Friction and Wear Characteristics of Fe3O4 Nano-Additive Lubricant in Micro-Rolling
Abstract
:1. Introduction
2. Experiments
2.1. Preparation of the Lubricants
2.2. Tribological Tests
2.3. Numerical Simulation
2.4. Cold-Rolling Tests
3. Results and Discussion
3.1. The Result of the Friction Tests
3.2. Adsorption Simulation
3.3. Micro-Rolling
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wang, B.; Qiu, F.; Barber, G.C.; Zou, Q.; Wang, J.; Guo, S.; Yuan, Y.; Jiang, Q. Role of nano-sized materials as lubricant additives in friction and wear reduction: A review. Wear 2022, 490, 204206. [Google Scholar]
- Saini, V.; Bijwe, J.; Seth, S.; Ramakumar, S.S.V. Unexplored solid lubricity of Titanium nanoparticles in oil to modify the metallic interfaces. Appl. Surf. Sci. 2022, 580, 152127. [Google Scholar]
- Hussain, M.M.; Gaval, V.; Pratap, A.; Rukhande, S. Tribological study of sunflower TMP ester and silica nanoparticles additives for hydrodynamic journal bearing application under boundary lubrication condition. Ind. Lubr. Tribol. 2023, 75, 190–196. [Google Scholar]
- Sun, X.; Ma, X.; Ma, L.; Zhou, C.; Li, J.; Zhang, M.; Zhao, J. A study on the lubrication effects of nano-TiO2 additive water-based lubricants during rolling of ferritic stainless steel strips. Lubr. Sci. 2023, 35, 287–298. [Google Scholar]
- del Río, J.M.L.; Mariño, F.; López, E.R.; Gonçalves, D.E.; Seabra, J.H.; Fernández, J. Tribological enhancement of potential electric vehicle lubricants using coated TiO2 nanoparticles as additives. J. Mol. Liq. 2023, 371, 121097. [Google Scholar]
- Zawawi, N.N.M.; Azmi, W.H.; Ghazali, M.F. Tribological performance of Al2O3–SiO2/PAG composite nanolubricants for application in air-conditioning compressor. Wear 2022, 492, 204238. [Google Scholar]
- Sharif, M.Z.; Azmi, W.H.; Zawawi, N.N.M.; Ghazali, M.F. Comparative air conditioning performance using SiO2 and Al2O3 nanolubricants operating with Hydrofluoroolefin-1234yf refrigerant. Appl. Therm. Eng. 2022, 205, 118053. [Google Scholar]
- Li, Z.X.; Wan, Q.; Li, G.D.; Li, H.; Li, H.J.; Zhang, T.L.; Kim, H.J.; Tillmann, W. Lubrication mechanisms of C-MoS2-Fe2O3 (Fe3O4) nano-composite lubricants at the rubbing interfaces of non-copper coated solid wires against the contact tube. Mater. Und Werkst. 2019, 50, 52–63. [Google Scholar]
- Sadiq, I.O.; Suhaimi, M.A.; Sharif, S.; Mohd Yusof, N.; Hisam, M.J. Enhanced performance of bio-lubricant properties with nano-additives for sustainable lubrication. Ind. Lubr. Tribol. 2022, 74, 995–1006. [Google Scholar]
- Yu, H.; Xu, Y.; Shi, P.; Xu, B.; Wang, X.; Liu, Q. Tribological properties and lubricating mechanisms of Cu nanoparticles in lubricant. Trans. Nonferrous Met. Soc. China 2008, 18, 636–641. [Google Scholar]
- Choi, Y.; Lee, C.; Hwang, Y.; Park, M.; Lee, J.; Choi, C.; Jung, M. Tribological behavior of copper nanoparticles as additives in oil. Curr. Appl. Phys. 2009, 9, 124–127. [Google Scholar] [CrossRef]
- Peng, D.X.; Kang, Y.; Hwang, R.M.; Shyr, S.S.; Chang, Y.P. Tribological properties of diamond and SiO2 nanoparticles added in paraffin. Tribol. Int. 2009, 42, 911–917. [Google Scholar]
