Surface Preparation for Coating and Erosion MRR of SS 304 Using Silicon Carbide Abrasive Jet
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Surface Characterization by SEM Analysis
3.2. Process Parameters Optimization
− 0.000069 Q2 − 0.043 pGS + 0.00208 pSOD + 0.0057 pQ
Q2 + 0.000437 pGS + 0.00162 pSOD + 0.00046 pQ
3.3. Confirmation Test
3.4. Sensitivity Analysis
3.5. 3D Profilometry Analysis for Surface Quality Characterization
4. Conclusions
- In the surface preparation of SS 304, abrasive (SiC) grain size was one of the significant process parameters. The working gas pressure plays a typical role in surface preparation at a minimum pressure (4 kg/cm2). The roughness profile peaks were found to be very sharp (Sku > 3) and higher in density (Skpd) in this condition.
- In erosion material removal, the maximum MRR was found at maximum working gas pressure (8 kg/cm2).
- The regression coefficient was used to develop the mathematical (quadratic) models of two responses (MRR and Ra), and ANOVA was used to determine their statistical significance for each output response. The model has been determined to be statistically significant because the values of p were less than 0.05.
- The operating conditions were optimized as pressure 4kg/cm2, grain size ~100 µm, SOD 24 mm, and flow rate 120 g/min, where maximum surface roughness at minimum MRR was obtained using D-optimal test with composites desirability of 0.9971.
- SEM view, 3D profilometry view, and analysis proved that the material deformation, indention, erosion, etc., were the main mechanisms in SiC air jet bombardment on SS 304.
- The sensitivity analysis revealed that gas pressure was the most significant factor in influencing the responses.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
MRR | Material removal rate in (g/min) |
SEM | Scanning electron microscope |
SiC | Silicon carbide |
AJM | Abrasive jet machining |
AWJM | Abrasive water jet machining |
p | Pressure (kg/cm2) |
GS | Grain size (μm) |
SOD | Stand-off distance (mm) |
Q | Flow rate (g/min) |
ANOVA | Analysis of variance |
Ra | Surface roughness in µm |
RSM | Response surface method |
Spd | Density of peaks |
Sku | Sharpness of the peaks |
References
- Haldar, B.; Adak, D.K.; Ghosh, D.; Karmakar, A.; Habtamu, E.; Ahmed, A.; Das, S. Present status and some critical issues of abrasive jet materials processing: A review. Procedia Manuf. 2018, 20, 523–529. [Google Scholar] [CrossRef]
- Hebda, M.; Kaczor, P.; Miernik, K. Vacuum brazing of stainless steel depending on the surface preparation method and temperature of the process. Arch. Metall. Mater. 2019, 64, 5–11. [Google Scholar] [CrossRef]
- Lankiewicz, K.; Babul, T.; Baranowski, M.; Kowalski, S. The study of the impact of surface preparation methods of Inconel 625 and 718 nickel-base alloys on wettability by BNi-2 and BNi-3 brazing filler metals. Arch. Metall. Mater. 2015, 60, 739–745. [Google Scholar] [CrossRef]
- Thakare, G.J.; Pandey, C.; Mulik, S.R.; Mahapatra, M.M.; Narang, K.H. Effect of grit blasting and thermal spraying on microstructure evolution of P91 weldment. Arch. Metall. Mater. 2018, 63, 1725–1734. [Google Scholar] [CrossRef]
