Use of Functionalized Graphene-Based Materials on Grease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Graphene Characterization
2.2. Rheometer
2.3. Tribological Testers
3. Results
3.1. Graphene Characterization
3.2. Booster for Grease and Oil Additive
3.3. Grease Sample Preparation
3.4. Grease Consistency (Cone Penetration)
3.5. Grease Dropping Point
3.6. Grease Rheology
3.7. Pin-on-Disk Tribometer TRB³ Test
3.8. Four-Ball Wear Test
3.9. Four-Ball EP Test
4. Discussion
5. Conclusions
- -
- The tribological properties measured in this study may not have been sensitive to the amplitude of variation measured in the three graphene-based materials’ characteristics presented, such as the number of coupled layers, crystallinity, and morphology of primary sheets and aggregates.
- -
- Functionalization and incorporation processes might have “smoothed” the disparities between the three graphene-based materials in their dispersed form in the grease matrix compared to their initial physical properties as powders. The development of graphene characterization techniques in a grease environment would be required to validate these assumptions.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Rheology—Shear Thinning with Some Graphene Variants
References
- Georgakilas, V.; Perman, J.A.; Tucek, J.; Zboril, R. Broad Family of Carbon Nanoallotropes: Classification, Chemistry, and Applications of Fullerenes, Carbon Dots, Nanotubes, Graphene, Nanodiamonds, and Combined Superstructures. Chem. Rev. 2015, 115, 4744–4822. [Google Scholar] [CrossRef] [PubMed]
- Ren, W.; Cheng, H.M. The global growth of graphene. Nat. Nanotechnol. 2014, 9, 726–730. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Ji, H.; Cheng, H.M.; Ruoff, R.S. Mass production and industrial applications of graphene materials. Natl. Sci. Rev. 2018, 5, 90–101. [Google Scholar] [CrossRef]
- Berman, D.; Erdemir, A.; Sumant, A. Graphene: A new emerging lubricant. Mater. Today 2014, 17, 31–42. [Google Scholar] [CrossRef]
- Penkov, O.V. Tribology of Graphene Simulation Methods, Preparation Methods, and Their Applications; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar] [CrossRef]
- Nyholm, N.; Espallargas, N. Functionalized carbon nanostructures as lubricant additives—A review. Carbon 2023, 201, 1200–1228. [Google Scholar] [CrossRef]
- Liu, Y.; Ge, X.; Li, J. Graphene lubrication. Appl. Mater. Today 2020, 20, 100662. [Google Scholar] [CrossRef]
- Liu, L.; Zhou, M.; Jin, L.; Li, L.; Mo, Y.; Su, G.; Li, X.; Zhu, H.; Tian, Y. Recent advances in friction and lubrication of graphene and other 2D materials: Mechanisms and applications. Friction 2019, 7, 199–216. [Google Scholar] [CrossRef]
- Bao, T.; Wang, Z.; Zhao, Y.; Wang, Y.; Yi, X. Long-term stably dispersed functionalized graphene oxide as an oil additive. RSC Adv. 2019, 9, 39230–39241. [Google Scholar] [CrossRef]
- Gao, Q.; Liu, S.; Hou, K.; Li, Z.; Wang, J. Graphene-Based Nanomaterials as Lubricant Additives: A Review. Lubricants 2022, 10, 273. [Google Scholar] [CrossRef]
- Chouhan, A. Chemically functionalized graphene for lubricant applications: Microscopic and spectroscopic studies of contact interfaces to probe the role of graphene for enhanced tribo-performance. J. Colloid Interface Sci. 2018, 513, 666–676. [Google Scholar] [CrossRef]
- Gulzar, M.; Masjuki, H.H.; Kalam, M.A.; Varman, M.; Zulkifli, N.W.M.; Mufti, R.A.; Zahid, R. Tribological performance of nanoparticles as lubricating oil additives. J. Nanopart. Res. 2016, 18, 223. [Google Scholar] [CrossRef]
- Lau, G.A.; Neves, G.O.; Salvaro, D.B.; Binder, C.; Klein, A.N.; de Mello, J.D.B. Stability and Tribological Performance of Nanostructured 2D Turbostratic Graphite and Functionalised Graphene as Low-Viscosity Oil Additives. Lubricants 2023, 11, 155. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, S.; Shi, Q.; Ge, X.; Wang, W. Graphene-Family Lubricant Additives: Recent Developments and Future Perspectives. Lubricants 2022, 10, 215. [Google Scholar] [CrossRef]
