Impact of Fatty Triamine on Friction Reduction Performance of MoDTC Lubrication Additive
Abstract
1. Introduction
2. Methods
2.1. Additives and Lubricants
2.2. Tribological Experiments
2.3. Characterizations
3. Results and Discussion
3.1. Friction Reduction Performances of MoDTC-Based Lubricant Formulations
3.2. Stability of MoDTC-Based Lubricant Formulations
3.3. Chemical Nature of the Precipitate Formed from MoDTC and Triameen YT
3.3.1. IR Spectroscopy Analysis
3.3.2. XPS Spectroscopy Analysis
3.3.3. TEM/EDS Analysis
3.3.4. XAS Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Spikes, H. Friction modifier additives. Tribol. Lett. 2015, 60, 1–26. [Google Scholar] [CrossRef]
- Cooper, H.S.; Damerell, V.R. Lubricants Suitable for Various Uses. U.S. Patent 2,156,803, 3 May 1934. [Google Scholar]
- DeBlase, F.J.; Madabusi, V.K.; Ferrarotti, S.; Gaenzler, F.; Migdal, C.A.; Mulqueen, G. Friction Modifier Composition for Lubricants. U.S. Patent 9,321,979,B2, 26 April 2016. [Google Scholar]
- Spengler, G.; Weber, A. Über die Schmierfähigkeit organischer Molybdänverbindungen. Chem. Ber. 1959, 92, 2163–2171. [Google Scholar] [CrossRef]
- Feng, I.M.; Perilstein, W.L.; Adams, M.R. Solid film deposition and non-sacrificial boundary lubrication. ASLE Trans. 1963, 6, 60–66. [Google Scholar] [CrossRef]
- Graham, J.; Korcek, S.; Spikes, H. The Friction Reducing Properties of Molybdenum Dialkyldithiocarbamate Additives: Part I—Factors Influencing Friction Reduction. Tribol. Trans. 2001, 44, 626–636. [Google Scholar] [CrossRef]
- Scott, D.; Harvey, S.S.K.; Blackwell, J. An exploratory investigation of lubricant-soluble molybdenum sulphur additives under conditions of rolling contact. Wear 1980, 63, 183–188. [Google Scholar] [CrossRef]
- De Barros Bouchet, M.I.; Martin, J.M.; Oumahi, C.; Gorbatchev, O.; Afanasiev, P.; Geantet, C.; Iovine, R.; Thiebaut, B.; Heau, C. MoS2 formation induced by amorphous MoS3 species under lubricated friction. Tribol. Int. 2018, 119, 600–607. [Google Scholar] [CrossRef]
- Topolovec-Miklozic, K.; Forbus, T.R.; Spikes, H.A. Performance of friction modifiers on ZDDP-generated surfaces. Tribol. Trans. 2007, 50, 328–335. [Google Scholar] [CrossRef]
- Eriksson, K. Fatty Amines as Friction Modifiers in Engine Oils: Correlating Adsorbed Amount to Friction and Wear Performance. Master’s Thesis, Chalmers University of Technology, Gothenburg, Sweden, 2014. [Google Scholar]
- Lundgren, S.; Eriksson, K.; Rossenaar, B. Boosting the Friction Performance of Amine Friction Modifiers with MoDTC. SAE Int. J. Fuels Lubr. 2015, 8, 27–30. [Google Scholar] [CrossRef]
- Morina, A.; Neville, A.; Priest, M.; Green, J.H. ZDDP and MoDTC interactions and their effect on tribologi-cal performance—tribofilm characteristics and its evolution. Tribol. Lett. 2006, 24, 243–256. [Google Scholar] [CrossRef]
- Proux, O.; Biquard, X.; Lahera, E.; Menthonnex, J.J.; Prat, A.; Ulrich, O.; Soldo, Y.; Trévisson, P.; Kapoujyan, G.; Perroux, G.; et al. FAME: A new beamline for x-ray absorption investigations of very-diluted systems of environmental, material and biological interests. Phys. Scr. 2005, 115, 970–973. [Google Scholar] [CrossRef]
- Ankudinov, A.L.; Bouldin, C.E.; Rehr, J.J.; Sims, J.; Hung, H. Parallel calculation of electron multiple scattering using lanczos algorithms. Phys. Rev. B 2002, 65, 104–107. [Google Scholar] [CrossRef]
- Klementev, K.V. Statistical evaluations in fitting problems. J. Synchrotron Rad. 2001, 8, 270–272. [Google Scholar] [CrossRef]
