 12, 5201. [Google Scholar] [CrossRef] [PubMed]
- Ali, Z.A.A.A.; Takhakh, A.M.; Al-Waily, M. A review of use of nanoparticle additives in lubricants to improve its tribological properties. Mater. Today Proc. 2022, 52, 1442–1450. [Google Scholar] [CrossRef]
- Cao, Z.; Xia, Y.; Liu, L.; Feng, X. Study on the conductive and tribological properties of copper sliding electrical contacts lubricated by ionic liquids. Tribol. Int. 2019, 130, 27–35. [Google Scholar] [CrossRef]
- Lin, F.; Xia, Y.; Feng, X. Conductive and tribological properties of TiN-Ag composite coatings under grease lubrication. Friction 2021, 9, 774–788. [Google Scholar] [CrossRef]
- Feng, X.; Hu, C.; Xia, Y.; Wang, Y. Study on conductivity and tribological properties of polyaniline/molybdenum disulfide composites in lithium complex grease. Lubr. Sci. 2022, 34, 182–195. [Google Scholar] [CrossRef]
- Xia, Y.; Wang, Y.; Hu, C.; Feng, X. Conductivity and tribological properties of IL-PANI/WS2 composite material in lithium complex grease. Friction 2023, 11, 977–991. [Google Scholar] [CrossRef]
- Fan, X.; Xia, Y.; Wang, L. Tribological properties of conductive lubricating greases. Friction 2014, 2, 343–353. [Google Scholar] [CrossRef] [Green Version]
- Kaneta, M.; Sperka, P.; Yang, P.; Krupka, I.; Yang, P.; Hartl, M. Thermal elastohydrodynamic lubrication of ceramic materials. Tribol. Trans. 2018, 61, 869–879. [Google Scholar] [CrossRef]
- Rasul, M.G.; Kiziltas, A.; Bin Hoque, M.S.; Banik, A.; Hopkins, P.E.; Tan, K.-T.; Arfaei, B.; Shahbazian-Yassar, R. Improvement of the thermal conductivity and tribological properties of polyethylene by incorporating functionalized boron nitride nanosheets. Tribol. Int. 2022, 165, 107277. [Google Scholar] [CrossRef]
- Czel, G.; Sycheva, A.; Janovszky, D. Effect of different fillers on thermal conductivity, tribological properties of Polyamide 6. Sci. Rep. 2023, 13, 845. [Google Scholar] [CrossRef]
- Fu, S.; Chen, X.; Liu, P.; Cui, H.; Zhou, H.; Ma, F.; Li, W. Tribological Properties and Electrical Conductivity of Carbon Nanotube-Reinforced Copper Matrix Composites. J. Mater. Eng. Perform. 2022, 31, 4955–4962. [Google Scholar] [CrossRef]
- Fu, Y.; Qin, H.; Xu, X.; Zhang, X.; Guo, Z. The effect of surface texture and conductive grease filling on the tribological properties and electrical conductivity of carbon brushes. Tribol. Int. 2021, 153, 106637. [Google Scholar] [CrossRef]
- Jia, Z.; Zhao, P.; Ni, J.; Shao, X.; Zhao, L.; Huang, B.; Ge, B.; Ban, C. The Electrical conductivities and Tribological properties of Vacuum Hot-Pressed Cu/Reduced Graphene Oxide Composite. J. Mater. Eng. Perform. 2017, 26, 4434–4441. [Google Scholar] [CrossRef]
- Chen, T.; Song, C.; Liu, Z.; Wang, L.; Hou, X.; Lu, H.; Zhang, Y. Current-carrying tribological properties of an elastic roll ring under different currents. Wear 2023, 514–515, 204590. [Google Scholar] [CrossRef]
- Sarkar, M.; Mandal, N. Solid lubricant materials for high temperature application: A review. Mater. Today Proc. 2022, 66, 3762–3768. [Google Scholar] [CrossRef]
- Mittal, D.; Singh, D.; Sharma, S.K. Thermal Characteristics and Tribological Performances of Solid Lubricants: A Mini Review. In Advances in Rheology of Materials; Dutta, A., Ali, H.M., Eds.; IntechOpen: Rijeka, Croatia, 2023. [Google Scholar]
- Schmidt, F.; Hebart, M.N.; Fleming, R.W. Core dimensions of human material perception. PsyArXiv 2022. [Google Scholar] [CrossRef]
- Rawat, S.S.; Harsha, A.P. Current and future trends in grease lubrication. In Automotive Tribology; Springer: Berlin/Heidelberg, Germany, 2019; pp. 147–182. [Google Scholar]
- Modigell, M.; Pola, A.; Tocci, M. Rheological characterization of semi-solid metals: A review. Metals 2018, 8, 245. [Google Scholar] [CrossRef] [Green Version]
- Cai, M.; Yu, Q.; Liu, W.; Zhou, F. Ionic liquid lubricants: When chemistry meets tribology. Chem. Soc. Rev. 2020, 49, 7753–7818. [Google Scholar] [CrossRef] [PubMed]
- Zulkifli, N.W.M.; Kalam, M.A.; Masjuki, H.H.; Al Mahmud, K.A.H.; Yunus, R. The effect of temperature on tribological properties of chemically modified bio-based lubricant. Tribol. Trans. 2014, 57, 408–415. [Google Scholar] [CrossRef]
- Bobzin, K.; Bartels, T.; Mang, T. Industrial Tribology: Tribosystems, Friction, Wear and Surface Engineering, Lubrication; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Bay, N. The state of the art in cold forging lubrication. J. Mater. Process. Technol. 1994, 46, 19–40. [Google Scholar] [CrossRef]
- Sultana, M.N.; Dhar, N.R.; Zaman, P.B. A review on different cooling/lubrication techniques in metal cutting. Am. J. Mech. Appl. 2019, 7, 71–87. [Google Scholar] [CrossRef]
- Zhang, J.; Meng, Y. Boundary lubrication by adsorption film. Friction 2015, 3, 115–147. [Google Scholar] [CrossRef]
- Etsion, I. Modeling of surface texturing in hydrodynamic lubrication. Friction 2013, 1, 195–209. [Google Scholar] [CrossRef] [Green Version]
- Lugt, P.M.; Morales-Espejel, G.E. A review of elasto-hydrodynamic lubrication theory. Tribol. Trans. 2011, 54, 470–496. [Google Scholar] [CrossRef]
- Jackson, R.L.; Angadi, S. Modelling of lubricated electrical contacts. Lubricants 2022, 10, 32. [Google Scholar] [CrossRef]