- Melentiev, R.; Fang, F. Recent advances and challenges of abrasive jet machining. CIRP J. Manuf. Sci. Technol. 2018, 22, 1–20. [Google Scholar] [CrossRef]
- Adnan, A.; Kulekci, K.M.; Seker, U.; Ercan, F. Effect of feed rate on surface roughness in abrasive water jet cutting applications. J. Mater. Process. Technol. 2004, 147, 389–396. [Google Scholar] [CrossRef]
- Ghara, T.; Paul, S.; Bandyopadhyay, P.P. Influence of grit blasting on residual stress depth profile and dislocation density in different metallic substrates. Metall. Mater. Trans. 2020, 52, 65–81. [Google Scholar] [CrossRef]
- Ghara, T.; Paul, S.; Bandyopadhyay, P.P. Effect of grit blasting parameters on surface and near-surface properties of different metal alloys. J. Therm. Spray Technol. 2020, 30, 251–269. [Google Scholar] [CrossRef]
- Parikshit, D.A.; Dubey, S.; Yogesh, D.V.; Abul, A.B.; Purushottam, B.S. Modelling and multi-objective optimization of surface roughness and kerf taper angle in abrasive water jet machining of steel. J. Braz. Soc. Mech. Sci. Eng. 2018, 40, 259. [Google Scholar] [CrossRef]
- Chaitanya, K.A.; Kishore, D.B.; Girish, K.K. Experimental study on surface roughness by using abrasive jet machine. Mater. Today Proc. 2020, 23, 453–457. [Google Scholar] [CrossRef]
- Tsai, C.F.; Yan, H.B.; Kuan, Y.C.; Huang, Y.F. A taguchi and experimental investigation into the optimal processing conditions for the abrasive jet polishing of SKD61 mold steel. Int. J. Mach. Tools Manuf. 2008, 48, 932–945. [Google Scholar] [CrossRef]
- Kim, A.; Kainuma, S.; Yang, M. Surface characteristics and corrosion behavior of carbon steel treated by abrasive blasting. Metals 2021, 11. [Google Scholar] [CrossRef]
- Chander, P.K.; Vashista, M.; Sabiruddin, K.; Paul, S.; Bandyopadhyay, P.P. Effects of grit blasting on surface properties of steel substrates. Mater. Des. 2009, 30, 2895–2902. [Google Scholar] [CrossRef]
- Bañon, F.; Sambruno, A.; Batista, M.; Simonet, B.; Salguero, J. Surface quality and free energy evaluation of s275 steel by shot blasting, Abrasive Water Jet Texturing and Laser Surface Texturing. Metals 2020, 10, 290. [Google Scholar] [CrossRef] [Green Version]
- Miturska-Barańska, I.; Rudawska, A.; Doluk, E. The influence of sandblasting process parameters of aerospace aluminium alloy sheets on adhesive joints strength. Materials 2021, 14, 6626. [Google Scholar] [CrossRef]
- Jagannatha, N.; Hiremath, S.S.; Sadashivappa, K. Analysis and parametric optimization of abrasive hot air jet machining for glass using taguchi method and utility concept. Int. J. Mech. Mater. Eng. 2012, 7, 9–15. [Google Scholar]
- Pradhan, S.; Das, R.S.; Nanda, K.B.; Jana, C.P.; Dhupal, D. Experimental investigation on machining of hardstone quartz with modified ajm using hot silicon carbide abrasives. J. Braz. Soc. Mech. Sci. Eng. 2020, 42, 559. [Google Scholar] [CrossRef]
- Jafar, R.; Mohammad, H.; Spelt, J.K.; Papini, M. Surface roughness and erosion rate of abrasive jet micro-machined channels: Experiments and analytical model. Wear 2013, 303, 138–145. [Google Scholar] [CrossRef]