- De Feo, M.; Minfray, C.; De Barros-Bouchet, M.I.; Thiebaut, B.; Le Mogne, T.; Vacher, B.; Martin, J.M. Ageing impact on tribological properties of MoDTC-containing base oil. Tribol. Int. 2015, 92, 126–135. [Google Scholar] [CrossRef]
- Nehme, G. Tribological and thermal characteristics of reduced phosphorus plain ZDDP oil in the presence of PTFE/FeF3/TiF3 under optimized extreme loading condition and a break in period using two different rotational speeds. Wear 2013, 301, 747–752. [Google Scholar] [CrossRef]
- Gorbatchev, O.; De Barros Bouchet, M.I.; Martin, J.M.; Léonard, D.; Le Mogne, T.; Iovine, R.; Thiebaut, B.; Héau, C. Friction reduction efficiency of organic Mo-containing FM additives associated to ZDDP for steel and carbon-based contacts. Tribol. Int. 2016, 99, 278–288. [Google Scholar] [CrossRef]
- Stewart, J.E. Vibrational Spectra of Primary and Secondary Aliphatic Amines. J. Chem. Phys. 1959, 30, 1259–1265. [Google Scholar] [CrossRef]
- Fringeli, U.P.; Gunthard, H.H. Infrared Membrane Spectroscopy. Mol. Biol. Biochem. Biophys. 1981, 31, 270–332. [Google Scholar]
- Genuit, D.; Bezverkhyy, I.; Afanasiev, P. Solution preparation of the amorphous molybdenum oxysulfide MoOS2 and its use for catalysis. J. Solid State Chem. 2005, 178, 2759–2765. [Google Scholar] [CrossRef]
- Fripiat, J.J.; Pennequin, M.; Poncelet, G.; Cloos, P. Application of Far-infrared spectroscopy to the study of clay minerals and zeolites. Clay Miner. 1969, 8, 119–134. [Google Scholar] [CrossRef]
- Peeters, S.; Restuccia, P.; Loehlé, S.; Thiebaut, B.; Righi, M.C. Characterization of Molybdenum Dithiocar-bamates by First-Principles Calculations. J. Phys. Chem. A 2019, 123, 7007–7015. [Google Scholar] [CrossRef]
- Benoist, L.; Gonbeau, D.; Pfister-Guillouzo, G.; Schmidt, E.; Meunier, G.; Levasseur, A. X-ray photoelectron spectroscopy characterization of amorphous molybdenum oxysulfide thin films. Thin. Solid Film. 1995, 258, 110–114. [Google Scholar] [CrossRef]
- Ye, X.R.; Hou, H.W.; Xin, X.Q.; Hammer, C.F. M-S (M=Mo, W) cluster compound films on copper surfaces. Appl. Surf. Sci. 1995, 89, 151–157. [Google Scholar] [CrossRef]
- Kartio, I.; Laajalehto, K.; Suoninen, E.; Karthe, S.; Szargan, R. Technique for XPS measurements of volatile adsorbed layers: Application to studies of sulphide flotation. Surf. Int. Anal. 1992, 18, 807–810. [Google Scholar] [CrossRef]
- Ji, W.; Shen, R.; Yang, R.; Yu, G.; Guo, X.; Peng, L.; Ding, W. Partially nitrided molybdenum trioxide with promoted performance as an anode material for lithium-ion batteries. J. Mater. Chem. A 2014, 2, 699–704. [Google Scholar] [CrossRef]
- Vasquez, R.P. CuSO4 by XPS. Surf. Sci. Spectra 1998, 5, 279–284. [Google Scholar] [CrossRef]
- Collaud Coen, M.; Keller, B.; Groening, P.; Schlapbach, L. Functionalization of graphite, glassy carbon, and polymer surfaces with highly oxidized sulfur species by plasma treatments. J. Appl. Phys. 2002, 92, 5077–5083. [Google Scholar] [CrossRef]
- Bezverkhyy, I.; Afanasiev, P.; Lacriox, M. Preparation and Chemical Transformation of Surfactant-Templated Hybrid Phase Containing MoS42-Anions. Mater. Res. Bull. 2002, 37, 161–168. [Google Scholar] [CrossRef]
- Zhang, Z.; Yamaguchi, E.S.; Yu, L.; Kasrai, M.; Bancroft, G.M. Effects of Mo-Containing Dispersants on the Function of ZDDP: Chemistry and Tribology. Tribol. Trans. 2007, 50, 58–67. [Google Scholar] [CrossRef]
- De Boer, M.; Van Dillen, A.J.; Koningsberger, D.C.; Geus, J.W. The Structure of Highly Dispersed SiO2-Supported Molybdenum Oxide Catalysts during Sulfidation. J. Phys. Chem. 1994, 98, 7862–7870. [Google Scholar] [CrossRef][Green Version]
