Accelerated Tribo-Films Formation in Complex Adaptive Surface-Engineered Systems under the Extreme Tribological Conditions of Ultra-High-Performance Machining
Abstract
:1. Introduction
2. Experimental Section
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kauffman, S.A. The Origins of Order: Self-Organization and Selection in Evolution; Oxford University Press: Oxford, UK, 1993. [Google Scholar]
- Feng, M.; Sun, M.; Zhao, J.; Petek, H. Self-catalyzed carbon dioxide adsorption by metal–organic chains on gold surfaces. ACS Nano 2014, 8, 8644–8652. [Google Scholar] [CrossRef]
- Liu, G.; Liu, Q. Self-Organization Mechanics of Knowledge Diffusion in a Networks. In Proceedings of the 07 International Conference on Wireless Communications, Networking and Mobile Computing, Shanghai, China, 21–25 September 2007; pp. 5365–5368. [Google Scholar] [CrossRef]
- Liu, H.; Chen, W.; Zhang, R.; Xu, C.; Huang, X.; Peng, H.; Huo, C.; Xu, M.; Miao, Z. Bioinspired in situ self-catalyzing strategy towards graphene nanosheets with hierarchical structure derived from biomass for advanced supercapacitors. Appl. Surf. Sci. 2021, 566, 150692. [Google Scholar] [CrossRef]
- Kauffman, S.; Steel, M. The Expected Number of Viable Autocatalytic Sets in Chemical Reaction Systems. Artif. Life 2021, 27, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Horváth, A.K. Correct classification and identification of autocatalysis. Phys. Chem. Chem. Phys. 2021, 23, 7178–7189. [Google Scholar] [CrossRef] [PubMed]
- Fox-Rabinovich, G.; Totten, G.E. Self-Organization during Friction: Advanced Surface-Engineered Materials and Systems Design; Tailor and Francis: New York, NY, USA, 2006. [Google Scholar]
- Teuscher, C. Revisiting the edge of chaos: Again? Biosystems 2022, 218, 104693. [Google Scholar] [CrossRef] [PubMed]
- Trent, E.M.; Wright, P.K. Metal Cutting, 4th ed.; Butterworth-Heinemann: Boston, MA, USA, 2000. [Google Scholar]
- Fox-Rabinovich, G.; Kovalev, A.; Aguirre, M.; Yamamoto, K.; Veldhuis, S.; Gershman, I.; Rashkovskiy, A.; Endrino, J.; Beake, B.; Dosbaeva, G.; et al. Evolution of self-organization in nano-structured PVD coatings under extreme tribological conditions. Appl. Surf. Sci. 2014, 297, 22–32. [Google Scholar] [CrossRef]
- Fox-Rabinovich, G.; Gershman, I.; Goel, S.; Endrino, J.L. Control over Multi-Scale Self-Organization-Based Processes under the Extreme Tribological Conditions of Cutting through the Application of Complex Adaptive Surface-Engineered Systems. Lubricants 2023, 11, 106. [Google Scholar] [CrossRef]
- Fox-Rabinovich, G.; Gershman, I.S.; Locks, E.; Paiva, J.M.; Endrino, J.L.; Dosbaeva, G.; Veldhuis, S. The Relationship between Cyclic Multi-Scale Self-Organized Processes and Wear-Induced Surface Phenomena under Severe Tribological Conditions Associated with Buildup Edge Formation. Coatings 2021, 11, 1002. [Google Scholar] [CrossRef]
- Skordaris, G.; Bouzakis, K.-D.; Kotsanis, T.; Charalampous, P. A Critical Review of Measures for an Effective Application of Nano-Structured Coatings in Milling. Tribol. Ind. 2017, 39, 211–218. [Google Scholar] [CrossRef]
- Bushe, N.A.; Gershman, I.S. Compatibility of Tribosystem. In Self-Organization during Friction: Advanced Surface-Engineered Materials and Systems Design; Fox-Rabinovich, G., Totten, G.E., Eds.; Tailor and Francis: New York, NY, USA, 2006; pp. 59–79. [Google Scholar]