- Wick, P.; Louw-Gaume, A.; Kucki, M.; Krug, H.; Kostarelos, K.; Fadeel, B.; Dawson, K.; Salvati, A.; Vásquez, E.; Ballerini, L. Classification Framework for Graphene-Based Materials. Angew. Chem. Int. Ed. 2014, 53, 7714–7718. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.; Islam, M.; Roy, R.; Younis, H.; AlNahyan, M.; Younes, H. Carbon Nanomaterial-Based Lubricants: Review of Recent Developments. Lubricants 2022, 10, 281. [Google Scholar] [CrossRef]
- Morales-Espejel, G.E.; Gabelli, A. A model for rolling bearing life with surface and subsurface survival: Surface thermal effects. Wear 2020, 460–461, 203446. [Google Scholar] [CrossRef]
- Lugt, P.M. On the use of the Arrhenius equation to describe the impact of temperature on grease life. Tribol. Int. 2023, 179, 108142. [Google Scholar] [CrossRef]
- Mustafa, W.; Dassenoy, F.; Sarno, M.; Senatore, A. Senatore A review on potentials and challenges of nanolubricants as promising lubricants for electric vehicles. Lubr. Sci. 2022, 34, 1–29. [Google Scholar] [CrossRef]
- Canter, N. Tribology and Lubrication for E-Mobility: Findings from the Inaugural STLE Conference on Electric Vehicles; Society of Tribologists and Lubrication Engineers: Park Ridge, IL, USA, 2022. [Google Scholar]
- Christensen, G.; Yang, J.; Lou, D.; Hong, G.; Hong, H.; Tolle, C.; Widener, C.; Bailey, C.; Rob Hrabe, R.; Hammad Younes, H. Carbon nanotubes grease with high electrical conductivity. Synth. Met. 2020, 268, 116496. [Google Scholar] [CrossRef]
- Christensen, G.; Younes, H.; Hong, G.; Lou, D.; Hong, H.; Widener, C.; Bailey, G.; Hrab, R. Hydrogen bonding enhanced thermally conductive carbon nano grease. Synth. Met. 2020, 259, 116213. [Google Scholar] [CrossRef]
- Cremonezzi, J.; Ribeiro, H.; Andrade, R.; Fechine, G. Characterization strategy for graphene oxide and molybdenum disulfide: Proceedings based on the ISO/TS 21356-1:2021 standard. FlatChem 2022, 36, 100448. [Google Scholar] [CrossRef]
- Lugt, P.M. Modern advancements in lubricating grease technology. Tribol. Int. 2016, 97, 467–477. [Google Scholar] [CrossRef]
- Cann, P.M.E. Understanding grease lubrication. Tribol. Ser. 1996, 31, 573–581. [Google Scholar] [CrossRef]
- Fish, G. The development of energy efficient greases. ELGI EuroGrease 2015, 2, 6–17. [Google Scholar]
- Spikes, H. Friction Modifier Additives. Tribol. Lett. 2015, 60, 5. [Google Scholar] [CrossRef]
- Tang, Z.; Li, S. A review of recent developments of friction modifiers for liquid lubricants (2007–present). Curr. Opin. Solid State Mater. Sci. 2014, 18, 119–139. [Google Scholar] [CrossRef]
- Fan, X. Multilayer Graphene as a Lubricating Additive in Bentone Grease. Tribol. Lett. 2014, 55, 455–464. [Google Scholar] [CrossRef]
- Singh, J.; Anand, G.; Kumar, D.; Tandon, N. Graphene based composite grease for elastohydrodynamic lubricated point contact. IOP Conf. Ser. Mater. Sci. Eng. 2016, 149, 012195. [Google Scholar] [CrossRef]
- Jing, W. Tribological Characteristics of Graphene as Lithium Grease Additive. China Pet. Process. Petrochem. Technol. Lubr. Res. 2017, 19, 46–54. [Google Scholar]
- Wang, J.; Guo, X.; He, Y.; Jiang, M.; Gu, K. Tribological characteristics of graphene as grease additive under different contact forms. Tribol. Int. 2018, 127, 457–469. [Google Scholar] [CrossRef]
- Fu, H.; Yan, G.; Li, M.; Wang, H.; Chen, Y.; Yan, C.; Lin, C.T.; Jiang, N.; Yu, J. Graphene as a nanofiller for enhancing the tribological properties and thermal conductivity of base grease. RSC Adv. 2019, 9, 42481–42488. [Google Scholar] [CrossRef] [PubMed]
- Pape, F.; Poll, G. Investigations on Graphene Platelets as Dry Lubricant and as Grease Additive for Sliding Contacts and Rolling Bearing Application. Lubricants 2020, 8, 3. [Google Scholar] [CrossRef]
- Ouyang, T. Friction-reducing and anti-wear properties of 3D hierarchical porous graphene/multi-walled carbon nanotube in castor oil under severe condition: Experimental investigation and mechanism study. Wear 2022, 498–499, 204302. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, X.; Zhang, P.; Fan, Y. Mechanism of Influence of Graphene on Rheological and Tribological Properties of Polyurea Greases Considering Temperature and Load Effects. Tribol. Lett. 2023, 71, 56. [Google Scholar] [CrossRef]
