Rheological and Tribological Study of Polyethylsiloxane with SiO2 Nanoparticles Additive
Abstract
:1. Introduction
2. Materials
3. Methods
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Oganesova, E.Y.; Lyadov, A.S.; Parenago, O.P. Nanosized Additives to Lubricating Materials. Russ. J. Appl. Chem. 2018, 91, 1559–1573. [Google Scholar] [CrossRef]
- Dai, W.; Kheireddin, B.; Gao, H.; Liang, H. Roles of nanoparticles in oil lubrication. Tribol. Int. 2016, 102, 88–98. [Google Scholar] [CrossRef]
- Gulzar, M.; Masjuki, H.H.; Kalam, M.A.; Varman, M.; Zulkifli, N.W.M.; Mufti, R.A.; Zahid, R. Tribological performance of nanoparticles as lubricating oil additives. J. Nanopart. Res. 2016, 18, 223. [Google Scholar] [CrossRef]
- Luo, T.; Wei, X.; Huang, X.; Huang, L.; Yang, F. Tribological properties of Al2O3 nanoparticles as lubricating oil additives. Ceram. Int. 2014, 40, 7143–7149. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, L.; Liu, A.; Wu, C.; Li, W. Tribological performance of silicone oil based Al2O3 nano lubricant for an Mg alloy subjected to sliding at elevated temperatures. Tribol. Int. 2022, 175, 107779. [Google Scholar] [CrossRef]
- Rawat, S.S.; Harsha, A.P.; Deepak, A.P. Tribological performance of paraffin grease with silica nanoparticles as an additive. Appl. Nanosci. 2018, 9, 305–315. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, L.; Li, M.; Xie, G. Synthesis of Core–Shell Micro/Nanoparticles and Their Tribological Application: A Review. Materials 2020, 13, 4590. [Google Scholar] [CrossRef]
- Qu, M.; Yao, Y.; He, J.; Ma, X.; Feng, J.; Liu, S.; Hou, L.; Liu, X. Tribological study of polytetrafluoroethylene lubricant additives filled with Cu microparticles or SiO2 nanoparticles. Tribol. Int. 2017, 110, 57–65. [Google Scholar] [CrossRef]
- Peng, D.; Kang, Y.; Hwang, R.; Shyr, S.; Chang, Y. Tribological properties of diamond and SiO2 nanoparticles added in paraffin. Tribol. Int. 2009, 42, 911–917. [Google Scholar] [CrossRef]
- Ur’ev, N.B.; Emel’yanov, S.V.; Titov, K.A. Structure-rheological properties of oil suspensions based on technical carbon and nanoscale fillers. Prot. Met. Phys. Chem. Surfaces 2015, 51, 226–229. [Google Scholar] [CrossRef]
- Minakov, A.; Rudyak, V.; Pryazhnikov, M. Rheological behavior of water and ethylene glycol based nanofluids containing oxide nanoparticles. Colloids Surfaces A Physicochem. Eng. Asp. 2018, 554, 279–285. [Google Scholar] [CrossRef] [Green Version]
- Koppula, S.B.; Sudheer, N.V.V.S. A review on effect of adding additives and nano additives on thermal properties of gear box lubricants. Int. J. Appl. Eng. Res. 2016, 11, 3509–3526. [Google Scholar] [CrossRef]
- Rudyak, V.Y.; Dimov, S.V.; Kuznetsov, V.V. On the dependence of the viscosity coefficient of nanofluids on particle size and temperature. Tech. Phys. Lett. 2013, 39, 779–782. [Google Scholar] [CrossRef]
- Zolper, T.J.; Seyam, A.M.; Chen, C.; Jungk, M.; Stammer, A.; Stoegbauer, H.; Marks, T.J.; Chung, Y.-W.; Wang, Q. Energy Efficient Siloxane Lubricants Utilizing Temporary Shear-Thinning. Tribol. Lett. 2013, 49, 525–538. [Google Scholar] [CrossRef]
- Sobolevsky, M.V.; Muzovskaya, O.A.; Popeleva, G.S. Properties and Applications of Organosilicone Products; Khimiya: Moscow, Russia, 1975; pp. 88–110. [Google Scholar]
- Anisimov, A.A.; Visochinskaya, Y.S.; Buzin, M.I.; Vasil’ev, V.G.; Nikiforova, G.G.; Peregudov, A.S.; Dubovik, A.S.; Orlov, V.N.; Shchegolikhina, O.I.; Muzafarov, A.M. New polydimethylsiloxanes with bulky end groups: Synthesis and properties. Bull. Acad. Sci. USSR Div. Chem. Sci. 2019, 68, 1275–1281. [Google Scholar] [CrossRef]
- Zolper, T.; Li, Z.; Chen, C.; Jungk, M.; Marks, T.; Chung, Y.-W.; Wang, Q. Lubrication Properties of Polyalphaolefin and Polysiloxane Lubricants: Molecular Structure–Tribology Relationships. Tribol. Lett. 2012, 48, 355–365. [Google Scholar] [CrossRef]
- Zhiheng, W.; Dehua, T.; Xuejin, S.; Xiaoyang, C. Study on a new type of lubricating oil for miniature bearing operating at ultra-low temperature. China Pet. Process. Petrochem. Technol. 2018, 20, 93–100. Available online: http://www.chinarefining.com/EN/Y2018/V20/I1/93 (accessed on 21 November 2022).