- Nayak, B.B.; Kumar, A.; Mahapatra, S.S.; Das, D. Application of wpca based taguchi method for multi-response optimization of abrasive jet machining process. Mater. Today Proc. 2018, 5, 5138–5244. [Google Scholar] [CrossRef]
- Made, S.; Balasubramanian, M. Impact of nozzle design on surface roughness of abrasive jet machined glass fibre reinforced polymer composites. Silicon 2018, 10, 2453–2462. [Google Scholar] [CrossRef]
- Wakuda, M.; Yamauchi, Y.; Kanzaki, S. Surface finishing of alumina ceramics by means of abrasive jet machining. J. Am. Ceram. Soc. 2002, 85, 1306–1308. [Google Scholar] [CrossRef]
- Ke, J.H.; Tsai, F.C.; Hung, J.C.; Yan, B.H. Characteristics study of flexible magnetic abrasive in abrasive jet machining. Procedia CIRP 2012, 1, 679–680. [Google Scholar] [CrossRef]
- Slatineanu, L.; Dodun, O.; Nagit, G.; Coteata, M.; Coteata, L.; Tabacaru, L.; Bancescu, B. Evaluation of the surface profile obtained by abrasive jet machining. IOP Conf. Ser. Mater. Sci. Eng. 2018, 444, 032005. [Google Scholar] [CrossRef]
- Kwon, D.K.; Lee, J.H. Performance Improvement of micro-abrasive jet blasting process for Al 6061. Processes 2022, 10, 2247. [Google Scholar] [CrossRef]
- Sanghani, S.; Chirag, R.; Korat, M.M. Performance analysis of abrasive water jet machining process for AISI 304 stainless steel. J. Exp. Appl. Mech. 2017, 8, 53–55. [Google Scholar]
- Wang, W.; Biermann, D.; Almuth, R.; Arif, M.F.A.; Veldhuis, C.S. Effects on tool performance of cutting edge prepared by pressurized air wet abrasive jet machining (PAWAJM). J. Mater. Process. Technol. 2020, 227, 116–456. [Google Scholar] [CrossRef]
- Ficko, M.; Begic-Hajdarevic, D.; Husic, M.C.; Berus, L.; Cekic, A.; Klancnik, S. Prediction of surface roughness of an abrasive water jet cut using an artificial neural network. Materials 2021, 14, 3108. [Google Scholar] [CrossRef]
- Hlaváčová, I.M.; Sadílek, M.; Váňová, P.; Szumilo, Š.; Tyč, M. Influence of steel structure on machinability by abrasive water jet. Materials 2020, 13, 4424. [Google Scholar] [CrossRef]
- Steel, S.; Graphs, M. Machinability of Stainless Steel. Available online: https://www.machiningdoctor.com/machinability/stainless-steel-2/ (accessed on 17 October 2022).
- Charles, J. Past, Present and Future of the Duplex Stainless Steels. Available online: https://www.worldstainless.org/Files/issf/non-image-files/PDF/Pastpresentandfutureoftheduplexstainlesssteels.pdf (accessed on 10 October 2022).
- Ramachandran, C.S.; Balasubramanian, V.; Ananthapadmanabhan, P.V. Erosion of atmospheric plasma sprayed rare earth oxide coatings air-suspended corundum particles. Ceram. Int. 2013, 39, 649–672. [Google Scholar] [CrossRef]
- Mahade, S.; Venkat, A.; Curry, N.; Leitner, M.; Joshi, S. Erosion performance of atmospheric plasma sprayed thermal barrier coatings with diverse porosity levels. Coatings 2021, 11, 86. [Google Scholar] [CrossRef]
- Keyence Corporation. Area Roughness Parameters. Available online: https://www.keyence.com/ss/products/microscope/roughness/surface/sku-kurtosis.jsp (accessed on 10 October 2022).