- Zin, V.; Barison, S.; Agresti, F.; Colla, L.; Pagura, C.; Fabrizio, M. Improved tribological and thermal properties of lubricants by graphene based nano-additives. RSC Adv. 2016, 6, 59477–59486. [Google Scholar] [CrossRef]
- Hwang, Y.; Park, H.S.; Lee, J.K.; Jung, W.H. Thermal conductivity and lubrication characteristics of nanofluids. Curr. Appl. Phys. 2006, 6, e67–e71. [Google Scholar] [CrossRef]
- Zhang, N.; Zhang, Y.; Li, S.; Guo, L.; Yang, Z.; Zhang, X.; Wang, T.; Wang, Q. 3D structurally advanced graphene oxide/h-BN hybrid for solid self-lubrication with enhanced thermal conductivity. Tribol. Int. 2022, 176, 107918. [Google Scholar] [CrossRef]
- Shah, R.; Gashi, B.; Rosenkranz, A. Latest developments in designing advanced lubricants and greases for electric vehicles—An overview. Lubr. Sci. 2022, 34, 515–526. [Google Scholar] [CrossRef]
- Zhou, F.; Liang, Y.; Liu, W. Ionic liquid lubricants: Designed chemistry for engineering applications. Chem. Soc. Rev. 2009, 38, 2590–2599. [Google Scholar] [CrossRef]
- McCoy, B. Next generation driveline lubricants for electrified vehicles. Tribol. Lubr. Technol. 2021, 77, 38–40. [Google Scholar]
- Somers, A.E.; Howlett, P.C.; MacFarlane, D.R.; Forsyth, M. A review of ionic liquid lubricants. Lubricants 2013, 1, 3–21. [Google Scholar] [CrossRef] [Green Version]
- Baiming, C.; Qinling, B.; Jun, Y.; Yanqiu, X.; Jingcheng, H. Tribological properties of solid lubricants (graphite, h-BN) for Cu-based P/M friction composites. Tribol. Int. 2008, 41, 1145–1152. [Google Scholar]
- Du, L.; Huang, C.; Zhang, W.; Li, T.; Liu, W. Preparation and wear performance of NiCr/Cr3C2–NiCr/hBN plasma sprayed composite coating. Surf. Coat. Technol. 2011, 205, 3722–3728. [Google Scholar] [CrossRef]
- Baradeswaran, A.; Perumal, A.E. Wear and mechanical characteristics of Al 7075/graphite composites. Compos. Part B Eng. 2014, 56, 472–476. [Google Scholar] [CrossRef]
- Hudec, T.; Izai, V.; Satrapinskyy, L.; Huminiuc, T.; Roch, T.; Gregor, M.; Grančič, B.; Mikula, M.; Polcar, T. Structure, mechanical and tribological properties of MoSe2 and Mo-Se-N solid lubricant coatings. Surf. Coat. Technol. 2021, 405, 126536. [Google Scholar] [CrossRef]
- Efeoglu, I.; Baran, Ö.; Yetim, F.; Altıntaş, S. Tribological characteristics of MoS2–Nb solid lubricant film in different tribo-test conditions. Surf. Coat. Technol. 2008, 203, 766–770. [Google Scholar] [CrossRef]
- Zhong, H.; Feng, X.; Jia, J.; Yi, G. Tribological characteristics and wear mechanisms of NiMoAl composite coatings in reversible temperature cycles from RT to 900 °C. Tribol. Int. 2017, 114, 48–56. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, X.; Zhou, H.; Chen, J.; An, Y.; Yan, F. HVOF-sprayed adaptive low friction NiMoAl–Ag coating for tribological application from 20 to 800 °C. Tribol. Lett. 2014, 56, 55–66. [Google Scholar] [CrossRef]
- Li, D.-X.; You, Y.-L.; Deng, X.; Li, W.-J.; Xie, Y. Tribological properties of solid lubricants filled glass fiber reinforced polyamide 6 composites. Mater. Des. 2013, 46, 809–815. [Google Scholar] [CrossRef]
- Wang, Z.; Xia, Y.; Liu, Z. Comparative study of the tribological properties of ionic liquids as additives of the attapulgite and bentone greases. Lubr. Sci. 2012, 24, 174–187. [Google Scholar] [CrossRef]
- Anand, G.; Saxena, P. A review on graphite and hybrid nano-materials as lubricant additives. IOP Conf. Ser. Mater. Sci. Eng. 2016, 149, 012201. [Google Scholar] [CrossRef]
- Wu, L.; Xia, Y.; Xiong, S.; Wu, H.; Chen, Z. Effect of ionic liquids modified nano-TiO2 as additive on tribological properties of silicone grease. Mater. Res. Express 2021, 8, 105011. [Google Scholar] [CrossRef]
- Fan, X.; Xia, Y.; Wang, L.; Pu, J.; Chen, T.; Zhang, H. Study of the Conductivity and Tribological Performance of Ionic Liquid and Lithium Greases. Tribol. Lett. 2014, 53, 281–291. [Google Scholar] [CrossRef]
- Wu, X.; Zhao, Q.; Zhao, G.; Liu, J.; Wang, X. Tribological properties of alkylphenyl diphosphates as high-performance antiwear additive in lithium complex grease and polyurea grease for steel/steel contacts at elevated temperature. Ind. Eng. Chem. Res. 2014, 53, 5660–5667. [Google Scholar] [CrossRef]
- Cao, Z.; Xia, Y.; Ge, X. Conductive capacity and tribological properties of several carbon materials in conductive greases. Ind. Lubr. Tribol. 2016, 68, 577–585. [Google Scholar] [CrossRef]
- Ge, X.; Xia, Y.; Shu, Z.; Zhao, X. Conductive grease synthesized using nanometer ATO as an additive. Friction 2015, 3, 56–64. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Xia, Y.; Hu, Y.; Hou, B. Tribological performance and conductive capacity of Ag coating under boundary lubrication. Tribol. Int. 2017, 110, 161–172. [Google Scholar] [CrossRef]
- Liu, W.; Ye, C.; Gong, Q.; Wang, H.; Wang, P. Tribological performance of room-temperature ionic liquids as lubricant. Tribol. Lett. 2002, 13, 81–85. [Google Scholar] [CrossRef]
- Wang, R.; Sun, C.; Yan, X.; Guo, T.; Xiang, W.; Yang, Z.; Yu, Q.; Yu, B.; Cai, M.; Zhou, F. Influence of the molecular structure on the tribological properties of choline-based ionic liquids as water-based additives under current-carrying lubrication. J. Mol. Liq. 2023, 369, 120868. [Google Scholar] [CrossRef]