- Zhang, B.S.; Xu, B.S.; Xu, P.; Fei, G.; Shi, P.J.; Wu, Y.X. Cu nanoparticles effect on the tribological properties of hydrosilicate powders as lubricant additive for steel-steel contacts. Tribol. Int. 2011, 44, 878–886. [Google Scholar]
- Zhou, G.; Zhu, Y.; Wang, X.; Xia, M.; Zhang, Y.; Ding, H. Sliding tribological properties of 0.45% carbon steel lubricated with Fe3O4 magnetic nano-particle additives in baseoil. Wear 2013, 301, 753–757. [Google Scholar]
- Alves, S.M.; Barros, B.S.; Trajano, M.F.; Ribeiro, K.S.B.; Moura, E. Tribological behavior of vegetable oil-based lubricants with nanoparticles of oxides in boundary lubrication conditions. Tribol. Int. 2013, 65, 28–36. [Google Scholar]
- Arahihalli, S.; Biswas, S.K. Grafting of dispersants on MoS2 nanoparticles in base oil lubrication of steel. Tribol. Lett. 2013, 49, 61–76. [Google Scholar] [CrossRef]
- Rahmati, B.; Sarhan, A.A.D.; Sayuti, M. Morphology of surface generated by end milling AL6061-T6 using molybdenum disulfide (MoS2) nano lubrication in end milling machining. J. Clean. Prod. 2014, 66, 685–691. [Google Scholar]
- Sayuti, M.; Sarhan, A.A.D.; Salem, F. Novel uses of SiO2 nano-lubrication system in hard turning process of hardened steel AISI4140 for less tool wear, surface roughness and oil consumption. J. Clean. Prod. 2014, 67, 265–276. [Google Scholar]
- Sun, J.L.; Zhang, B.T.; Dong, C. Effects of ferrous powders on tribological performances of emulsion for cold rolling strips. Wear 2017, 376–377, 869–875. [Google Scholar]
- Xie, H.M.; Jiang, B.; Junjie, H.; Xiangsheng, X.; Fusheng, P. Lubrication performance of MoS2 and SiO2 nanoparticles as lubricant additives in magnesium alloy-steel contacts. Tribol. Int. 2016, 93, 63–70. [Google Scholar]
- Wu, H.; Zhao, J.; Xia, W.; Cheng, X.; He, A.; Yun, J.H.; Wang, L.; Huang, H.; Jiao, S.; Huang, L.; et al. Analysis of TiO2 nano-additive water-based lubricants in hot rolling of microalloyed steel. J. Manuf. Process. 2017, 27, 26–36. [Google Scholar]
- Wu, H.; Zhao, J.; Luo, L.; Huang, S.; Wang, L.; Zhang, S.; Jiao, S.; Huang, H.; Jiang, Z. Performance evaluation and lubrication mechanism of water-based nanolubricants containing Nano-TiO2 in hot steel rolling. Lubricants 2018, 6, 57. [Google Scholar]
- Rahman, S.S.; Asharf, M.Z.; Amin, A.N.; Bashar, M.S.; Ashik, M.F.K.; Kamruzzaman, M. Tuning nanofluids for improved lubrication performance in turning biomedical grade titanium alloy. J. Clean. Prod. 2019, 206, 180–196. [Google Scholar]
- Xie, H.; Dang, S.; Jiang, B.; Xiang, L.; Zhou, S.; Sheng, H.; Yang, T.; Pan, F. Tribological performances of SiO2/graphene combinations as water-based lubricant additives for magnesium alloy rolling. Appl. Surf. Sci. 2019, 475, 847–856. [Google Scholar]
- Meng, Y.; Sun, J.; He, J.; Yan, X.; Per, Y. Recycling prospect and sustainable lubrication mechanism of water-based MoS2 nano-lubricant for steel cold rolling process. J. Clean. Prod. 2020, 277, 123991. [Google Scholar]
- He, J.; Sun, J.; Meng, Y.; Tang, H.; Wu, P. Improved lubrication performance of MoS2-Al2O3 nanofluid through interfacial tribochemistry. Colloids Surf. A Physicochem. Eng. Asp. 2021, 618, 126428. [Google Scholar]