Process | Work Material | Abrasive | Process Details and Parameters | Results | Source |
---|---|---|---|---|---|
Grit Blasting | Low carbon steel, C45 steel, SS316, Ti-6Al-4V, Inconel 718 and Hastelloy X | Al2O3 (704 µm) | ▪ Nozzle impact angle: 90°, SOD: 120 mm, blasting time: 60 sec, jet pressure: 7 bar. | ▪ Ra: 3.34 to 3.70 µm. ▪ Johnson-Cook flow stress correlates with maximum compressive stress. | Ghara et al., 2020 [7] |
Grit Blasting | Low carbon steel, Ti-6Al-4V, Inconel 718 | Al2O3 (704 µm) | ▪ Jet pressure: 5 to 8 bar, nozzle impact angle: 20 to 90°, SOD: 60 to 140, blasting time: 5 to 15 s. | ▪ Ra: 2.5 to 4 µm (Low carbon steel); Ra: 2.5 to 3.5 µm (Ti-6A-4V); Ra: 2.8 to 3.7 µm (Inconel 718). | Ghara et al., 2020 [8] |
AWJM | MS | SiO2 (80 mesh) | ▪ Transverse speed: 85 to 567 mm/min; flow rate: 390 to 450 gm/min; ▪ SOD: 3 to 7 mm. | ▪ Ra: 0.53 µm. ▪ Traverse speed is the foremost significant factor. | Parikshit et al., 2018 [9] |
AJM | MS | Al2O3 (12–50 µm), SiC (25, 50 µm) | ▪ Flow rate: 15 gm/min. ▪ velocity: 200 m/s. | ▪ Ra: 0.012 µm (using Al2O3); Ra: 0.013 µm (using SiC); Ra: 0.018 mm (un-machined piece). | Chaitanya et al., 2019 [10] |
AJP | SKD61 mould steel | SiC (800 mesh) | ▪ Traverse speed:100 to 200 mm/s; ▪ nozzle dia.: 4 mm, impact angle: 30 to 60°, SOD: 10 to 20 mm.; ▪ blasting time: 3 min, jet pressure: 2 to 4 kg/cm2. | ▪ Ra: 1.03 to 0.13 µm. ▪ Pure water: Water solvent machine oil = 1:1, reduce the cutting force and a mirror-like polished surface can be obtained. | Tsai et al., 2007 [11] |
Abrasive blasting | MS | Steel (450 µm, Al2O3 (450 µm | ▪ Jet pressure: 0.7 MPa; ▪ SOD: 300 mm. ▪ nozzle impact angle: 30, 60, and 90°; ▪ machining time 5 s; ▪ abrasive flow rate 3.83 L/min. | ▪ Ra: 9.22–9.74 µm (using steel grit); Ra: 8.49–8.81 µm(using Al2O3 grit). ▪ Ra value is maximum for 90° impact angle. | Kim et al., 2021 [12] |
Grit blasting | MS | Al2O3 (24–60 µm) | ▪ Nozzle impact angle: 20 to 90°, SOD: 50 to 200 mm; ▪ jet pressure: 5 and 7 bar, blasting time 15 to 180 s. | ▪ Ra: 2.5 to 6 µm. ▪ Compressive residual stress increases with blasting pressure and blasting angle. | Chander et al., 2009 [13] |
Shot blasting | S275 carbon steel | Corundum (630 µm), Glass spheres (425 µm) | ▪ Pressure: 1 to 5 bar; ▪ SOD 100 mm; ▪Impact angle 90°. | ▪ Rt: 15 to 35 µm. ▪ Increase in pressure has a greater impact on erosion. | Banon et al., 2020 [14] |
Sandblasting | EN AW 2024 T3 aluminium alloy | Garnet 80 E+ | ▪ Jet pressure: 300 to 700 KPa; ▪ SOD: 40 to 155 mm; ▪ Speed of sample displacement 50 to 100 mm/min. | ▪ Sa: 0.82 to 1.58 µm. ▪ Ra: 0.79 to 1.52 µm. ▪ Rz: 6.64 to 12.16 µm. | Baranska et al., 2021 [15] |