- Tuero, A.G.; Sanjurjo, C.; Rivera, N.; Viesca, J.L.; González, R.; Battez, A.H. Electrical conductivity and tribological behavior of an automatic transmission fluid additised with a phosphonium-based ionic liquid. J. Mol. Liq. 2022, 367, 120581. [Google Scholar] [CrossRef]
- Dinker, A.; Agarwal, M.; Agarwal, G.D. Thermal conductivity enhancement of stearic acid using expanded graphite for low temperature thermal storage. Int. J. Eng. Sci. Innov. Technol. 2014, 3, 531–536. [Google Scholar]
- Gadilohar, B.L.; Shankarling, G.S. Choline based ionic liquids and their applications in organic transformation. J. Mol. Liq. 2017, 227, 234–261. [Google Scholar] [CrossRef]
- Wang, J.; Xie, H.; Xin, Z.; Li, Y.; Chen, L. Enhancing thermal conductivity of palmitic acid based phase change materials with carbon nanotubes as fillers. Sol. Energy 2010, 84, 339–344. [Google Scholar] [CrossRef]
- Palacio, M.; Bhushan, B. A review of ionic liquids for green molecular lubrication in nanotechnology. Tribol. Lett. 2010, 40, 247–268. [Google Scholar] [CrossRef]
- Kelkar, M.S.; Maginn, E.J. Effect of temperature and water content on the shear viscosity of the ionic liquid 1-ethyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide as studied by atomistic simulations. J. Phys. Chem. B 2007, 111, 4867–4876. [Google Scholar] [CrossRef]
- Mu, Z.; Wang, X.; Zhang, S.; Liang, Y.; Bao, M.; Liu, W. Investigation of tribological behavior of Al–Si alloy against steel lubricated with ionic liquids of 1-diethylphosphonyl-n-propyl-3-alkylimidazolium tetrafluoroborate. J. Tribol. 2008, 130, 034501. [Google Scholar] [CrossRef]
- Suzuki, A.; Shinka, Y.; Masuko, M. Tribological characteristics of imidazolium-based room temperature ionic liquids under high vacuum. Tribol. Lett. 2007, 27, 307–313. [Google Scholar] [CrossRef]
- Tarasov, S.; Kolubaev, A.; Belyaev, S.; Lerner, M.; Tepper, F. Study of friction reduction by nanocopper additives to motor oil. Wear 2002, 252, 63–69. [Google Scholar] [CrossRef]
- Brouwer, M.D.; Gupta, L.A.; Sadeghi, F.; Peroulis, D.; Adams, D. High temperature dynamic viscosity sensor for engine oil applications. Sens. Actuators A Phys. 2012, 173, 102–107. [Google Scholar] [CrossRef]
- Jimenez, A.-E.; Bermúdez, M.-D. Ionic liquids as lubricants for steel–aluminum contacts at low and elevated temperatures. Tribol. Lett. 2007, 26, 53–60. [Google Scholar] [CrossRef]
- Boldoo, T.; Lee, M.; Cho, H. Enhancing the solar energy conversion and harvesting characteristics of multiwalled carbon nanotubes-modified 1-hexyl-3-methyl-imidazolium cation ionic liquids. Int. J. Energy Res. 2022, 46, 8891–8907. [Google Scholar] [CrossRef]
- Tomala, A.; Karpinska, A.; Werner, W.S.M.; Olver, A.; Störi, H. Tribological properties of additives for water-based lubricants. Wear 2010, 269, 804–810. [Google Scholar] [CrossRef]
- Zhai, W.; Srikanth, N.; Kong, L.B.; Zhou, K. Carbon nanomaterials in tribology. Carbon 2017, 119, 150–171. [Google Scholar] [CrossRef]
- Shah, S.; Chiou, Y.-C.; Lai, C.Y.; Apostoleris, H.; Rahman, M.M.; Younes, H.; Almansouri, I.; Al Ghaferi, A.; Chiesa, M.J.C. Impact of short duration, high-flow H2 annealing on graphene synthesis and surface morphology with high spatial resolution assessment of coverage. Carbon 2017, 125, 318–326. [Google Scholar] [CrossRef]
- Mohamed, A.; Tirth, V.; Kamel, B.M. Tribological characterization and rheology of hybrid calcium grease with graphene nanosheets and multi-walled carbon nanotubes as additives. J. Mater. Res. Technol. 2020, 9, 6178–6185. [Google Scholar] [CrossRef]
- Lee, C.-G.; Hwang, Y.-J.; Choi, Y.-M.; Lee, J.-K.; Choi, C.; Oh, J.-M. A study on the tribological characteristics of graphite nano lubricants. Int. J. Precis. Eng. Manuf. 2009, 10, 85–90. [Google Scholar] [CrossRef]
- Wang, J.; Zhuang, W.; Liang, W.; Yan, T.; Li, T.; Zhang, L.; Li, S. Inorganic nanomaterial lubricant additives for base fluids, to improve tribological performance: Recent developments. Friction 2022, 10, 645–676. [Google Scholar] [CrossRef]
- Nunn, N.; Mahbooba, Z.; Ivanov, M.G.; Ivanov, D.M.; Brenner, D.W.; Shenderova, O. Tribological properties of polyalphaolefin oil modified with nanocarbon additives. Diam. Relat. Mater. 2015, 54, 97–102. [Google Scholar] [CrossRef]
- Xu, Y.; Peng, Y.; Dearn, K.D.; Zheng, X.; Yao, L.; Hu, X. Synergistic lubricating behaviors of graphene and MoS2 dispersed in esterified bio-oil for steel/steel contact. Wear 2015, 342–343, 297–309. [Google Scholar] [CrossRef]
- Vardhaman, B.S.A.; Amarnath, M.; Ramkumar, J.; Mondal, K. Enhanced tribological performances of zinc oxide/MWCNTs hybrid nanomaterials as the effective lubricant additive in engine oil. Mater. Chem. Phys. 2020, 253, 123447. [Google Scholar] [CrossRef]
- Rahman, M.M.; Islam, M.; Roy, R.; Younis, H.; AlNahyan, M.; Younes, H. Carbon Nanomaterial-Based Lubricants: Review of Recent Developments. Lubricants 2022, 10, 281. [Google Scholar] [CrossRef]
- Gan, C.; Liang, T.; Li, W.; Fan, X.; Li, X.; Li, D.; Zhu, M. Hydroxyl-terminated ionic liquids functionalized graphene oxide with good dispersion and lubrication function. Tribol. Int. 2020, 148, 106350. [Google Scholar] [CrossRef]