- Chichester, C.W.; Nevskaya, A. Modeling Molecular Structure to Tribological Performance. 2016. Available online: https://saemobilus.sae.org/content/2016-01-0291/ (accessed on 21 November 2022).
- Chichester, C.W. Development of High Service Temperature Fluids. 2016. Available online: https://saemobilus.sae.org/content/2016-01-0484/ (accessed on 21 November 2022).
- Wu, W.; Li, P.; Wang, X.; Zhang, B. Grafting of thermotropic fluorinated mesogens on polysiloxane to improve the processability of linear low-density polyethylene. RSC Adv. 2022, 12, 12463–12470. [Google Scholar] [CrossRef]
- Guan, X.; Cao, B.; Cai, J.; Ye, Z.; Lu, X.; Huang, H.; Liu, S.; Zhao, J. Design and Synthesis of Polysiloxane Based Side Chain Liquid Crystal Polymer for Improving the Processability and Toughness of Magnesium Hydrate/Linear Low-Density Polyethylene Composites. Polymers 2020, 12, 911. [Google Scholar] [CrossRef] [Green Version]
- STAR. Available online: https://star-pro.ru/gost/13004-77 (accessed on 28 November 2022).
- Bardakhanov, S.P.; Vikulina, L.S.; Lysenko, V.I.; Nomoev, A.V.; Poluyanov, S.A.; Tuzikov, F.V. Analysis of Nanopowders by Small-Angle X-Ray Scattering Method’s. Sib. J. Phys. 2012, 7, 107–116. [Google Scholar] [CrossRef]
- Dembelova, T.S.; Balzhinov, S.A.; Makarova, D.N.; Vershinina, Y.D.; Bazarova, S.B.; Badmaev, B.B. Dynamic viscosity of dispersion of silica dioxide nanoparticles. IOP Conf. Series Mater. Sci. Eng. 2020, 1000, 012005. [Google Scholar] [CrossRef]
- Badmaev, B.B.; Dembelova, T.S.; Damdinov, B.B. Viscoelastic Properties of Polymer Liquids; Buryat Scientific Center, SB RAS: Ulan-Ude, Russia, 2013; pp. 56–136. [Google Scholar]
- Badmaev, B.B.; Dembelova, T.S.; Makarova, D.N.; Gulgenov, C.Z. Ultrasonic Interferometer on Shear Waves in Liquids. Sov. Phys. J. 2020, 62, 1708–1715. [Google Scholar] [CrossRef]
- Badmaev, B.; Bazaron, U.; Derjaguin, B.; Budaev, O. Measurement of the shear elasticity of polymethylsiloxane liquids. Phys. B+C 1983, 122, 241–245. [Google Scholar] [CrossRef]
- Badmaev, B.; Dembelova, T.; Damdinov, B.; Makarova, D.; Budaev, O. Influence of surface wettability on the accuracy of measurement of fluid shear modulus. Colloids Surfaces A Physicochem. Eng. Asp. 2011, 383, 90–94. [Google Scholar] [CrossRef]
- Badmaev, B.B.; Damdinov, B.B.; Dembelova, T.S. Viscoelastic relaxation in fluids. Bull. Russ. Acad. Sci. Phys. 2015, 79, 1301–1305. [Google Scholar] [CrossRef]
- Derjaguin, B.; Bazaron, U.; Zandanova, K.; Budaev, O. The complex shear modulus of polymeric and small-molecule liquids. Polymer 1989, 30, 97–103. [Google Scholar] [CrossRef]
- Frenkel, J.I. Kinetic Theory of Liquids; Academy of Sciences of USSR: Moscow/Leningrad, Russia, 1959; pp. 195–248. [Google Scholar]
- Collin, D.; Martinoty, P. Dynamic macroscopic heterogeneities in a flexible linear polymer melt. Phys. A Stat. Mech. Appl. 2003, 320, 235–248. [Google Scholar] [CrossRef]
- Noirez, L.; Baroni, P. Identification of a low-frequency elastic behaviour in liquid water. J. Phys. Condens. Matter 2012, 24, 372101. [Google Scholar] [CrossRef] [Green Version]
- Noirez, L.; Baroni, P. Identification of thermal shear bands in a low molecular weight polymer melt under oscillatory strain field. Colloid Polym. Sci. 2018, 296, 713–720. [Google Scholar] [CrossRef]