- Fox-Rabinovich, G.; Kovalev, A.; Gershman, I.; Wainstein, D.; Aguirre, M.H.; Covelli, D.; Paiva, J.; Yamamoto, K.; Veldhuis, S. Complex Behavior of Nano-Scale Tribo-Ceramic Films in Adaptive PVD Coatings under Extreme Tribological Conditions. Entropy 2018, 20, 989. [Google Scholar] [CrossRef]
- Kozlovskiy, A.; Zdorovets, M. Effect of doping of Ce4+/3+ on optical, strength and shielding properties of (0.5-x)TeO2-0.25MoO-0.25Bi2O3-xCeO2 glasses. Mater. Chem. Phys. 2021, 263, 124444. [Google Scholar] [CrossRef]
- Trukhanov, A.; Almessiere, M.; Baykal, A.; Slimani, Y.; Trukhanova, E.; Timofeev, A.; Kostishin, V.; Sertkol, M.; Ul-Hamid, A. Correlation between the composition, structural parameters and magnetic properties of spinel-based functional nanocomposites. Nano Struct. Nano Objects 2023, 33, 100941. [Google Scholar] [CrossRef]
- Kozlovskiy, A.L.; Zdorovets, M.V. Study of hydrogenation processes in radiation-resistant nitride ceramics. J. Mater. Sci. Mater. Electron. 2020, 31, 11227–11237. [Google Scholar] [CrossRef]
- Kotelnikova, A.; Zubar, T.; Vershinina, T.; Panasyuk, M.; Kanafyev, O.; Fedkin, V.; Kubasov, I.; Turutin, A.; Trukhanov, S.; Tishkevich, D.; et al. Saccharin adsorption influence on the NiFe alloy films growth mechanisms during electrodeposition. RSC Adv. 2022, 12, 35722–35729. [Google Scholar] [CrossRef]
- Kozlovskiy, A.L.; Zdorovets, M.V. Synthesis, structural, strength and corrosion properties of thin films of the type CuX (X = Bi, Mg, Ni). J. Mater. Sci. Mater. Electron. 2019, 30, 11819–11832. [Google Scholar] [CrossRef]
- Darwish, M.A.; Zubar, T.I.; Kanafyev, O.D.; Zhou, D.; Trukhanova, E.L.; Trukhanov, S.V.; Trukhanov, A.V.; Henaish, A.M. Combined Effect of Microstructure, Surface Energy, and Adhesion Force on the Friction of PVA/Ferrite Spinel Nanocomposites. Nanomaterials 2022, 12, 1998. [Google Scholar] [CrossRef]
- Leighton, M.; Morris, N.; Rahnejat, H. Transient Nanoscale Tribofilm Growth: Analytical Prediction and Measurement. Appl. Sci. 2021, 11, 5890. [Google Scholar] [CrossRef]
- Gosvami, N.; Bares, J.; Mangolini, F.; Konicek, A.; Yablon, D.; Carpick, R. Mechanisms of antiwear tribofilm growth revealed in situ by single-asperity sliding contacts. Science 2015, 348, 102–106. [Google Scholar] [CrossRef]
- Prigogine, I. Time, Structure, and Fluctuations. Science 1978, 201, 777–778. [Google Scholar] [CrossRef]
- Fox-Rabinovich, G.; Yamamoto, K.; Beake, B.; Kovalev, A.; Aguirre, M.; Veldhuis, S.; Dosbaeva, G.; Wainstein, D.; Biksa, A.; Rashkovskiy, A. Emergent behavior of nano-multilayered coatings during dry high-speed machining of hardened tool steels. Surf. Coat. Technol. 2010, 204, 3425–3435. [Google Scholar] [CrossRef]
- Grasso, S.; Tsujii, N.; Jiang, Q.; Khaliq, J.; Maruyama, S.; Miranda, M.; Simpson, K.; Mori, T.; Reece, M.J. Ultra low thermal conductivity of disordered layered p-type bismuth telluride. J. Mater. Chem. C 2013, 1, 2362. [Google Scholar] [CrossRef]
- Kingery, W.D. Thermal Conductivity: XIV, Conductivity of Multicomponent Systems. J. Am. Ceram. Soc. 1959, 42, 617–627. [Google Scholar] [CrossRef]
- Cao, X.Q.; Vassen, R.; Stoever, D. Ceramic materials for thermal barrier coatings. J. Eur. Ceram. Soc. 2004, 24, 1–10. [Google Scholar] [CrossRef]