- Wu, L.; Gu, L.; Jian, R. Lubrication mechanism of graphene nanoplates as oil additives for ceramics/steel sliding components. Ceram. Int. 2021, 47, 16935–16942. [Google Scholar] [CrossRef]
- Flores-Castañeda, M.; Camps, E.; Camacho-López, M.; Muhl, S.; García, E.; Figueroa, M. Bismuth nanoparticles synthesized by laser ablation in lubricant oils for tribological tests. J. Alloys Compd. 2015, 643, S67–S70. [Google Scholar] [CrossRef]
- Scherge, M.; Böttcher, R.; Kürten, D.; Linsler, D. Multi-Phase Friction and Wear Reduction by Copper Nanopartices. Lubricants 2016, 4, 36. [Google Scholar] [CrossRef] [Green Version]
- Luo, T.; Wei, X.; Huang, X.; Huang, L.; Yang, F. Tribological properties of Al2O3 nanoparticles as lubricating oil additives. Ceram. Int. 2014, 40, 7143–7149. [Google Scholar] [CrossRef]
- Song, X.; Zheng, S.; Zhang, J.; Li, W.; Chen, Q.; Cao, B. Synthesis of monodispersed ZnAl2O4 nanoparticles and their tribology properties as lubricant additives. Mater. Res. Bull. 2012, 47, 4305–4310. [Google Scholar] [CrossRef]
- Zhou, L.H.; Wei, X.C.; Ma, Z.J.; Mei, B. Anti-friction performance of FeS nanoparticle synthesized by biological method. Appl. Surf. Sci. 2017, 407, 21–28. [Google Scholar] [CrossRef]
- Rabaso, P.; Ville, F.; Dassenoy, F.; Diaby, M.; Afanasiev, P.; Cavoret, J.; Vacher, B.; Le Mogne, T. Boundary lubrication: Influence of the size and structure of inorganic fullerene-like MoS2 nanoparticles on friction and wear reduction. Wear 2014, 320, 161–178. [Google Scholar] [CrossRef]
- Xu, Y.; Hu, E.; Hu, K.; Xu, Y.; Hu, X. Formation of an adsorption film of MoS2 nanoparticles and dioctyl sebacate on a steel surface for alleviating friction and wear. Tribol. Int. 2015, 92, 172–183. [Google Scholar] [CrossRef]
- Hong, H.; Thomas, D.; Waynick, A.; Yu, W.; Smith, P.; Roy, W. Carbon nanotube grease with enhanced thermal and electrical conductivities. J. Nanopart. Res. 2010, 12, 529–535. [Google Scholar] [CrossRef]
- Ettefaghi, E.-o.-I.; Ahmadi, H.; Rashidi, A.; Nouralishahi, A.; Mohtasebi, S.S. Preparation and thermal properties of oil-based nanofluid from multi-walled carbon nanotubes and engine oil as nano-lubricant. Int. Commun. Heat Mass Transf. 2013, 46, 142–147. [Google Scholar] [CrossRef]
- Naddaf, A.; Zeinali Heris, S. Experimental study on thermal conductivity and electrical conductivity of diesel oil-based nanofluids of graphene nanoplatelets and carbon nanotubes. Int. Commun. Heat Mass Transf. 2018, 95, 116–122. [Google Scholar] [CrossRef]
- Yujun, G.; Zhongliang, L.; Guangmeng, Z.; Yanxia, L. Effects of multi-walled carbon nanotubes addition on thermal properties of thermal grease. Int. J. Heat Mass Transf. 2014, 74, 358–367. [Google Scholar] [CrossRef]
- Christensen, G.; Younes, H.; Hong, G.; Lou, D.; Hong, H.; Widener, C.; Bailey, C.; Hrabe, R. Hydrogen bonding enhanced thermally conductive carbon nano grease. Synth. Met. 2020, 259, 116213. [Google Scholar] [CrossRef]
- Mahbubul, I.M.; Saadah, A.; Saidur, R.; Khairul, M.A.; Kamyar, A. Thermal performance analysis of Al2O3/R-134a nanorefrigerant. Int. J. Heat Mass Transf. 2015, 85, 1034–1040. [Google Scholar] [CrossRef] [Green Version]
- Maheshwary, P.B.; Handa, C.C.; Nemade, K.R. Effect of Shape on Thermophysical and Heat Transfer Properties of ZnO/R-134a Nanorefrigerant. Mater. Today Proc. 2018, 5, 1635–1639. [Google Scholar] [CrossRef]
- Aberoumand, S.; Jafarimoghaddam, A.; Moravej, M.; Aberoumand, H.; Javaherdeh, K. Experimental study on the rheological behavior of silver-heat transfer oil nanofluid and suggesting two empirical based correlations for thermal conductivity and viscosity of oil based nanofluids. Appl. Therm. Eng. 2016, 101, 362–372. [Google Scholar] [CrossRef]
- Ettefaghi, E.-o.-l.; Ahmadi, H.; Rashidi, A.; Mohtasebi, S.S.; Alaei, M. Experimental evaluation of engine oil properties containing copper oxide nanoparticles as a nanoadditive. Int. J. Ind. Chem. 2013, 4, 28. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Wang, L.; He, Y.; Hu, Y.; Zhu, J.; Jiang, B. Experimental investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluids. Appl. Therm. Eng. 2015, 88, 363–368. [Google Scholar] [CrossRef]
- Christensen, G.; Yang, J.; Lou, D.; Hong, G.; Hong, H.; Tolle, C.; Widener, C.; Bailey, C.; Hrabe, R.; Younes, H. Carbon nanotubes grease with high electrical conductivity. Synth. Met. 2020, 268, 116496. [Google Scholar] [CrossRef]
- Daoqiang, L.; Tong, Q.K.; Wong, C.P. A study of lubricants on silver flakes for microelectronics conductive adhesives. IEEE Trans. Compon. Packag. Technol. 1999, 22, 365–371. [Google Scholar] [CrossRef] [Green Version]
- Myshkin, N.K.; Konchits, V.V. Evaluation of the interface at boundary lubrication using the measurement of electric conductivity. Wear 1994, 172, 29–40. [Google Scholar] [CrossRef]
- Yan, Y. 7—Tribology and tribo-corrosion testing and analysis of metallic biomaterials. In Metals for Biomedical Devices; Niinomi, M., Ed.; Woodhead Publishing: Sawston, UK, 2010; pp. 178–201. [Google Scholar] [CrossRef]
