The Difference in Tribological Characteristics between CFRPEEK and Stainless Steel under Water Lubrication in Friction Testing Machine and Axial Piston Pump
Abstract
:1. Introduction
2. Experimental
2.1. Sample Preparation
2.1.1. Sample for Friction Testing Machine
2.1.2. Samples of WLPP
2.2. Tribology Tests
2.2.1. Tribology Tests in Friction Testing Machine
2.2.2. Tribology Tests in WLPP
3. Results and Discussions
3.1. Tribological Behaviors and Surface Topography within Friction Testing Machine
3.1.1. Tribological Behaviors of the Samples
3.1.2. Surface Topography of the Samples
3.2. Wear Analysis of Slipper/Swashplate Pair of WLPP
3.2.1. Volumetric Efficiency of WLPP
3.2.2. Wear Analysis of Slipper and Swashplate Pairs
3.3. Analysis of Tribological Differences under Two Test Methods
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lou, F.L.; Nie, S.L.; Yin, F.L.; Lu, W.; Ji, H.; Ma, Z.H.; Kong, X.L. Numerical and experimental research on the integrated energy recovery and pressure boost device for seawater reverse osmosis desalination system. Desalination 2022, 523, 115408. [Google Scholar] [CrossRef]
- Yin, F.L.; Nie, S.L.; Ji, H.; Lou, F.L. Numerical study of structure parameters on energy transfer and flow characteristics of integrated energy recovery and pressure boost device. Desalin. Water Treat. 2018, 131, 141–154. [Google Scholar] [CrossRef]
- Zhao, X.F.; Liu, Y.S.; Han, M.X.; Wu, D.F.; Li, D.L. Improving the performance of an AUV hovering system by introducing low-cost flow rate control into water hydraulic variable ballast system. Ocean Eng. 2016, 125, 155–169. [Google Scholar] [CrossRef]
- Liu, Y.S.; Li, D.L.; Tang, Z.Y.; Deng, Y.P.; Wu, D.F. Thermodynamic modeling, simulation and experiments of a water hydraulic piston pump in water hydraulic variable ballast system. Ocean Eng. 2017, 138, 35–44. [Google Scholar] [CrossRef]
- Liu, Y.S.; Jiang, Z.; Wang, D.; Li, X.H. Experimental research on the water mist fire suppression performance in an enclosed space by changing the characteristics of nozzles. Exp. Therm. Fluid Sci. 2014, 52, 174–181. [Google Scholar] [CrossRef]
- Zhang, J.H.; Lyu, F.; Xu, B.; Huang, W.D.; Wu, W.; Guo, Z.M.; Xu, H.G.; Huang, X.C. Simulation and experimental investigation on low wear rate surface contour of piston/cylinder pair in an axial piston pump. Tribol. Int. 2021, 162, 107127. [Google Scholar] [CrossRef]
- Chen, B.B.; Wang, J.Z.; Yan, F.Y. Friction and Wear Behaviors of Several Polymers Sliding Against GCr15 and 316 Steel Under the Lubrication of Sea Water. Tribol. Lett. 2011, 42, 17–25. [Google Scholar] [CrossRef]
- Yin, F.L.; Kong, X.L.; Ji, H.; Nie, S.L.; Lu, W. Research on the pressure and flow characteristics of seawater axial piston pump considering cavitation for reverse osmosis desalination system. Desalination 2022, 540, 18. [Google Scholar] [CrossRef]
- Liu, Y.S.; Cheng, Q.; Wang, Z.Y.; Pang, H.; Deng, Y.P.; Zhou, X.P.; Luo, X.H.; Cui, Y.; Wu, D.F. Seawater hydraulics: From the sea surface to depths of 11000 meters. Sci. China-Technol. Sci. 2022, 65, 2178–2189. [Google Scholar] [CrossRef]
- Gao, C.P.; Guo, G.F.; Zhao, F.Y.; Wang, T.M.; Jim, B.; Wetzel, B.; Zhang, G.; Wang, Q.H. Tribological behaviors of epoxy composites under water lubrication conditions. Tribol. Int. 2016, 95, 333–341. [Google Scholar] [CrossRef]
- Yin, F.L.; Ji, H.; Nie, S.L. Tribological behavior of various ceramic materials sliding against CF/PTFE/graphite-filled PEEK under seawater lubrication. Proc. Inst. Mech. Eng. Part J-J. Eng. Tribol. 2019, 233, 1729–1742. [Google Scholar] [CrossRef]
- Brookes, C.A.; Fagan, M.J.; James, R.D.; Connachie, J.M. The Selection and Performance of Ceramic Components in a Sea-water Pump. In Proceedings of the JFPS International Symposium on Fluid Power, Yokohama, Japan, 12 November 1996. [Google Scholar]