AHAJM | soda-lime glass | SiC (100 µm) | ▪ Feed rate: 20 to 40 mm/min; ▪ SOD: 4 to 12 mm; ▪ work temperature 27 to 320 °C. | ▪ Ra: 1.37 to 3.05 µm, ▪ Temperature influences AHAJM process. | Jagannatha et al., 2012 [16] |
FB-HAJM | hard stone quartz | hot SiC (275 µm) | ▪ Nozzle: AISI D2 steel, SOD: 4 to 8 mm; ▪ jet pressure: 3 to 7 Kgf/cm2. | ▪ Rz: 0.941 to 1.545 µm. ▪ Optimal nozzle life 80 h is predicted by genetic algorithm (GA) and validated. | Pradhan et al., 2020 [17] |
AJM | borosilicate glass | Al2O3 (25–150 µm) | ▪ Nozzle: speed 2 mm/s, dia.: 1.5 mm. SOD: 10 mm. | ▪ Ra: 0.80 to 2.36. ▪ Smooth surface formed with low impact angle. | Jafar et al., 2013 [18] |
AJM | soda-lime glass | SiC (300–850 µm) | ▪ Jet pressure: 3 to 5 kg/ cm2. ▪ SOD: 4 to 12 mm. | ▪ Ra: 2.22 to 6.65 µm. ▪ Taguchi and WPCA can improve MRR and surface roughness. | Nayak et al., 2017 [19] |
AJM | glass fibre reinforced polymer | SiC (50–130 µm) | ▪ Nozzle: hardened steel, dia. 1.5 to 3.5 mm, operating angle 90°, SOD: 0.5 to 2.5 mm; ▪ jet pressure: 2 to 6 bar. | ▪ Ra: 0.531 µm (threaded nozzle), 0.802 µm (plain nozzle) ▪ Whirling effect can improve surface roughness. | Madhu et al., 2018 [20] |
AJM | Alumina | Green SiC (800 mesh) | ▪ Jet pressure: 0.3 MPa; ▪ SOD: 0.5 mm. ▪ table feed: 05 mm/s. | ▪ Rz: 0.5 µm. ▪ Strength improves (~15%). | Wakuda et al., 2002 [21] |
FM-AJM | Al6061 | SiC (100–200 µm) | ▪ Nozzle: dia. 4 mm; ▪ magnetic field intensity: 40 milli-gauss; ▪ machining time 20 s. ▪ jet pressure: 0.4 and 0.6 MPa; ▪ SOD: 50 and 70 mm. ▪ impact angle: 30 and 45°. | ▪ Ra: 1.36 µm. ▪ Better surface roughness than traditional machining with slip scratch effect. | Jiuag-Hung et al., 2012 [22] |
AJM | Aluminium | SiO2 (0.35 to 1.6 mm) | ▪ Jet pressure: 0.6 MPa. | ▪ Rz: 15.65 to 46.89 µm. | Slatineanu et al., 2018 [23] |
µ-AJM | Aluminium 6061 alloy | SiC, Al2O3 | ▪ Jet Pressure: 25 to 100 KPa, ▪ SOD: 30 mm. | ▪ Ra: 0.70 to 2 µm. | Kyu Kwon et al., 2022 [24] |
AWJM | AISI 304 SS | SiC | ▪ Flow rate: 250–350 gm/min; ▪ nozzle dia.: 0.3 mm, ▪ traverse speed 100–150 mm/min ▪ SOD: 1–2 mm. ▪ water jet pressure: 3400–3200 bar. | ▪ Ra: 4.328 to 5.120 µm. ▪ kerf taper observed: 1.72~2.23°. | Sanghani et al., 2017 [25] |
PAWAJM | AISI 4140 alloy steel | Al2O3 (58 µm) | ▪ Feed rate: 0.1 mm/rev; ▪ width of cut 3 mm, ▪ cutting speed 300 m/min. | ▪ Ra: 14 to 56 µm. | Wang et al., 2020 [26] |
