# Influence Analysis of the Antifriction Layer Materials and Thickness on the Contact Interaction of Spherical Bearings Elements

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

#### 1.1. Research Objectives

- Mathematical description of behavior models of the sliding layer materials.
- Comparative analysis of the bridges bearing deformation with interlayers from different materials at a standard sliding layer thickness.
- Influence analysis of the sliding layer thickness on the structure operation.

#### 1.2. Problem Context

- to increase reliability and durability of bearings by means of changing the structural design of its elements;
- to increase the load-bearing capacity of the spherical anti-friction polymeric sliding layer at different levels and the combination of vertical and horizontal forces from the bridge span;
- to increase the bearings workability;
- to increase the wear resistance of spherical polymeric sliding layer from modern polymeric anti-friction materials and composites based on them;
- to reduce the harmful impact on the environment in the bearings manufacture;
- to increase efficiency by reducing time and labor intensity of works related to installation and preventive maintenance, etc.

#### 1.3. Problem Description

- Preliminary assessment of the influence of different levels and combinations of vertical and horizontal loads [18]. Determination of the bending moments necessary for the experimental equipment calculation about the structural deformation analysis.

## 2. Materials and Methods

#### 2.1. Model

#### 2.2. Mathematical Setting, Boundary Conditions, and Methods

#### 2.3. Materials

## 3. Results

## 4. Discussion

#### 4.1. Limitation Statement

- constant friction coefficient. It is same for all materials;
- the spherical bearing model is simplified. A number of structural elements are not taken into account: a flat sliding layer, recesses for lubrication, etc;
- solving the problem in an axisymmetric formulation;
- no account is taken of the viscosity of the sliding layer materials.

- clarification of the physical–mechanical, rheological, and frictional properties of the sliding layer materials;
- model refinement and structure modeling in a three-dimensional setting ([18] carried out approximate studies in 3D);
- the load specification and accounting for the thermal cycle;
- influence analysis of the technological holes for lubrication on the structure operation (taking into account different models of lubricant behavior).

#### 4.2. About the Materials and Methods

#### 4.3. Modification of the Structure of Bridge Bearing

#### 4.4. About Influence Vertical Load

## 5. Conclusions

- The properties of a modern antifriction materials number were obtained experimentally and described in the ANSYS Mechanical APDL application package.
- The effect of material properties on the bridges spherical bearing contact parameters has been explored. The studies were performed with a standard interlayer thickness of 4 mm and with an increase in thickness to 6–8 mm.