- Rivera, N.; Viesca, J.L.; García, A.; Prado, J.I.; Lugo, L.; Battez, A.H. Cooling Performance of Fresh and Aged Automatic Transmission Fluids for Hybrid Electric Vehicles. Appl. Sci. 2022, 12, 8911. [Google Scholar] [CrossRef]
- Bouvy, C.; Baltzer, S.; Jeck, P.; Gißing, J.; Lichius, T.; Eckstein, L. Holistic vehicle simulation using modelica—An application on thermal management and operation strategy for electrified vehicles. In Proceedings of the 9th International MODELICA Conference, Munich, Germany, 3–5 September 2012; pp. 264–270. [Google Scholar]
- Zhuang, W.; Fan, X.; Li, W.; Li, H.; Zhang, L.; Peng, J.; Cai, Z.; Mo, J.; Zhang, G.; Zhu, M. Comparing space adaptability of diamond-like carbon and molybdenum disulfide films toward synergistic lubrication. Carbon 2018, 134, 163–173. [Google Scholar] [CrossRef]
- Voevodin, A.A.; Zabinski, J.S. Nanocomposite and nanostructured tribological materials for space applications. Compos. Sci. Technol. 2005, 65, 741–748. [Google Scholar] [CrossRef]
- Fan, X.; Wang, L. Highly conductive ionic liquids toward high-performance space-lubricating greases. ACS Appl. Mater. Interfaces 2014, 6, 14660–14671. [Google Scholar] [CrossRef]
- Yu, W.; Xie, H.; Yin, L.; Zhao, J.; Xia, L.; Chen, L. Exceptionally high thermal conductivity of thermal grease: Synergistic effects of graphene and alumina. Int. J. Therm. Sci. 2015, 91, 76–82. [Google Scholar] [CrossRef]
- Nancarrow, P.; Mohammed, H. Ionic liquids in space technology—Current and future trends. ChemBioEng Rev. 2017, 4, 106–119. [Google Scholar] [CrossRef]
- Serles, P.; Nicholson, E.; Tam, J.; Barri, N.; Chemin, J.B.; Wang, G.; Michel, Y.; Singh, C.V.; Choquet, P.; Saulot, A. High performance space lubrication of MoS2 with tantalum. Adv. Funct. Mater. 2022, 32, 2110429. [Google Scholar] [CrossRef]
- Nyberg, E.; Schneidhofer, C.; Pisarova, L.; Dörr, N.; Minami, I. Ionic liquids as performance ingredients in space lubricants. Molecules 2021, 26, 1013. [Google Scholar] [CrossRef]
- Liu, X.; Pu, J.; Wang, L.; Xue, Q. Novel DLC/ionic liquid/graphene nanocomposite coatings towards high-vacuum related space applications. J. Mater. Chem. A 2013, 1, 3797–3809. [Google Scholar] [CrossRef]
- Gao, X.; Hu, M.; Fu, Y.; Weng, L.; Liu, W.; Sun, J. MoS2-Au/Au multilayer lubrication film with better resistance to space environment. J. Alloys Compd. 2020, 815, 152483. [Google Scholar] [CrossRef]
- Dörr, N.; Merstallinger, A.; Holzbauer, R.; Pejaković, V.; Brenner, J.; Pisarova, L.; Stelzl, J.; Frauscher, M. Five-Stage Selection Procedure of Ionic Liquids for Lubrication of Steel-Steel Contacts in Space Mechanisms. Tribol. Lett. 2019, 67, 73. [Google Scholar] [CrossRef]
- Liu, J.; Yan, Z.; Hao, J.; Liu, W. Two strategies to improve the lubricating performance of WS2 film for space application. Tribol. Int. 2022, 175, 107825. [Google Scholar] [CrossRef]
- Na, R.; Liu, J.; Wang, G.; Zhang, S. Light weight and flexible poly (ether ether ketone) based composite film with excellent thermal stability and mechanical properties for wide-band electromagnetic interference shielding. RSC Adv. 2018, 8, 3296–3303. [Google Scholar] [CrossRef]
- Sun, L.; Huang, H.; Guan, Q.; Yang, L.; Zhang, L.; Hu, B.; Neisiany, R.E.; You, Z.; Zhu, M. Cooperative chemical coupling and physical lubrication effects construct highly dynamic ionic covalent adaptable network for high-performance wearable electronics. CCS Chem. 2023, 5, 1096–1107. [Google Scholar] [CrossRef]
- Soares, B.G.; Cordeiro, E.; Maia, J.; Pereira, E.C.L.; Silva, A.A. The effect of the noncovalent functionalization of CNT by ionic liquid on electrical conductivity and electromagnetic interference shielding effectiveness of semi-biodegradable polypropylene/poly (lactic acid) composites. Polym. Compos. 2020, 41, 82–93. [Google Scholar] [CrossRef]
- Hisakado, T.; Tsukizoe, T.; Yoshikawa, H. Lubrication mechanism of solid lubricants in oils. J. Lubr. Tech. 1983, 105, 245–252. [Google Scholar] [CrossRef]
- Javed, M.S.; Dai, S.; Wang, M.; Guo, D.; Chen, L.; Wang, X.; Hu, C.; Xi, Y. High performance solid state flexible supercapacitor based on molybdenum sulfide hierarchical nanospheres. J. Power Source 2015, 285, 63–69. [Google Scholar] [CrossRef]
- Nayak, A.P.; Yuan, Z.; Cao, B.; Liu, J.; Wu, J.; Moran, S.T.; Li, T.; Akinwande, D.; Jin, C.; Lin, J.-F. Pressure-modulated conductivity, carrier density, and mobility of multilayered tungsten disulfide. ACS Nano 2015, 9, 9117–9123. [Google Scholar] [CrossRef]
- Fugallo, G.; Cepellotti, A.; Paulatto, L.; Lazzeri, M.; Marzari, N.; Mauri, F. Thermal conductivity of graphene and graphite: Collective excitations and mean free paths. Nano Lett. 2014, 14, 6109–6114. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Li, Z.; Liu, S.; Zhan, T.; Li, W.; Wang, J. Layered double hydroxides for tribological application: Recent advances and future prospective. Appl. Clay Sci. 2022, 221, 106466. [Google Scholar] [CrossRef]
- Torres, H.; Rodríguez Ripoll, M.; Prakash, B. Tribological behaviour of self-lubricating materials at high temperatures. Int. Mater. Rev. 2018, 63, 309–340. [Google Scholar] [CrossRef]