AWJM | AISI 304 | GMT garnet (80 mesh) | ▪ Jet pressure 350 MPa; ▪ flow rate 475 to 571; ▪ traverse speed 48 to 417 (mm/min). | ▪ Ra: 2.13 to 2.98 µm. | Ficko et al., 2021 [27] |
AWJM | C45, 37MnSi5, 30CrV9 steel | Australian garnet (80 mesh) | ▪ Jet pressure 380 MPa; ▪ abrasive flow rate 225 g/min; ▪ SOD: 2 mm; ▪ traverse speed 100 mm/min. | ▪ Ra: 1.2 to 2 µm (C45); Ra: 0.70 to 2.5 µm (37MnSi5); Ra: 0.8 to 1.6 µm (30CrV9). | Hlavacova et al., 2020 [28] |
Elements | Fe | C | Si | Mn | P | S | Cr | Ni | Cu | V | W | B |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Average wt.% | 69.400 | 0.0217 | 0.377 | 1.54 | 0.0216 | 0.0023 | 19.30 | 8.890 | 0.027 | 0.141 | 0.015 | 0.004 |
Factors | Symbol | Minimum Value (−1) | Mean Value (0) | Maximum Value (+1) |
---|---|---|---|---|
Pressure (kg/cm2) | p | 4 | 6 | 8 |
Grain size (μm) | GS | 100 | 150 | 200 |
Stand-off distance (mm) | SOD | 24 | 28 | 32 |
Flow rate (g/min) | Q | 120 | 130 | 140 |
Observed Responses | MRR | Ra (Arithmetic Average Roughness) |
Sl. No. | Pressure (kg/cm2) | Grain Size (μm) | Standoff Distance (mm) | Flow Rate (g/min) | MRR (g/min) | Ra (µm) |
---|---|---|---|---|---|---|
1 | 6 | 100 | 28 | 140 | 0.314000 | 0.775 |
2 | 8 | 150 | 24 | 130 | 0.388000 | 0.916 |
3 | 8 | 100 | 28 | 130 | 0.287850 | 1.203 |
4 | 8 | 150 | 28 | 140 | 0.383000 | 1.123 |
5 | 6 | 200 | 28 | 140 | 0.348000 | 1.146 |
6 | 6 | 100 | 24 | 130 | 0.341452 | 1.025 |
7 | 6 | 200 | 32 | 130 | 0.342804 | 1.153 |
8 | 4 | 150 | 28 | 140 | 0.339000 | 1.124 |
9 | 6 | 150 | 32 | 140 | 0.297000 | 1.220 |
10 | 8 | 200 | 28 | 130 | 0.383766 | 1.033 |
11 | 6 | 150 | 24 | 140 | 0.291667 | 0.921 |
12 | 4 | 150 | 24 | 130 | 0.375725 | 1.246 |
13 | 8 | 150 | 32 | 130 | 0.360314 | 0.791 |
14 | 6 | 100 | 28 | 120 | 0.352000 | 1.233 |
15 | 4 | 150 | 28 | 120 | 0.357000 | 0.816 |
16 | 6 | 150 | 24 | 120 | 0.341818 | 1.160 |
17 | 6 | 150 | 32 | 120 | 0.298156 | 1.280 |
18 | 6 | 150 | 28 | 130 | 0.382727 | 0.996 |
19 | 8 | 150 | 28 | 120 | 0.293254 | 1.109 |
20 | 4 | 100 | 28 | 130 | 0.382371 | 1.233 |
21 | 6 | 150 | 28 | 130 | 0.364545 | 0.740 |
22 | 6 | 200 | 28 | 120 | 0.345235 | 1.210 |
23 | 4 | 150 | 32 | 130 | 0.359000 | 0.728 |
24 | 6 | 200 | 24 | 130 | 0.348401 | 1.120 |
25 | 6 | 150 | 28 | 130 | 0.365455 | 0.827 |
26 | 4 | 200 | 28 | 130 | 0.367778 | 0.856 |
27 | 6 | 100 | 32 | 130 | 0.366765 | 0.857 |
Source | DF | Seq SS | Adj SS | F | P | |
---|---|---|---|---|---|---|
Regression | 10 | 0.024989 | 0.024989 | 226.66 | 0.000 | Significant |
Linear | 4 | 0.022698 | 0.022698 | 514.71 | 0.001 | |
Square | 3 | 0.002172 | 0.002172 | 65.67 | 0.000 | |
