Changing Accretion Geometry of Seyfert 1 Mrk 335 with NuSTAR: A Comparative Study
Abstract
:1. Introduction
2. Observation and Data Analysis
3. Results and Discussion
4. Conclusions
- During 2013, the corona at the inner region changed significantly from its elongated stage (∼) to destruction stage ∼, consistent with [44]. As the compression ratio changed and the corona contracted significantly, it could be possible that a jet/mass outflow was launched around 13 June 2013, therefore a significant amount of thermal energy was extracted by the jet/outflow and the corona contracted.
- The observation during 2014 required a blurred reflection component along with tcaf to fit the spectra. This is quite natural as the corona contracted and the inner edge of the disk moved significantly inward, therefore the gravitational effect became dominant [26,27] and blurred the Fe K line. We also required a broad Gaussian line component at ∼2 keV.
- The HR was roughly constant during 2013, and was also similar to that obtained during 2014.
- There was a significant change in between the 2013 and 2014 spectra, which may be due to a sudden change in accretion rates. During this period, disk accretion had increased by a factor of a few and also the size of the corona contracted significantly.
- The steepening of the emissivity profile of Mrk 335 indicates that the corona is compact for this source [44]. In our study, we found that the size of the corona was indeed small and compact during 25 June 2013 and 20 September 2014 (see Table 4). It is also noticeable that the height of the corona reduced significantly during these two epochs.
- During 2014, spectral flux between 3 and 30 keV changed/increased by a factor of ∼3 compared to 2013 and 2018. This could be due to an increase in accretion rates as well as the change in corona. As the accretion rate increased (in 25 June 2013 and 10 July 2018), the number of soft photons increased, thereby increasing the cooling rate, i.e., reduction of more energy from the corona by the seed photons from the Keplerian disk (see theoretical aspects in [9]). It should be noted that although the shock location changed significantly, the other parameters triggered that change, mainly the increase in disk accretion rate, and therefore the cooling rate. This also infers that not only the shock location but other parameters are equally important to explain the observed variability.
- During 2018 and onward, the corona and again elongated. During this period the HR also increased. This also implies that there is a correlation between HR and the geometry of the corona.
- During 2018, to take into account the disk ionization effects along with TCAF, we required partial covering and the zxipcf model to better fit the data. The model fit showed that an absorption column density with is present. The fit also required a low ionization with erg cm , with a partial covering fraction of 0.45. This added component also indicates the presence of mass outflow from the system, which is evident in the monitoring observations of the source in optical/UV and X-rays ([63,64], and references therein).
- The reflection fraction, R, is measured as the ratio of the photon fluxes from the blurred reflection and power-law continuum model components. From pexrav model fitting we found this value was .
- The mass of the black hole, which was kept as a free parameter, was found to vary in a very narrow range (2.44–3.04), and considering the error bars is consistent with a constant. This is in agreement with that of [38].
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- McHardy, I.M.; Koerding, E.; Knigge, C.; Uttley, P.; Fender, R.P. Active galactic nuclei as scaled-up Galactic black holes. Nature 2006, 444, 730. [Google Scholar] [CrossRef] [PubMed]
- Haardt, F.; Maraschi, L. A Two-Phase Model for the X-Ray Emission from Seyfert Galaxie. Astrophys. J. 1991, 380, L51. [Google Scholar] [CrossRef]