- Hu, Z.S.; Lai, R.; Lou, F.; Wang, L.G.; Chen, Z.L.; Chen, G.X.; Dong, J.X. Preparation and tribological properties of nanometer magnesium borate as lubricating oil additive. Wear 2002, 252, 370–374. [Google Scholar] [CrossRef]
- Khadem, M.; Penkov, O.V.; Yang, H.-K.; Kim, D.-E. Tribology of multilayer coatings for wear reduction: A review. Friction 2017, 5, 248–262. [Google Scholar] [CrossRef] [Green Version]
- Fan, X.; Xue, Q.; Wang, L. Carbon-based solid-liquid lubricating coatings for space applications—A review. Friction 2015, 3, 191–207. [Google Scholar] [CrossRef] [Green Version]
- Lettington, A.H. Applications of diamond-like carbon thin films. Carbon 1998, 36, 555–560. [Google Scholar] [CrossRef]
- Bewilogua, K.; Hofmann, D. History of diamond-like carbon films—From first experiments to worldwide applications. Surf. Coat. Technol. 2014, 242, 214–225. [Google Scholar] [CrossRef]
- Liu, X.; Wang, L.; Xue, Q. A novel carbon-based solid-liquid duplex lubricating coating with super-high tribological performance for space applications. Surf. Coat. Technol. 2011, 205, 2738–2746. [Google Scholar] [CrossRef]
- Zaretsky, E.V. Liquid lubrication in space. Tribol. Int. 1990, 23, 75–93. [Google Scholar] [CrossRef] [Green Version]
- Torimoto, T.; Tsuda, T.; Okazaki, K.i.; Kuwabata, S. New frontiers in materials science opened by ionic liquids. Adv. Mater. 2010, 22, 1196–1221. [Google Scholar] [CrossRef] [PubMed]
- Vilas-Boas, S.M.; Coelho, A.Z.; Martins, M.A.R.; Coutinho, J.A.P.; Ferreira, O.; Pinho, S.P. Evaluation of Ionic Liquids for the Sustainable Fractionation of Essential Oils. Ind. Eng. Chem. Res. 2023, 62, 6749–6758. [Google Scholar] [CrossRef]
- Yu, G.; Yan, S.; Zhou, F.; Liu, X.; Liu, W.; Liang, Y. Synthesis of dicationic symmetrical and asymmetrical ionic liquids and their tribological properties as ultrathin films. Tribol. Lett. 2007, 25, 197–205. [Google Scholar] [CrossRef]
- Kaldonski, T.J.; Cudzilo, S. Study on the Thermal Stability of Selected Ionic Liquids. Solid State Phenom. 2015, 220–221, 218–223. [Google Scholar] [CrossRef]
- Song, Z.; Liang, Y.; Fan, M.; Zhou, F.; Liu, W. Lithium-based ionic liquids as novel lubricant additives for multiply alkylated cyclopentanes (MACs). Friction 2013, 1, 222–231. [Google Scholar] [CrossRef] [Green Version]
- Kałdoński, T.; Wojdyna, P.P. Liquid lubricants for space engineering and methods for their testing. J. KONES 2011, 18, 163–184. [Google Scholar]
- Bonhote, P.; Dias, A.-P.; Papageorgiou, N.; Kalyanasundaram, K.; Grätzel, M. Hydrophobic, highly conductive ambient-temperature molten salts. Inorg. Chem. 1996, 35, 1168–1178. [Google Scholar] [CrossRef]
- Yao, M.; Fan, M.; Liang, Y.; Zhou, F.; Xia, Y. Imidazolium hexafluorophosphate ionic liquids as high temperature lubricants for steel-steel contacts. Wear 2010, 268, 67–71. [Google Scholar] [CrossRef]
- Wang, Z.; Xia, Y.; Liu, Z.; Wen, Z. Conductive lubricating grease synthesized using the ionic liquid. Tribol. Lett. 2012, 46, 33–42. [Google Scholar] [CrossRef]
- Feng, X.; Xia, Y. Tribological properties of Ti-doped DLC coatings under ionic liquids lubricated conditions. Appl. Surf. Sci. 2012, 258, 2433–2438. [Google Scholar] [CrossRef]
- Huang, G.; Yu, Q.; Ma, Z.; Cai, M.; Liu, W. Probing the lubricating mechanism of oil-soluble ionic liquids additives. Tribol. Int. 2017, 107, 152–162. [Google Scholar] [CrossRef]
- Sanes, J.; Avilés, M.-D.; Saurín, N.; Espinosa, T.; Carrión, F.-J.; Bermúdez, M.-D. Synergy between graphene and ionic liquid lubricant additives. Tribol. Int. 2017, 116, 371–382. [Google Scholar] [CrossRef]
- Wen, X.; Bai, P.; Li, Y.; Cao, H.; Li, S.; Wang, B.; Fang, J.; Meng, Y.; Ma, L.; Tian, Y. Effects of abrasive particles on liquid superlubricity and mechanisms for their removal. Langmuir 2021, 37, 3628–3636. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, J.; Ge, X.; Yi, S.; Wang, H.; Liu, Y.; Luo, J. Macroscale superlubricity achieved on the hydrophobic graphene coating with glycerol. ACS Appl. Mater. Interfaces 2020, 12, 18859–18869. [Google Scholar] [CrossRef]
- Du, C.; Yu, T.; Zhang, L.; Deng, H.; Shen, R.; Li, X.; Feng, Y.; Wang, D. Macroscale Superlubricity with Ultralow Wear and Ultrashort Running-In Period (~1 s) through Phytic Acid-Based Complex Green Liquid Lubricants. ACS Appl. Mater. Interfaces 2023, 15, 10302–10314. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Wang, Y.; Duan, Z.; Huang, S.; Tao, Y.; Lu, X.; Zhang, Y.; Kan, Y.; Wei, Z.; Li, D. Phononic origin of structural lubrication. Friction 2023, 11, 966–976. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, Y.; Xu, D. Anisotropic mechanical properties of quartz mica schist subjected to true triaxial compression. Environ. Earth Sci. 2023, 82, 204. [Google Scholar] [CrossRef]
- Sun, S.; Ru, G.; Qi, W.; Liu, W. Molecular dynamics study of the robust superlubricity in penta-graphene van der Waals layered structures. Tribol. Int. 2023, 177, 107988. [Google Scholar] [CrossRef]
- Zeng, Q. High-Temperature Superlubricity Performance of h-BN Coating on the Textured Inconel X750 Alloy. Lubricants 2023, 11, 258. [Google Scholar] [CrossRef]