- Fox-Rabinovich, G.S.; Gershman, I.S.; Yamamoto, K.; Aguirre, M.H.; Covelli, D.; Arif, T.; Aramesh, M.; Shalaby, M.; Veldhuis, S. Surface/interface phenomena in nano-multilayer coating under severing tribological conditions. Surf. Interface Anal. 2016, 49, 584–593. [Google Scholar] [CrossRef]
- Fox-Rabinovich, G.; Beake, B.; Yamamoto, K.; Aguirre, M.H.; Veldhuis, S.; Dosbaeva, G.; Elfizy, A.; Biksa, A.; Shuster, L. Structure, properties and wear performance of nano-multilayered TiAlCrSiYN/TiAlCrN coatings during machining of Ni-based aerospace superalloys. Surf. Coat. Technol. 2010, 204, 3698–3706. [Google Scholar] [CrossRef]
- Gershman, I.S.; Bushe, N.A. Elements of thermodynamics and self-organization during friction. In Self-Organization during Friction: Advanced Surface-Engineered Materials and Systems Design; Fox-Rabinovich, G., Totten, G.E., Eds.; Tailor and Francis: New York, NY, USA, 2006; pp. 13–59. [Google Scholar]
- Nicolis, G.; Prigogine, I. Self-Organization in Nonequilibrium Systems; John Wiley & Sons: New York, NY, USA; London, UK; Sydney, Australia; Toronto, ON, Canada, 1977. [Google Scholar]
- Bak, P.; Tang, C.; Wiesenfeld, K. Self-organized criticality. Phys. Rev. A 1988, 38, 364–374. [Google Scholar] [CrossRef]
- Dalton, F.; Corcoran, D. Self-organized criticality in a sheared granular stick-slip system. Phys. Rev. E 2001, 63, 061312. [Google Scholar] [CrossRef]
Heating Procedure | Reactant Gas | Gas Pressure, during Deposition, Pa | Target Size, mm | Current of Arc Sources, A | Bias Voltage, V | Substrate Rotation during Deposition, rpm |
---|---|---|---|---|---|---|
Samples were heated up to about 500 °C and cleaned through an Ar ion etching process | Pure N2 gas was fed to the chamber | 4 | 100 mm diameter × 16 mm thick target Two targets were used for coating deposition. | 150 | 100 | 5 |
Thickness, µm | 2 |
Nano-layer thickness, nm | 20–40 |
Crystal structure | FCC nano-crystalline/laminated |
Grain size, nm | 20–40 |
Nano-layer thickness, nm | 20–40 |
Micro-hardness, GPa | 30 |
Machine | Cutting Parameters | ||||
---|---|---|---|---|---|
Three-axis vertical milling center (Matsuura FX-5). | Speed, m/min | Feed, mm/tooth | axial depth, mm | radial depth, mm | Coolant |
600; 700 | 0.06 | 5 | 0.6 | Dry conditions |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fox-Rabinovich, G.S.; Gershman, I.S.; Endrino, J.L. Accelerated Tribo-Films Formation in Complex Adaptive Surface-Engineered Systems under the Extreme Tribological Conditions of Ultra-High-Performance Machining. Lubricants 2023, 11, 221. https://doi.org/10.3390/lubricants11050221
Fox-Rabinovich GS, Gershman IS, Endrino JL. Accelerated Tribo-Films Formation in Complex Adaptive Surface-Engineered Systems under the Extreme Tribological Conditions of Ultra-High-Performance Machining. Lubricants. 2023; 11(5):221. https://doi.org/10.3390/lubricants11050221
Chicago/Turabian StyleFox-Rabinovich, German S., Iosif S. Gershman, and Jose Luis Endrino. 2023. "Accelerated Tribo-Films Formation in Complex Adaptive Surface-Engineered Systems under the Extreme Tribological Conditions of Ultra-High-Performance Machining" Lubricants 11, no. 5: 221. https://doi.org/10.3390/lubricants11050221
APA StyleFox-Rabinovich, G. S., Gershman, I. S., & Endrino, J. L. (2023). Accelerated Tribo-Films Formation in Complex Adaptive Surface-Engineered Systems under the Extreme Tribological Conditions of Ultra-High-Performance Machining. Lubricants, 11(5), 221. https://doi.org/10.3390/lubricants11050221