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Eggert, H.; Kauschke, W. Structural Bearings; Ernst & Sohn: Berlin, Germany, 2002. [Google Scholar]
- Xue, J.Q.; Briseghella, B.; Chen, B.C.; Zhang, P.Q.; Zordan, T. Optimal design of pile foundation in fully integral abutment bridge. Dev. Int. Bridge Eng.
**2016**, 9, 3–16. [Google Scholar] [CrossRef] - Akogul, C.; Celik, O.C. Effect of elastomeric bearing modeling parameters on the Seismis design of RC highway bridges with precast concrete girders. In Proceedings of the 14th World Conference on Earthquake Engineering, Beijing, China, 12–17 October 2008. [Google Scholar]
- Becker, T.C.; Mahin, S.A. Correct treatment of rotation of sliding surfaces in a kinematic model of the triple friction pendulum bearing. Earthq. Eng. Struct. Dyn.
**2013**, 42, 311–317. [Google Scholar] [CrossRef] - Kuznetsov, D.N.; Grigorash, V.V.; Sventikov, A.A. Work power of the support unit of the steel I-beam. Russ. J. Build. Constr. Archit.
**2021**, 1, 19–29. [Google Scholar] [CrossRef] - Forcellini, D. 3D numerical simulations of elastomeric bearings for bridges. Innov. Infrastruct. Solut.
**2016**, 1, 45. [Google Scholar] [CrossRef] [Green Version] - Choi, E.; Choi, S. Analysis of dynamic behavior of railroad steel bridges according to bridge bearing type. J. Korean Soc. Railw.
**2012**, 15, 62–70. [Google Scholar] [CrossRef] - Choi, E.; Lee, J.S.; Jeon, H.; Park, T.; Kim, H. Static and dynamic behavior of disk bearings for OSPG railway bridges under railway vehicle loading. Nonlinear Dyn.
**2010**, 62, 73–93. [Google Scholar] [CrossRef] - Itoh, Y.; Gu, H. Prediction of aging characteristics in natural rubber bearings used in bridges. J. Bridge Eng.
**2009**, 14, 122–128. [Google Scholar] [CrossRef] - Beyer, E.; Wintergerst, L. New bridge storage, new pillar shape. Der Bauingenleur
**1960**, 35, 227–230. [Google Scholar] - Block, T.; Eggert, H.; Kauschke, W. Lager Im Bauwesen; John Wiley & Sons Limited: New York, NY, USA, 2015. [Google Scholar] [CrossRef]
- Eggert, H.; Grote, J.; Kauschke, W. Lager Im Bauwesen; Ernst & Sohn: Berlin, Germany, 1974. [Google Scholar]
- Proske, D. Bridge Collapse Frequencies Versus Failure Probabilities; Springer: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Beben, D. Soil-Steel Bridges; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Wang, Q.J.; Chung, Y.W. Antifriction Materials and Composites; Springer: Boston, MA, USA, 2013. [Google Scholar] [CrossRef]
- Yi, X.; Du, S.; Zhang, L. Composite Materials Engineering, Volume 1: Fundamentals of Composite Materials; Springer: Singapore, 2018. [Google Scholar] [CrossRef]
- Xing, C.; Wang, H.; Li, A.; Wu, J. Design and experimental verification of a new multi-functional bridge seismic isolation bearing. J. Zhejiang Univ.—Sci. A Appl. Phys. Eng.
**2012**, 13, 904–914. [Google Scholar] [CrossRef] - Kamenskih, A.A.; Trufanov, N.A. Regularities interaction of elements contact spherical unit with the antifrictional polymeric interlayer. J. Frict. Wear
**2015**, 36, 170–176. [Google Scholar] [CrossRef] - Adamov, A.A.; Kamenskikh, A.A.; Nosov, Y.O. Comparative analysis of the polymeric materials deformation behavior under squeezed and free compression. IOP Conf. Ser. Mater. Sci. Eng.
**2020**, 731, 012007. [Google Scholar] [CrossRef] [Green Version] - Kamenskih, A.A.; Trufanov, N.A. Numerical analysis of the stress state of a spherical contact system with an interlayer of antifriction material. Comput. Contin. Mech.
**2013**, 6, 54–61. [Google Scholar] [CrossRef] - Adamov, A.; Kamenskikh, A.; Nosov, Y. Analysis of deformation behavior of the antifriction layer part with a spherical recess for lubricant. AIP Conf. Proc.
**2021**, 2371, 020005. [Google Scholar] [CrossRef] - Adamov, A.A.; Kamenskih, A.A.; Pankova, A.P. Numerical analysis of the spherical bearing geometric configuration with antifriction layer made of different materials. PNRPU Mech. Bull.
**2020**, 4, 15–26. [Google Scholar] [CrossRef] - Adamov, A.; Kamenskikh, A.; Strukova, V. Numerical analysis of the effect of the antifriction layer face angle on the deformation behavior of spherical support parts of different geometric configurations. AIP Conf. Proc.
**2021**, 2371, 020004. [Google Scholar] [CrossRef] - Zhao, R.; Yuan, Y.; Wei, X.; Shen, R.; Zheng, K.; Qian, Y.; Pu, Q.; Zhang, Q.; Liao, H.; Li, X.; et al. Review of annual progress of bridge engineering in 2019. Adv. Bridge Eng.
**2020**, 1, 11. [Google Scholar] [CrossRef] - Niemierko, A. Modern bridge bearings and expansion joints for road bridges. Transp. Res. Procedia
**2016**, 14, 4040–4049. [Google Scholar] [CrossRef] [Green Version] - Rajczyk, J.; Rajczyk, M.; Lazarev, Y.; Rajczyk, P.; Kirillova, D. Elastomer Bearing Modification for Efficient Design. Lect. Notes Civ. Eng.
**2020**, 70, 715–726. [Google Scholar] [CrossRef] - Liu, T.; Yu, O.; Fan, J.; Peng, Z.; Wang, E. Concrete spherical joint contact stress distribution and overturning moment of swing bridge. Structures
**2020**, 28, 1187–1195. [Google Scholar] [CrossRef] - Guo, J.; Geng, T.; Yan, H.; Du, L.; Zhang, Z.; Sun, C. Implementation of A Load Sensitizing Bridge Spherical Bearing Based on Low-Coherent Fiber-Optic Sensors Combined with Neural Network Algorithms. Sensors
**2021**, 21, 37. [Google Scholar] [CrossRef] [PubMed] - Ala, N.; Power, E.H.; Azizinamini, A. Predicting the Service Life of Sliding Surfaces in Bridge Bearings. J. Bridge Eng.
**2016**, 21, 04015035. [Google Scholar] [CrossRef] - Gajewski, M.D.; Miecznikowski, M. Assessment of the Suitability of Elastomeric Bearings Modeling Using the Hyperelasticity and the Finite Element Method. Materials
**2021**, 14, 7665. [Google Scholar] [CrossRef] [PubMed] - Heggade, V.N. Bearings & Their Configurations Within Bridge System. Bridge Struct. Eng.
**2013**, 43, 23–35. [Google Scholar] - Dhanumalayan, E.; Joshi, G.M. Performance properties and applications of polytetrafluoroethylene (PTFE)—A review. Adv. Compos. Hybrid Mater.
**2018**, 1, 247–268. [Google Scholar] [CrossRef] - Blinkin, M.; Koncheva, E. Transport Systems of Russian Cities: Ongoing Transformations; Springer: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Singh, S.; Martinetti, A.; Majumdar, A.; van Dongen, L.A.M. Transportation Systems: Managing Performance through Advanced Maintenance Engineering; Springer: Singapore, 2019. [Google Scholar] [CrossRef]
- Noade, B.M.; Becker, T.C. Probabilistic Framework for Lifetime Bridge-Bearing Demands. J. Bridge Eng.
**2019**, 24, 04019065. [Google Scholar] [CrossRef] - Adamov, A.A.; Kamenskih, A.A. Comparative analysis of the contact deformation of the spherical sliding layer of the bearing with and without taking into account the grooves with lubricant. IOP Conf. Ser. Mater. Sci. Eng.
**2019**, 581, 012031. [Google Scholar] [CrossRef]