- Kayode, J.F.; Afolalu, S.A.; Emetere, M.E.; Monye, S.I.; Lawal, S.L. Application and impact of tribology in energy—An overview. E3S Web Conf. 2023, 391, 01081. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, Y.; Qiao, Y.; Tan, S.; Feng, S.; Ma, J.; Liu, Y.; Luo, J. 2D metal-organic frameworks with square grid structure: A promising new-generation superlubricating material. Nano Today 2021, 40, 101262. [Google Scholar] [CrossRef]
- Ayyagari, A.; Alam, K.I.; Berman, D.; Erdemir, A. Progress in superlubricity across different media and material systems—A review. Front. Mech. Eng. 2022, 8, 908497. [Google Scholar] [CrossRef]
- Li, H.; Wood, R.J.; Rutland, M.W.; Atkin, R. An ionic liquid lubricant enables superlubricity to be “switched on” in situ using an electrical potential. Chem. Commun. 2014, 50, 4368–4370. [Google Scholar] [CrossRef] [PubMed]
- Björling, M.; Shi, Y. DLC and glycerol: Superlubricity in rolling/sliding elastohydrodynamic lubrication. Tribol. Lett. 2019, 67, 23. [Google Scholar] [CrossRef] [Green Version]
- Ge, X.; Li, J.; Zhang, C.; Liu, Y.; Luo, J. Superlubricity and antiwear properties of in situ-formed ionic liquids at ceramic interfaces induced by tribochemical reactions. ACS Appl. Mater. Interfaces 2019, 11, 6568–6574. [Google Scholar] [CrossRef]
- Wang, J.; Liu, C.; Miao, K.; Zhang, K.; Zheng, W.; Chen, C. Macroscale robust superlubricity on metallic NbB2. Adv. Sci. 2022, 9, 2103815. [Google Scholar] [CrossRef]
Lubricants | Lubricant Material | Application | Tribological Behavior | Ref. | |
---|---|---|---|---|---|
COF | WR | ||||
B4C-h-BN | Solid | High loads and high-speed application | 0.591–0.321 | 2.07 × 10−5–1.94 × 10−4 N−1 m−1 | [62] |
Cu-based composites (Cu-Sn-Al-Fe-h-BN graphite-SiC) | Metallic | High-temperature application | ~0.5 | 1.3 × 10−5–4.3 × 10−5 mm3 N−1 m−1 | [62] |
5% Graphite | Solid | A mechanical seal’s rubbing component, an electrically conducting motor, and generator brushes. | 0.2 | 0.0002 mm3/Nm | [84] |
Molybdenum diselenide (MoSe2) | Solid | Optical sensors, biosensors, electrochemical biosensors | 0.039 | 5 × 10−6 mm3/Nm | [85] |
Molybdenum disulfide (MoS2) | Solid | Satellites and the space shuttle | 0.075 | 4.78 × 10−5 mm3 N−1 m−1 | [86] |
Ni-P-h-BN | Solid | Relay and switch contacts, threaded parts | 0.2 | 1.24 × 10−6 N−1 m−1 | [62] |
Ni-Cr-W-Mo-Al-Ti-h-BN-Ag | Solid | Sleeve bearings, and metal-forming dies | 0.37 | 7 × 10−4 N−1 m−1 | [62] |
Ni-Cr/Cr3C2-NiCr/h-BN | Solid | Aerospace, automotive, power generation, industrial machinery, metalworking | 0.65 | 5.3 × 10−5 N−1 m−1 | [62] |
Ni-P-h-BN alloy | Metallic | Engine components, transmission systems, and bearings, aircraft engines, landing gear, and actuation systems | 0.2 | 1.24 × 10−6 N−1 m−1 | [62] |
NiMoAl-6Al2O3-10Ag | Solid | Seals, gears, bearings | 0.53 | 1.47 × 10−5 mm3/Nm | [87] |
NiMoAl-Ag | Solid | Space mechanics, preventing rust | 0.3 | 4.64 × 10−5 mm3/Nm | [88] |
5% Polytetrafluoroethylene (PTFE) | Solid | Mechanical components in companies such as GE Aircraft Engine, Pratt & Whitney, and Rolls Royce | 0.1904 | 1.605 × 10−5 mm3/Nm | [89] |
Ta-Ag alloy | Solid | Spacecraft, high-temperature application | 0.2 | 5.2 × 10−5 mm3/Nm | [62] |
TiN-In alloy | Solid | Metal-forming dies | 0.5 | 5.2 × 10−5 N−1 m−1 | [62] |
Lubricants | Lubricant Material | Application | Tribological Behavior | Ref. | |
---|---|---|---|---|---|
COF | WR | ||||
Attapulgite-based grease | Grease | High-temperature applications, water resistance. | 0.132 | Wear volume 9/10−4 mm3 | [90] |
Attapulgite with 1-butyl-3-methylimidazolium hexafluorophosphate [L-P104] | Grease | Thixotropic additive, rheology modifier | 0.128 | Wear volume 0.8/10−4 mm3 | [90] |
Attapulgite with 1-hexyl-3-methylimidazolium hexafluorophosphate [L-P106] | Grease | Anti-wear agents, EP (extreme pressure) additives | 0.1255 | Wear volume 0.67/10−4 mm3 | [90] |
Attapulgite with 1-octyl-3-methylimidazolium tetrafluoroborate [L-B108] | Grease | Automotive engines, industrial machinery, and oven equipment | 0.128 | Wear volume 0.55/10−4 mm3 | [90] |
Bentone-based grease | Grease | Bearings, gears, slides, bushings, marine environments, and wet processing industries | 0.128 | Wear volume 2.5/10−4 mm3 | [90] |
Bentone with 1-butyl-3-methylimidazolium hexafluorophosphate [L-P104] | Grease | Outdoor equipment, and other conditions where moisture is present | 0.128 | Wear volume 1.7/10−4 mm3 | [90] |
Bentone with 1-hexyl-3-methylimidazolium hexafluorophosphate [L-P106] | Grease | Gearboxes, bearings, it is useful in applications where grease consistency and adhesion are important | 0.1275 | Wear volume 1.2/10−4 mm3 | [90] |
Bentone with 1-octyl-3-methylimidazolium tetrafluoroborate [L-B108] | Grease | Bearings, gears, and slides, construction and mining equipment, against harsh conditions, water exposure | 0.1275 | Wear volume 1.5/10−4 mm3 | [90] |
2% Boron nitride (BN) | grease | Semiconductor, aerospace and aviation, vacuum | 0.19 | Wear scar width 0.375 mm | [10] |
1% Carbon nano-additives in grease | Grease | Tribological coatings, aerospace, automotive, and heavy machinery, brushes, gears, bearings | 0.022 | Wear scar diameter 0.24 mm | [91] |