- Zdziarski, A.A.; Poutanen, J.; Johnson, W.N. Observations of Seyfert Galaxies by OSSE and Parameters of Their X-ray/Gamma-Ray Sources. Astrophys. J. 2000, 542, 703. [Google Scholar] [CrossRef]
- Esin, A.A.; McClintock, J.E.; Narayan, R. Advection-Dominated Accretion and the Spectral States of Black Hole X-ray Binaries: Application to Nova Muscae 1991. Astrophys. J. 1997, 489, 865. [Google Scholar] [CrossRef] [Green Version]
- Garcia, J.; Dauser, T.; Reynolds, C.S.; Kallman, T.R.; McClintock, J.E.; Wilms, J.; Eikmann, W. X-Ray Reflected Spectra from Accretion Disk Models. III. A Complete Grid of Ionized Reflection Calculations. Astrophys. J. 2013, 768, 146. [Google Scholar] [CrossRef] [Green Version]
- Titarchuk, L. Generalized Comptonization Models and Application to the Recent High-Energy Observations. Astrophys. J. 1994, 434, 570. [Google Scholar] [CrossRef]
- Chakrabarti, S.K. Standing Rankine-Hugoniot Shocks in the Hybrid Model Flows of the Black Hole Accretion and Winds. Astrophys. J. 1989, 347, 365. [Google Scholar] [CrossRef]
- Chakrabarti, S.; Titarchuk, L.G. Spectral Properties of Accretion Disks around Galactic and Extragalactic Black Holes. Astrophys. J. 1995, 455, 623. [Google Scholar] [CrossRef] [Green Version]
- Mondal, S.; Chakrabarti, S.K. Spectral properties of two-component advective flows with standing shocks in the presence of Comptonization. Mon. Not. R. Astron. Soc. 2013, 431, 2716. [Google Scholar] [CrossRef] [Green Version]
- Chakrabarti, S.K.; Mondal, S.; Debnath, D. Resonance condition and low-frequency quasi-periodic oscillations of the outbursting source H 1743- 322. Mon. Not. R. Astron. Soc. 2015, 452, 3451. [Google Scholar] [CrossRef] [Green Version]
- Molteni, D.; Sponholtz, H.; Chakrabarti, S.K. Resonance oscillation of radiative shock waves in accretion disks around compact objects. Astrophys. J. 1996, 457, 805. [Google Scholar] [CrossRef] [Green Version]
- Shakura, N.I.; Sunyaev, R.A. Black holes in binary systems. Observational appearance. Astron. Astrophys. 1973, 24, 337. [Google Scholar]
- Chakrabarti, S.K. Spectral properties of accretion disks around black holes. II. Sub-Keplerian flows with and without shocks. Astrophys. J. 1997, 484, 313. [Google Scholar] [CrossRef] [Green Version]
- Debnath, D.; Chakrabarti, S.K.; Mondal, S. Implementation of two-component advective flow solution in xspec. Mon. Not. R. Astron. Soc. 2014, 440L, 121. [Google Scholar] [CrossRef] [Green Version]
- Debnath, D.; Mondal, S.; Chakrabarti, S.K. Characterization of GX 339-4 outburst of 2010-11: Analysis by XSPEC using two component advective flow model. Mon. Not. R. Astron. Soc. 2015, 447, 1984. [Google Scholar] [CrossRef] [Green Version]
- Mondal, S.; Debnath, D.; Chakrabarti, S.K. Inference on Accretion Flow Dynamics Using TCAF Solution from the Analysis of Spectral Evolution of H 1743-322 during the 2010 Outburst. Astrophys. J. 2014, 786, 4. [Google Scholar] [CrossRef] [Green Version]
- Mandal, S.; Chakrabarti, S.K. Spectrum of Two-Component Flows around a Supermassive Black Hole: An Application to M87. Astrophys. J. 2008, 689, 17. [Google Scholar] [CrossRef] [Green Version]
- Mondal, S.; Rani, P.; Stalin, C.S. Flux and spectral variability of Mrk 421 during its low activity state using NuSTAR. Mon. Not. R. Astron. Soc. 2021. submitted. [Google Scholar]
- Nandi, P.; Chakrabarti, S.K.; Mondal, S. Spectral Properties of NGC 4151 and the Estimation of Black Hole Mass Using TCAF Solution. Astrophys. J. 2019, 877, 65. [Google Scholar] [CrossRef] [Green Version]
- Fabian, A.C.; Ross, R.R. X-ray reflection. SSRv 2010, 157, 167. [Google Scholar]
- Galeev, A.A.; Rosner, R.; Vaiana, G.S. Structured coronae of accretion disks. Astrophys. J. 1979, 229, 318. [Google Scholar] [CrossRef]
- Merloni, A.; Fabian, A.C. Thunderclouds and accretion discs: A model for the spectral and temporal variability of Seyfert 1 galaxies. Mon. Not. R. