A Traction (Friction) Curve Is Not a Flow Curve
Abstract
:1. Introduction
2. The Case of a High Viscosity Polyalphaolefin
3. The Case of a Hirst and Moore Liquid Hydrocarbon
4. The Case of a Johnson and Tevaarwerk Mineral Oil
5. The Case of a Low-Viscosity Polyalphaolefin
6. Polymer-Containing Oils
7. Implications of the Invalid Assumption Relating Rheology to Traction
7.1. Inaccurate Pressure-Dependent Viscosity
7.2. Inaccurate Shear-Dependent Viscosity
8. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
Traction fitting parameter (Pa·s) | |
Newtonian limit stress (Pa) | |
pressure (Pa) | |
n | power-law exponent |
temperature (K or °C) | |
velocity in the rolling direction (m/s) | |
reciprocal asymptotic isoviscous pressure coefficient (Pa−1) | |
shear rate (s−1) | |
average shear rate (s−1) | |
generalized (non-Newtonian) viscosity (Pa·s) | |
low shear viscosity (Pa·s) | |
shear stress | |
average shear stress |
References
- Bair, S.S. High Pressure Rheology for Quantitative Elastohydrodynamics, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Hutton, J.F.; Phillips, M.C. High Pressure Viscosity of a Polyphenyl Ether measured with a New Couette Viscometer. Nat. Phys. Sci. 1973, 245, 15–16. [Google Scholar] [CrossRef]
- Guimarey, M.J.G.; Comuñas, M.J.P.; López, E.R.; Amigo, A.; Fernández, J. Volumetric Behavior of Some Motor and Gear-Boxes Oils at High Pressure: Compressibility Estimation at EHL Conditions. Ind. Eng. Chem. Res. 2017, 56, 10877–10885. [Google Scholar] [CrossRef]
- Barus, C. Isothermals, isopiestics and isometrics relative to viscosity. Am. J. Sci. 1893, s3-45, 87–96. [Google Scholar] [CrossRef]
- Bair, S. Roelands’ missing data. Proceedings of the Institution of Mechanical Engineers. Part J J. Eng. Tribol. 2004, 218, 57–60. [Google Scholar] [CrossRef]
- Bair, S. The rheological assumptions of classical EHL: What went wrong? Tribol. Int. 2018, 131, 45–50. [Google Scholar] [CrossRef]
- Hirst, W.; Moore, A.J. Non-Newtonian behaviour in elastohydrodynamic lubrication. Proc. R. Soc. London. Ser. A Math. Phys. Sci. 1974, 337, 101–121. [Google Scholar] [CrossRef]
- Johnson, K.L.; Tevaarwerk, J.L. Shear behaviour of elastohydrodynamic oil films. Proc. R. Soc. London. Ser. A, Math. Phys. Sci. 1977, 356, 215–236. [Google Scholar] [CrossRef]
- Bair, S.; Martinie, L.; Vergne, P. Classical EHL versus quantitative EHL: A perspective part II—Super-Arrhenius piezoviscosity, an essential component of elastohydrodynamic friction missing from classical EHL. Tribol. Lett. 2016, 63, 1–10. [Google Scholar] [CrossRef]
- Houpert, L. New results of traction force calculations in elastohydrodynamic contacts. Trans. ASME J. Lub. Tech. 1985, 107, 241–248. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Q.J.; Bair, S.; Vergne, P. A Quantitative Solution for the Full Shear-Thinning EHL Point Contact Problem Including Traction. Tribol. Lett. 2007, 28, 171–181. [Google Scholar] [CrossRef]
- Liu, H.C.; Bin Zhang, B.; Schneider, V.; Venner, C.; Poll, G. Two-dimensional generalized non-Newtonian EHL lubrication: Shear rate-based solution versus shear stress-based solution. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2021, 235, 2626–2639. [Google Scholar] [CrossRef]
- Bair, S.; Vergne, P.; Querry, M. A unified shear-thinning treatment of both film thickness and traction in EHD. Tribol. Lett. 2005, 18, 145–152. [Google Scholar] [CrossRef]
- Bair, S.; Kotzalas, M. The Contribution of Roller Compliance to Elastohydrodynamic Traction. Tribol. Trans. 2006, 49, 218–224. [Google Scholar] [CrossRef]
- Bair, S. Is it possible to extract the pressure dependence of low-shear viscosity from EHL friction? Revised May, 2020. Tribol. Int. 2020, 151, 106454. [Google Scholar] [CrossRef]