- Conradson, D.S.; Burgess, B.K.; Newton, W.E.; McDonald, J.W.; Rubinson, J.F.; Gheller, S.F.; Mortenson, L.E.; Adams, M.W.W.; Mascharak, P.K. Structural insights from the molybdenum K-edge x-ray absorption near edge structure of the iron-molybdenum protein of nitrogenase and its iron-molybdenum cofactor by comparison with synthetic iron-molybdenum-sulfur clusters. J. Am. Chem. Soc. 1985, 107, 7935–7940. [Google Scholar] [CrossRef]
- Rochet, A.; Baubet, B.; Moizan, V.; Pichon, C.; Briois, V. Co-K and Mo-K edges Quick-XAS study of the sulphidation properties of Mo/Al2O3 and CoMo/Al2O3 catalysts. C. R. Chim. 2016, 19, 1337–1351. [Google Scholar] [CrossRef]
- Hugel, M. Schmieroel Fuer Metalloberflaechen. DE1003895B, 7 March 1957. [Google Scholar]
- Perrin, B. Produits d’addition Aux Huiles Lubrifiantes. FR1370796A, 28 August 1964. [Google Scholar]
- Schlicht, R.C.; Levine, S.A.; Chafetz, H. Derivés Thiomolybdeniques d’alcenylsuccinimides Dispersants et Lubrifiant en Contenant. FR2484441A1, 18 December 1981. [Google Scholar]
- Singerman, G.M.; Ryu, Y.P.; Anglin, J.R. Lubricating Oils Containing Quaternary Ammonium Thiomolybdates. US4400282A, 23 August 1983. [Google Scholar]
- Casey, B.M.; Gatto, V.J. Imidazolium Sulfur-Containing Binuclear Molybdate Salts as Lubricant Additives. US20170240837A1, 14 February 2017. [Google Scholar]
- Dawczyk, J.; Russo, J.; Spikes, H. Ethoxylated Amine Friction Modifiers and ZDDP. Tribol. Lett. 2019, 67, 106. [Google Scholar] [CrossRef]
Formulation | FCo at 80 °C | FCo at 110 °C |
---|---|---|
PAO 4 | 0.14 | - |
MoDTC | 0.07 | 0.07 |
MoDTC+ZDDP | 0.06 | 0.06 |
MoDTC+Triameen YT | 0.05 | 0.05 |
MoDTC+Triameen YT pre-heated * | 0.07 | 0.05 |
MoDTC+Triameen YT +ZDDP | 0.10 | 0.09 |
MoDTC+Triameen YT pre-heated+ZDDP ** | 0.07 | 0.07 |
Shell | CN | R(Ǻ) | σ2(Ǻ2) | ΔE0 |
---|---|---|---|---|
(NH4)2MoO2S2 | ||||
O | 2 | 1.76(3) | 0.0035(5) | 0.1(5) |
S | 2 | 2.22(2) | 0.0050(6) | 0.1(5) |
MoDTC | ||||
O | 0.9(2) | 1.78(2) | 0.004(1) | 0.1(5) |
S | 3.9(5) | 2.41(2) | 0.008(2) | 0.1(5) |
Mo | 1.0(2) | 2.81(2) | 0.007(2) | 0.1(5) |
Reddish MoDTC+ triamine precipitate | ||||
O | 1.0(3) | 1.75(6) | 0.006(2) | −0.4(5) |
S | 3.2(6) | 2.32(6) | 0.009(4) | −0.4(5) |
Mo | 0.4(3) | 2.81(5) | 0.008(5) | −0.4(5) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oumahi, C.; Mogne, T.L.; Aguilar-Tapia, A.; Charrin, C.; Geantet, C.; Afanasiev, P.; Thiebaut, B.; De Barros-Bouchet, M.I. Impact of Fatty Triamine on Friction Reduction Performance of MoDTC Lubrication Additive. Lubricants 2022, 10, 365. https://doi.org/10.3390/lubricants10120365
Oumahi C, Mogne TL, Aguilar-Tapia A, Charrin C, Geantet C, Afanasiev P, Thiebaut B, De Barros-Bouchet MI. Impact of Fatty Triamine on Friction Reduction Performance of MoDTC Lubrication Additive. Lubricants. 2022; 10(12):365. https://doi.org/10.3390/lubricants10120365
Chicago/Turabian StyleOumahi, Camella, Thierry Le Mogne, Antonio Aguilar-Tapia, Catherine Charrin, Christophe Geantet, Pavel Afanasiev, Benoit Thiebaut, and Maria Isabel De Barros-Bouchet. 2022. "Impact of Fatty Triamine on Friction Reduction Performance of MoDTC Lubrication Additive" Lubricants 10, no. 12: 365. https://doi.org/10.3390/lubricants10120365
APA StyleOumahi, C., Mogne, T. L., Aguilar-Tapia, A., Charrin, C., Geantet, C., Afanasiev, P., Thiebaut, B., & De Barros-Bouchet, M. I. (2022). Impact of Fatty Triamine on Friction Reduction Performance of MoDTC Lubrication Additive. Lubricants, 10(12), 365. https://doi.org/10.3390/lubricants10120365