- Chen, M.; Kato, K.; Adachi, K. Friction and wear of self-mated SiC and Si3N4 sliding in water. Wear 2001, 250, 246–255. [Google Scholar] [CrossRef]
- Yin, Z.B.; Huang, C.Z.; Yuan, J.T.; Zou, B.; Liu, H.L.; Zhu, H.T. Cutting performance and life prediction of an Al2O3/TiC micro nano-composite ceramic tool when machining austenitic stainless steel. Ceram. Int. 2015, 41, 7059–7065. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Tao, W.; Zhang, Y.; Tang, L.; Gu, J.W.; Jiang, Z.H. Continuous carbon fiber/crosslinkable poly(ether ether ketone) laminated composites with outstanding mechanical properties, robust solvent resistance and excellent thermal stability. Compos. Sci. Technol. 2018, 165, 148–153. [Google Scholar] [CrossRef]
- Koh, Y.G.; Lee, J.A.; Kang, K.T. Prediction of Wear on Tibial Inserts Made of UHMWPE, PEEK, and CFR-PEEK in Total Knee Arthroplasty Using Finite-Element Analysis. Lubricants 2019, 7, 14. [Google Scholar] [CrossRef] [Green Version]
- Yan, M.X.; Tian, X.Y.; Peng, G.; Li, D.C.; Zhang, X.Y. High temperature rheological behavior and sintering kinetics of CF/PEEK composites during selective laser sintering. Compos. Sci. Technol. 2018, 165, 140–147. [Google Scholar] [CrossRef]
- Shukla, D.; Negi, Y.S.; Sen Uppadhyaya, J.; Kumar, V. Synthesis and Modification of Poly(ether ether ketone) and their Properties: A Review. Polym. Rev. 2012, 52, 189–228. [Google Scholar] [CrossRef]
- Chen, B.B.; Wang, J.Z.; Yan, F.Y. Comparative investigation on the tribological behaviors of CF/PEEK composites under sea water lubrication. Tribol. Int. 2012, 52, 170–177. [Google Scholar] [CrossRef]
- Li, D.; Liu, Y.; Deng, Y.; Fang, M.; Wu, D. The Effect of Different Temperature on Friction and Wear Properties of CFRPEEK against AISI 431 Steel under Water Lubrication. Tribol. Trans. 2018, 61, 357–366. [Google Scholar] [CrossRef]
- Davim, J.P.; Cardoso, R. Thermo-mechanical model to predict the tribological behaviour of the composite PEEK-CF30/steel pair in dry sliding using multiple regression analysis. Ind. Lubr. Tribol. 2005, 57, 181–186. [Google Scholar] [CrossRef]
- Davim, J.P.; Cardoso, R. Tribological behaviour of the composite PEEK-CF30 at dry sliding against steel using statistical techniques. Mater. Des. 2006, 27, 338–342. [Google Scholar] [CrossRef]
- Davim, J.P.; Cardoso, R. Effect of the reinforcement (carbon or glass fibres) on friction and wear behaviour of the PEEK against steel surface at long dry sliding. Wear 2009, 266, 795–799. [Google Scholar] [CrossRef]
- Li, G.; Qi, H.; Zhang, G.; Zhao, F.; Wang, T.; Wang, Q. Significant friction and wear reduction by assembling two individual PEEK composites with specific functionalities. Mater. Des. 2017, 116, 152–159. [Google Scholar] [CrossRef]
- Liu, H.; Wang, J.Z.; Jiang, P.F.; Yan, F.Y. Hydrostatic pressure-dependent wear behavior of thermoplastic polymers in deep sea. Polym. Adv. Technol. 2018, 29, 2410–2415. [Google Scholar] [CrossRef]
- Wu, D.; Guan, Z.; Cheng, Q.; Wei, G.; Tang, M.; Liu, Y. Development of a Friction Test Apparatus for Simulating the Ultra-High Pressure Environment of the Deep Ocean. Wear 2020, 452–453, 203294. [Google Scholar] [CrossRef]
- Guan, Z.; Wu, D.; Cheng, Q.; Wang, Z.; Tang, M.; Liu, Y. Friction and Wear characteristics of CF/PEEK against 431 stainless steel under high hydrostatic pressure water lubrication. Mater. Des. 2020, 196, 109057. [Google Scholar] [CrossRef]
- Pelosi, M.; Ivantysynova, M. A Geometric Multigrid Solver for the Piston-Cylinder Interface of Axial Piston Machines. Tribol. Trans. 2012, 55, 163–174. [Google Scholar] [CrossRef]
- Liang, Y.N.; Gao, D.R.; Zhao, J.H. Tribological Properties of Friction Pair between 316L Stainless Steel and CF/PEEK with Nonsmooth Surface under Seawater Lubrication. Tribol. Trans. 2020, 63, 658–671. [Google Scholar] [CrossRef]
- Ensinger. Available online: https://www.ensingerplastics.com/en/shapes/products/peek-tecapeek-cf30-black (accessed on 3 February 2023).