- Zaccone, A.; Trachenko, K. Explaining the low-frequency shear elasticity of confined liquids. Proc. Natl. Acad. Sci. USA 2020, 117, 19653–19655. [Google Scholar] [CrossRef]
- Makarova, D.N.; Dembelova, T.S.; Badmaev, B.B. Low-Frequency Shear Elasticity of a Colloid Nanosuspension. Acoust. Phys. 2020, 66, 613–615. [Google Scholar] [CrossRef]
- Philippoff, W. Relaxation in polymer solutions, polymer liquids and gels. In Physical Acoustics. Properties of Polymers and Nonlinear Acoustics; Part B.; Mason, W.P., Ed.; Mir: Moscow, Russia, 1969; Volume II, pp. 9–109. [Google Scholar]
- Badmaev, B.B.; Budaev, O.R.; Dembelova, T.S.; Damdinov, B.B. Shear elasticity of fluids at low-frequent shear influence. Ultrasonics 2006, 44, e1491–e1494. [Google Scholar] [CrossRef] [PubMed]
- Badmaev, B.B.; Dembelova, T.S.; Damdinov, B.B.; Gulgenov, C.Z. Impedance method for measuring shear elasticity of liquids. Acoust. Phys. 2017, 63, 642–644. [Google Scholar] [CrossRef]
- Dembelova, T.S.; Badmaev, B.B.; Makarova, D.N.; Vershinina, Y.D. Nonlinear viscoelastic properties of nanosuspensions. IOP Conf. Series Mater. Sci. Eng. 2019, 704, 012005. [Google Scholar] [CrossRef]
- Dembelova, T.S.; Badmaev, B.B.; Makarova, D.N. Investigation of physical-mechanical and tribological properties of suspensions of nanoparticles based on polyethylsiloxane liquid. J. Phys. Conf. Ser. 2019, 1281, 012009. [Google Scholar] [CrossRef] [Green Version]
- Yamada, Y.; Ichii, T.; Utsunomiya, T.; Sugimura, H. Visualizing polymeric liquid/solid interfaces by atomic force microscopy utilizing quartz tuning fork sensors. Jpn. J. Appl. Phys. 2020, 59, SN1009. [Google Scholar] [CrossRef]
- Su, B.; Zhou, Y.-G.; Wu, H.-H. Influence of mechanical properties of polypropylene/low-density polyethylene nanocomposites. Nanomater. Nanotechnol. 2017, 7, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Shim, S.E.; Isayev, A.I. Rheology and structure of precipitated silica and poly(dimethyl siloxane) system. Rheol. Acta 2003, 43, 127–136. [Google Scholar] [CrossRef]
- Boonstra, B.B.; Cochrane, H.; Dánnenberg, E.M. Reinforcement of Silicone Rubber by Particulate Silica. Rubber Chem. Technol. 1975, 48, 558–576. [Google Scholar] [CrossRef]
Molecular Weight | Density 20 °C, kg/m3 | Viscosity, mm2s−1 | Boiling Point, °C (133–400 Pa) | Pour Point, °C | ||
---|---|---|---|---|---|---|
−60 °C | 20 °C | 60 °C | ||||
341 | 940 | 312 | 9 | 4 | 110–150 | −110 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dembelova, T.; Badmaev, B.; Makarova, D.; Mashanov, A.; Mishigdorzhiyn, U. Rheological and Tribological Study of Polyethylsiloxane with SiO2 Nanoparticles Additive. Lubricants 2023, 11, 9. https://doi.org/10.3390/lubricants11010009
Dembelova T, Badmaev B, Makarova D, Mashanov A, Mishigdorzhiyn U. Rheological and Tribological Study of Polyethylsiloxane with SiO2 Nanoparticles Additive. Lubricants. 2023; 11(1):9. https://doi.org/10.3390/lubricants11010009
Chicago/Turabian StyleDembelova, Tuyana, Badma Badmaev, Dagzama Makarova, Aleksandr Mashanov, and Undrakh Mishigdorzhiyn. 2023. "Rheological and Tribological Study of Polyethylsiloxane with SiO2 Nanoparticles Additive" Lubricants 11, no. 1: 9. https://doi.org/10.3390/lubricants11010009
APA StyleDembelova, T., Badmaev, B., Makarova, D., Mashanov, A., & Mishigdorzhiyn, U. (2023). Rheological and Tribological Study of Polyethylsiloxane with SiO2 Nanoparticles Additive. Lubricants, 11(1), 9. https://doi.org/10.3390/lubricants11010009