- Hirst, W.; Moore, A.J. The effect of temperature on traction in elastohydrodynamic lubrication. Philos. Trans. R. Soc. London. Ser. A Math. Phys. Sci. 1980, 298, 183–208. [Google Scholar] [CrossRef]
- Bair, S. The high pressure rheology of some simple model hydrocarbons. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2002, 216, 139–149. [Google Scholar] [CrossRef]
- Hutton, J.F. Reassessment of Rheological Properties of LVI 260 Oil Measured in a Disk Machine. J. Tribol. 1984, 106, 536–537. [Google Scholar] [CrossRef]
- Bair, S.; Winer, W.O. A New High-Pressure, High-Shear Stress Viscometer and Results for Lubricants. Tribol. Trans. 1993, 36, 721–725. [Google Scholar] [CrossRef]
- Bayat, R.; Lehtovaara, A. EHL/mixed transition of fully formulated environmentally acceptable gear oils. Tribol. Int. 2020, 146, 106158. [Google Scholar] [CrossRef]
- Dench, J.; di Mare, L.; Morgan, N.; Wong, J.S.S. Comparing the molecular and global rheology of a fluid under high pressures. Phys. Chem. Chem. Phys. 2018, 20, 30267–30280. [Google Scholar] [CrossRef]
- Habchi, W.; Bair, S.; Qureshi, F.; Covitch, M.J. A Film Thickness Correction Formula for Double-Newtonian Shear-Thinning in Rolling EHL Circular Contacts. Tribol. Lett. 2012, 50, 59–66. [Google Scholar] [CrossRef]
- Bair, S. Polymer-Thickened Oil Rheology When There Is No Second Newtonian. Tribol. Lett. 2019, 67, 1–6. [Google Scholar] [CrossRef]
- Novak, J.D.; Winer, W.O. The effect of pressure on the non-Newtonian behavior of polymer blended petroleum oils. J. Lubr. Tech 1969, 90, 580–590. [Google Scholar] [CrossRef]
- Yu, M.; Zhang, J.; Joedicke, A.; Reddyhoff, T. Experimental investigation into the effects of diesel dilution on engine lubrication. Tribol. Int. 2020, 156, 106828. [Google Scholar] [CrossRef]
- Roelands, C.J.A. 1966, Correlational Aspects of the Viscosity-Temperature-Pressure Relationship of Lubricating Oils. Ph.D. Thesis, Technical University Delft, Delft, The Netherlands, Groningen, The Netherlands, 1966. [Google Scholar]
- Gohar, R.; Rahnejat, H. Fundamentals of Tribology, 2nd ed.; World Scientific Publishing Company: Hackensack, NJ, USA, 2012; p. 90. [Google Scholar]
- Alsaad, M.S.D.; Bair, S.; Sanborn, D.M.; Winer, W.O. Glass transitions in lubricants: Its relation to elastohydrodynamic lubrication (EHD). Trans. ASME J. Lubr. Technol. 1978, 100, 404–417. [Google Scholar] [CrossRef]
- Prentice, I.J.; Liu, X.; Nerushev, O.A.; Balakrishnan, S.; Pulham, C.R.; Camp, P.J. Experimental and simulation study of the high-pressure behavior of squalane and poly-α-olefins. J. Chem. Phys. 2020, 152, 074504. [Google Scholar] [CrossRef]
- Zhang, J.; Spikes, H. Measurement of EHD Friction at Very High Contact Pressures. Tribol. Lett. 2020, 68, 42. [Google Scholar] [CrossRef]
- Bair, S.; Vergne, P.; Marchetti, M. The Effect of Shear-Thinning on Film Thickness for Space Lubricants. Tribol. Trans. 2002, 45, 330–333. [Google Scholar] [CrossRef]
- Bair, S. The unresolved definition of the pressure-viscosity coefficient. Sci. Rep. 2022, 12, 1–7. [Google Scholar] [CrossRef]
- Bridgman, P.W. Viscosities to 30,000 kg/cm2. Proc. Am. Acad. Arts Sci. 1949, 77, 117–128. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bair, S. A Traction (Friction) Curve Is Not a Flow Curve. Lubricants 2022, 10, 221. https://doi.org/10.3390/lubricants10090221
Bair S. A Traction (Friction) Curve Is Not a Flow Curve. Lubricants. 2022; 10(9):221. https://doi.org/10.3390/lubricants10090221
Chicago/Turabian StyleBair, Scott. 2022. "A Traction (Friction) Curve Is Not a Flow Curve" Lubricants 10, no. 9: 221. https://doi.org/10.3390/lubricants10090221
APA StyleBair, S. (2022). A Traction (Friction) Curve Is Not a Flow Curve. Lubricants, 10(9), 221. https://doi.org/10.3390/lubricants10090221