1-dodecyl-3-methylimidazolium hexafluorophosphate ([C12mim][PF6]) | Grease | Surface coating, lubrications | 0.09 | Scratch width 0.226 mm | [92] |
1-dodecyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide ([C12mim][NTf2]) | Grease | High-temperature lubrication, extreme pressure (EP) lubrication, anti-wear and anti-friction coatings | 0.12 | Scratch width 0.225 mm | [92] |
1-ethyl-3-methyl imidazolium hexafluorophosphate (L-P102) | Ionic grease | Batteries, super capacitors, and electrolytes | 0.093 | Wear volume 0.55 µm2 | [93] |
1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl) amide (L-F106) | Ionic grease | Automotive, industrial, or machinery applications | 0.071 | Wear volume 0.56 µm2 | [93] |
Lithium complex grease (LCG) with 3% MoS2 | Grease | Aerospace and defense, mining and construction equipment, automotive, hinges, gears, and aircraft, spacecraft, and defense | 0.17 | Wear volume 9/10−4 mm3 | [94] |
Lithium conductive grease | Grease | Semiconductor manufacturing, antistatic applications, EMI/RFI shielding | 0.12 | Wear widths 0.375 (mm) | [95] |
[Li(PAG)]BF4 grease | Ionic grease | Wheel bearings, chassis parts, and universal joints | 0.09 | Wear volume 0.58 µm2 | [93] |
[Li(PAG)]PF6 grease | Ionic grease | Gearboxes, bearings, and slides | 0.092 | Wear volume 0.56 µm2 | [93] |
[Li(PAG)]NTf2 grease | Ionic grease | Aerospace, defense, or marine, where high-performance lubrication is required | 0.095 | Wear volume 0.65 µm2 | [93] |
2% Niobium selenide (NbSe2) | Grease | Extreme pressure (EP) lubrication, anti-wear and anti-friction coatings | 0.18 | Wear scar width 0.35 mm | [10] |
Polyalkylene glycol (PAG) | Grease | Pumps, fans, and conveyors excavators, loaders, wind turbines, marine bearings, propellers | 0.121 | Wear width 0.33 mm | [96] |
Polyalkylene glycol (PAG) | Grease | Aerospace industry, spark plug threads, ignition systems, electrical connectors, furnaces, ovens | 0.119 | Wear width 0.31 mm | [96] |
Polyalkylene glycol (PAG) | Grease | Packaging industry, paper manufacturing, printing industry, textile industry | 0.111 | Wear width 0.325 mm | [96] |
Polyurea grease (PG) | Grease | Pumps, motors, conveyors, and bearings, universal joints | 0.175 | Wear volume 4.7/10−4 mm3 | [94] |
Polyurea grease (PG) with 3% MoS2 | Grease | Pumps, gears, and bearings, pins, loaders, bulldozers | 0.225 | Wear volume 3.75/10−4 mm3 | [94] |
Polyurea grease (PG) with 3% Pentaerythritoltetrakis (diphenyl phosphate) (PDP) | Grease | Large gears, bearings, open gears, and heavily loaded sliding surfaces | 0.10 | Wear volume 0.5/10−4 mm3 | [94] |
Polyurea grease (PG) with 3% trimethylolpropane tris(diphenyl phosphate) (TDP) | Grease | Aviation and aerospace, automotive industry, robotics, defense, power generation | 0.125 | Wear volume 0.6/10−4 mm3 | [94] |
Polyalkylene glycol (PAG) | Grease | Battery separators, adsorbents, aerospace, automotive, sports equipment | 0.062 | Wear width 0.032 mm | [97] |
Conductive Lubricants | Experimental Method, Conditions | Coefficient of Friction (COF), μ | Conductivity Property | Ref. |
---|---|---|---|---|
Ionic liquid [1-hexyl-3methylimidazoliumtris trifluorophosphate] | A highly ordered pyrolytic graphite (HOPG) interface is observed using atomic force microscopy (AFM). The COF is extracted when the normal force is <10 nN | μ = 0.001 | Electrically conductive | [196] |
NaCl + PVA (Poly Vinyl Alcohol) mixed solution | Rotating Ball-on-disk tribo-tester. Normal load of 3 N, rotation radius of 5 mm, and linear sliding speed of 94.2 mm/s | μ = 0.0038 | Electrically conductive | [186] |
Glycerol-DLC [Diamond-Like Carbon] | Ball-on-disc tester. At pressure = 1.25 GPa, entrainment speed = 1.6 m/s, slide–to–roll ratio = 1 | μ = less than 0.01 | Thermally conductive | [197] |
IL ([Li(EG)]PF6) | Rotating ball-on-disc tester | μ = 0.003 | Electrically conductive | [198] |
Metallic NbB2 | NbB2 film quantifies in the ball-on-disk tester | μ = less than 0.001 | Thermally conductive | [199] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bustami, B.; Rahman, M.M.; Shazida, M.J.; Islam, M.; Rohan, M.H.; Hossain, S.; Nur, A.S.M.; Younes, H. Recent Progress in Electrically Conductive and Thermally Conductive Lubricants: A Critical Review. Lubricants 2023, 11, 331. https://doi.org/10.3390/lubricants11080331
Bustami B, Rahman MM, Shazida MJ, Islam M, Rohan MH, Hossain S, Nur ASM, Younes H. Recent Progress in Electrically Conductive and Thermally Conductive Lubricants: A Critical Review. Lubricants. 2023; 11(8):331. https://doi.org/10.3390/lubricants11080331
Chicago/Turabian StyleBustami, Bayazid, Md Mahfuzur Rahman, Mst. Jeba Shazida, Mohaiminul Islam, Mahmudul Hasan Rohan, Shakhawat Hossain, Alam S. M. Nur, and Hammad Younes. 2023. "Recent Progress in Electrically Conductive and Thermally Conductive Lubricants: A Critical Review" Lubricants 11, no. 8: 331. https://doi.org/10.3390/lubricants11080331
APA StyleBustami, B., Rahman, M. M., Shazida, M. J., Islam, M., Rohan, M. H., Hossain, S., Nur, A. S. M., & Younes, H. (2023). Recent Progress in Electrically Conductive and Thermally Conductive Lubricants: A Critical Review. Lubricants, 11(8), 331. https://doi.org/10.3390/lubricants11080331