Interaction | 3 | 0.000119 | 0.000119 | 3.59 | 0.037 | |
Residual Error | 16 | 0.000176 | 0.000176 | |||
Lack-of-Fit | 14 | 0.000174 | 0.000174 | 3.15 | 0.103 | Not significant |
Pure Error | 2 | 0.000003 | 0.000003 | |||
Total | 26 | 0.025165 | ||||
R2 R2 (Adj) | 0.993 0.989 |
Source | DF | Seq SS | Adj SS | F | P | |
---|---|---|---|---|---|---|
Regression | 10 | 0.808812 | 0.808812 | 44.33 | 0 | Significant |
Linear | 4 | 0.445269 | 0.445269 | 61.01 | 0 | |
Square | 3 | 0.244181 | 0.244181 | 44.61 | 0 | |
Interaction | 3 | 0.119362 | 0.119362 | 21.81 | 0 | |
Residual Error | 16 | 0.029193 | 0.029193 | |||
Lack-of-Fit | 14 | 0.028613 | 0.028613 | 3.04 | 0.131 | Not significant |
Pure Error | 2 | 0.000581 | 0.000581 | |||
Total | 26 | 0.838005 | ||||
R2 R2 (Adj) | 0.965 0.943 |
Comparison | MRR | Ra |
---|---|---|
Predicted | 0.300 | 1.2759 |
Experimental (experiment no.28 *) | 0.3012 | 1.2543 |
Sl. No. | Figure No. | Pressure (kg/cm2) | Grain Size (μm) | SOD (mm) | Flow Rate (g/min) | Sku (Kurtosis) | Spd (Density of Peaks) (1/mm2) | Ra (µm) | Spc (Arithmetic Mean Peak Curvature) (1/mm) |
---|---|---|---|---|---|---|---|---|---|
1 | 16a | 8 | 150 | 24 | 130 | 3.51 | 39.2 | 0.916 | 21.4 |
2 | 16b | 8 | 100 | 24 | 130 | 3.38 | 37.9 | 1.025 | 15.9 |
3 | 16c | 6 | 150 | 28 | 120 | 3.37 | 46 | 1.109 | 17.6 |
4 | 16d | 4 | 100 | 28 | 130 | 3.42 | 49.1 | 1.233 | 16.7 |
5 | 16e | 4 | 200 | 24 | 130 | 4.33 | 25.9 | 1.120 | 27.1 |
6* | 16f | 4 | 100 | 24 | 120 | 3.45 | 51.2 | 1.254 | 16.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adak, D.K.; Pal, V.; Das, S.; Ghara, T.; Joardar, H.; Alrasheedi, N.; Haldar, B. Surface Preparation for Coating and Erosion MRR of SS 304 Using Silicon Carbide Abrasive Jet. Lubricants 2023, 11, 10. https://doi.org/10.3390/lubricants11010010
Adak DK, Pal V, Das S, Ghara T, Joardar H, Alrasheedi N, Haldar B. Surface Preparation for Coating and Erosion MRR of SS 304 Using Silicon Carbide Abrasive Jet. Lubricants. 2023; 11(1):10. https://doi.org/10.3390/lubricants11010010
Chicago/Turabian StyleAdak, Deb Kumar, Vivekananda Pal, Santanu Das, Tina Ghara, Hillol Joardar, Nashmi Alrasheedi, and Barun Haldar. 2023. "Surface Preparation for Coating and Erosion MRR of SS 304 Using Silicon Carbide Abrasive Jet" Lubricants 11, no. 1: 10. https://doi.org/10.3390/lubricants11010010
APA StyleAdak, D. K., Pal, V., Das, S., Ghara, T., Joardar, H., Alrasheedi, N., & Haldar, B. (2023). Surface Preparation for Coating and Erosion MRR of SS 304 Using Silicon Carbide Abrasive Jet. Lubricants, 11(1), 10. https://doi.org/10.3390/lubricants11010010