- Chao, Q.; Zhang, J.H.; Xu, B.; Wang, Q.N.; Lyu, F.; Li, K. Integrated slipper retainer mechanism to eliminate slipper wear in high-speed axial piston pumps. Front. Mech. Eng. 2022, 17, 13. [Google Scholar] [CrossRef]
- Ma, J.M.; Chen, J.; Li, J.; Li, Q.L.; Ren, C.Y. Wear analysis of swash plate/slipper pair of axis piston hydraulic pump. Tribol. Int. 2015, 90, 467–472. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Nie, S.L.; Yuan, S.H.; Liao, W.J. Comparative Evaluation of Tribological Characteristics of CF/PEEK and CF/PTFE/Graphite Filled PEEK Sliding against AISI630 Steel for Seawater Hydraulic Piston Pumps/Motors. Tribol. Trans. 2015, 58, 1096–1104. [Google Scholar] [CrossRef]
- Wang, Z.Q.; Gao, D.R. Friction and wear properties of stainless steel sliding against polyetheretherketone and carbon-fiber-reinforced polyetheretherketone under natural seawater lubrication. Mater. Des. 2014, 53, 881–887. [Google Scholar] [CrossRef]
- Mimaroglu, A.; Unal, H.; Ozel, A. Tribological Performance of Polyetheretherketone and its Composites under Water Environment. Macromol. Symp. 2013, 327, 108–113. [Google Scholar] [CrossRef]
- Tang, Q.G.; Chen, J.S.; Andrea, V. Tribological Behaviors of Carbon Fiber-Reinforced PEEK Sliding on Ion-Nitrided 2Cr13 Steel Lubricated with Tap Water. Tribol. Trans. 2015, 58, 691–697. [Google Scholar] [CrossRef]
- Nie, S.L.; He, H.; Ji, H.; Nie, S.; Yan, X.P.; Yin, F.L. Failure analysis of auxiliary support bearing/shaft tribopair in seawater hydraulic axial piston pump. Eng. Fail. Anal. 2023, 146, 16. [Google Scholar] [CrossRef]
- Wang, Z.; Fu, Q.; Wood, R.J.; Wu, J.; Wang, S. Influence of bionic non-smooth surface texture on tribological characteristics of carbon-fiber-reinforced polyetheretherketone under seawater lubrication. Tribol. Int. 2020, 144, 106100. [Google Scholar] [CrossRef]
- Newcomb, B.A. Processing, structure, and properties of carbon fibers. Compos. Part A Appl. Sci. Manuf. 2016, 91, 262–282. [Google Scholar] [CrossRef]
Properties | Unit | 316L | 1Cr17Ni2 |
---|---|---|---|
density | g/cm3 | 7.98 | 7.75 |
tensile strength | MPa | 480 | 1080 |
yield strength | MPa | 177 | - |
tensile modulus | GPa | 210 | 210 |
hardness | HB | 187 | 400 |
Properties | Unit | Value |
---|---|---|
density | g/cm3 | 1.40 |
water absorption | % | 0.06 |
tensile strength | MPa | 265 |
compressive strength | MPa | 300 |
tensile modulus | GPa | 28 |
hardness | Shore D | 87.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.; Ma, X.; Wang, S.; Wang, J.; Yang, F.; Liu, Y. The Difference in Tribological Characteristics between CFRPEEK and Stainless Steel under Water Lubrication in Friction Testing Machine and Axial Piston Pump. Lubricants 2023, 11, 158. https://doi.org/10.3390/lubricants11040158
Li D, Ma X, Wang S, Wang J, Yang F, Liu Y. The Difference in Tribological Characteristics between CFRPEEK and Stainless Steel under Water Lubrication in Friction Testing Machine and Axial Piston Pump. Lubricants. 2023; 11(4):158. https://doi.org/10.3390/lubricants11040158
Chicago/Turabian StyleLi, Donglin, Xianshuai Ma, Shuai Wang, Junhua Wang, Fang Yang, and Yinshui Liu. 2023. "The Difference in Tribological Characteristics between CFRPEEK and Stainless Steel under Water Lubrication in Friction Testing Machine and Axial Piston Pump" Lubricants 11, no. 4: 158. https://doi.org/10.3390/lubricants11040158
APA StyleLi, D., Ma, X., Wang, S., Wang, J., Yang, F., & Liu, Y. (2023). The Difference in Tribological Characteristics between CFRPEEK and Stainless Steel under Water Lubrication in Friction Testing Machine and Axial Piston Pump. Lubricants, 11(4), 158. https://doi.org/10.3390/lubricants11040158