- Xiong, S.; Liang, D.; Wu, H.; Lin, W.; Chen, J.; Zhang, B. Preparation, characterization, tribological and lubrication performances of Eu doped CaWO4 nanoparticle as anti-wear additive in water-soluble fluid for steel strip during hot rolling. Appl. Surf. Sci. 2021, 539, 148090. [Google Scholar]
- Ma, L.; Zhao, J.; Zhang, M.; Jiang, Z.; Zhou, C.; Ma, X. Study on the Tribological Behaviour of Nanolubricants during Micro Rolling of Copper Foils. Materials 2022, 15, 2600. [Google Scholar]
- Shafi, W.K.; Charoo, M.S. An experimental study on the effect of concentration of green nanoadditives on the tribological properties of the biolubricants. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2022, 236, 3755–3771. [Google Scholar]
- Serga, V.; Burve, R.; Maiorov, M. Impact of gadolinium on the structure and magnetic properties of nanocrystalline powders of iron oxides produced by the extraction-pyrolytic method. Materials 2020, 13, 4147. [Google Scholar]
- Gu, B.; Du, Y.; Fang, S.; Chen, X.; Li, X.; Xu, Q.; Lu, H. Fabrication of UV-stable perovskite solar cells with compact Fe2O3 electron transport layer by FeCl3 solution and Fe3O4 nanoparticles. Nanomaterials 2022, 12, 4415. [Google Scholar] [PubMed]
- Nordin, A.H.; Ahmad, Z.; Husna, S.M.N.; Ilyas, R.A.; Azemi, A.K.; Ismail, N.; Nordin, M.L.; Ngadi, N.; Siti, N.H.; Nabgan, W.; et al. The State of the Art of Natural Polymer Functionalized Fe3O4 Magnetic Nanoparticle Composites for Drug Delivery Applications: A Review. Gels 2023, 9, 121. [Google Scholar] [PubMed]
- Xiang, L.; Gao, C.; Wang, Y.; Pan, Z.; Hu, D. Tribological and tribochemical properties of magnetite nanoflakes as additives in oil lubricants. Particuology 2014, 17, 136–144. [Google Scholar]
- Yadav, G.; Tiwari, S.; Jain, M.L. Tribological analysis of extreme pressure and anti-wear properties of engine lubricating oil using four ball tester. Mater. Today Proc. 2018, 5, 248–253. [Google Scholar]
- Syahrullail, S.; Hariz MA, M.; Hamid, M.A.; Bakar, A.A. Friction characteristic of mineral oil containing palm fatty acid distillate using four ball tribo-tester. Procedia Eng. 2013, 68, 166–171. [Google Scholar]
- Zulhanafi, P.; Syahrullail, S. The tribological performances of super olein as fluid lubricant using fourball tribotester. Tribol. Int. 2019, 130, 85–93. [Google Scholar]
Item | Standard Value |
---|---|
Density, at 20 °C, | 260 |
Viscosity, Kin., cSt at 40 °C | 85 |
Flash point, COC, °C | 260 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.; Zhang, H.; Li, N.; Jiang, Z. Friction and Wear Characteristics of Fe3O4 Nano-Additive Lubricant in Micro-Rolling. Lubricants 2023, 11, 434. https://doi.org/10.3390/lubricants11100434
Zhu Y, Zhang H, Li N, Jiang Z. Friction and Wear Characteristics of Fe3O4 Nano-Additive Lubricant in Micro-Rolling. Lubricants. 2023; 11(10):434. https://doi.org/10.3390/lubricants11100434
Chicago/Turabian StyleZhu, Yuchuan, Hongmei Zhang, Na Li, and Zhengyi Jiang. 2023. "Friction and Wear Characteristics of Fe3O4 Nano-Additive Lubricant in Micro-Rolling" Lubricants 11, no. 10: 434. https://doi.org/10.3390/lubricants11100434
APA StyleZhu, Y., Zhang, H., Li, N., & Jiang, Z. (2023). Friction and Wear Characteristics of Fe3O4 Nano-Additive Lubricant in Micro-Rolling. Lubricants, 11(10), 434. https://doi.org/10.3390/lubricants11100434