- Ali, I.; Kucherova, A.; Memetov, N.; Pasko, T.; Ovchinnikov, K.; Pershin, V.; Kuznetsov, D.; Galunin, E.; Grachev, V.; Tkachev, A. Advances in carbon nanomaterials as lubricants modifiers. J. Mol. Liq. 2019, 279, 251–266. [Google Scholar] [CrossRef]
- Martin, J.M.; Ohmae, N. Colloidal Lubrication: General Principles; Wiley: Hoboken, NJ, USA, 2008. [Google Scholar]
- Christensen, G.; Younes, H.; Hong, H.; Peterson, G.P. Alignment of Carbon Nanotubes Comprising Magnetically Sensitive Metal Oxides by Nonionic Chemical Surfactants. J. Nanofluids 2013, 2, 25–28. [Google Scholar] [CrossRef]
- Wang, M.; Zhou, M.; Li, X.; Luo, C.; You, S.; Chen, X.; Mo, Y.; Zhu, H. Research progress of surface-modified graphene-based materials for tribological applications. Mater. Res. Express 2021, 8, 042002. [Google Scholar] [CrossRef]
- Silva, D.L.; Campos, J.L.E.; Fernandes, T.F.; Rocha, J.N.; Machado, L.R.; Soares, E.M.; Miquita, D.R.; Miranda, H.; Rabelo, C.; Neto, O.P.V.; et al. Raman spectroscopy analysis of number of layers in mass-produced graphene flakes. Carbon 2020, 161, 181–189. [Google Scholar] [CrossRef]
- Gurt, A.; Khonsari, M.M. Testing Grease Consistency. Lubricants 2021, 9, 14. [Google Scholar] [CrossRef]
- Giudice, F.; Shen, A. Shear rheology of graphene oxide dispersions. Curr. Opin. Chem. Eng. 2017, 16, 23–30. [Google Scholar] [CrossRef]
- Hamze, S.; Cabaleiro, D.; Estellé, P. Graphene-based nanofluids: A comprehensive review about rheological behavior and dynamic viscosity. J. Mol. Liq. 2021, 325, 115207. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, X.; Lin, J.; Zhang, P. Rheological and Frictional Properties of Lithium Complex Grease with Graphene Additives. Lubricants 2022, 10, 57. [Google Scholar] [CrossRef]
Property | Value | Obs. |
---|---|---|
Elasticity Modulus | 1 GPa | 5× higher than steel |
Rupture Limit | 130 GPa | 400× higher than steel |
Thermal Conductibility | ~4000 W·m−1 | Similar to diamond, 5× higher than copper |
Electrical Conductibility | 100 mS·m−1 | 40% higher than copper in volume, 6 times in weight |
Surface Area | 2700 m2·g−1 | 2 g has approximately 100 × 50 m |
Parameter | Description/Amount |
---|---|
Movement/motion/run | Linear reciprocating |
Sphere (static part) | Steel 100Cr6 (6 mm) |
Sample (counter body) | Steel 52100, commonly used for rolling bearings |
Load | 5 N |
Amplitude (stroke) | 6 mm |
Maximum linear speed | 40 mm·s−1 |
Frequency | 2.12 Hz |
Duration | 10 min |
Temperature | 27 ± 1 °C |
Type | Number of Coupled Interlayers | Primary Sheet Lateral Size | Agglomerate Size [µm] | |
---|---|---|---|---|
A0 | Graphene nanoplates | ≥10 | Smaller | ~25, spherical |
A8 | Graphene nanoplates | 6 to 10 | Medium | ~10, sharp edges |
A20 | Graphene | ≤6 | Larger | ~30 |
A0 | A8 | A20 | |
---|---|---|---|
ID/IG | 0.10 | 0.09 | 0.73 |
AD/AG | 0.25 | 0.23 | 1.40 |
ΓG [cm−1] | 18.5 | 15.9 | 28.2 |
La [nm] | 79 | 99 | 31 |
LD [nm] | 40 | 40 | 9 |
nD [1010 cm−2] | 2 | 2 | 40 |
<N>2D | >10 | >10 | 5 |
Sample | As New | After Roll |
---|---|---|
Baseline | 241 | 259 |
g_0 | 241 | 263 |
g_8 | 243 | 251 |
g_20 | 241 | 265 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomanik, E.; Berto, P.; Christinelli, W.; Papoulias, G.; Raby, X.; Peressinotto, V. Use of Functionalized Graphene-Based Materials on Grease. Lubricants 2023, 11, 452. https://doi.org/10.3390/lubricants11100452
Tomanik E, Berto P, Christinelli W, Papoulias G, Raby X, Peressinotto V. Use of Functionalized Graphene-Based Materials on Grease. Lubricants. 2023; 11(10):452. https://doi.org/10.3390/lubricants11100452
Chicago/Turabian StyleTomanik, Eduardo, Paulo Berto, Wania Christinelli, Gabriela Papoulias, Xavier Raby, and Valdirene Peressinotto. 2023. "Use of Functionalized Graphene-Based Materials on Grease" Lubricants 11, no. 10: 452. https://doi.org/10.3390/lubricants11100452
APA StyleTomanik, E., Berto, P., Christinelli, W., Papoulias, G., Raby, X., & Peressinotto, V. (2023). Use of Functionalized Graphene-Based Materials on Grease. Lubricants, 11(10), 452. https://doi.org/10.3390/lubricants11100452