**Figure 3.**(

**a**) Mechanical characteristics of the elastic section of the deformation curve of polymer materials (Young modulus and Poisson’s coefficient); (

**b**) model of elastic–plastic hardening MISO.

**Figure 6.**(

**a**) Dependence of the maximum contact pressure level; (

**b**) contact tangential stress on the layer thickness on ${S}_{{K}_{1}}$.

**Figure 7.**Change of maximal normal displacement with respect to that at a thickness of ${h}_{p}=4$ mm on ${S}_{{K}_{3}}$.

**Figure 8.**(

**a**) Contact parameters: 1 is $\mathrm{max}{P}_{K}$ and 2 is $\mathrm{max}{\tau}_{K}$ on ${S}_{{K}_{1}}$; (

**b**) normal displacement on ${S}_{{K}_{3}}$.

Parameter | Material | |||||
---|---|---|---|---|---|---|

1 | 2 | 3 | 4 | 5 | 6 | |

$\mathrm{max}{P}_{K}$, MPa | 90.803 | 92.216 | 110.400 | 148.460 | 135.570 | 96.268 |

$\mathrm{max}{\tau}_{K}$, MPa | 3.421 | 3.475 | 4.085 | 5.396 | 4.852 | 3.621 |

$\mathrm{max}{P}_{K}>\mathrm{max}{\tau}_{K}$ | 26.540 | 26.539 | 27.024 | 27.514 | 27.944 | 26.587 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Adamov, A.A.; Kamenskikh, A.A.; Pankova, A.P.
Influence Analysis of the Antifriction Layer Materials and Thickness on the Contact Interaction of Spherical Bearings Elements. *Lubricants* **2022**, *10*, 30.
https://doi.org/10.3390/lubricants10020030

**AMA Style**

Adamov AA, Kamenskikh AA, Pankova AP.
Influence Analysis of the Antifriction Layer Materials and Thickness on the Contact Interaction of Spherical Bearings Elements. *Lubricants*. 2022; 10(2):30.
https://doi.org/10.3390/lubricants10020030

**Chicago/Turabian Style**

Adamov, Anatoliy A., Anna A. Kamenskikh, and Anastasia P. Pankova.
2022. "Influence Analysis of the Antifriction Layer Materials and Thickness on the Contact Interaction of Spherical Bearings Elements" *Lubricants* 10, no. 2: 30.
https://doi.org/10.3390/lubricants10020030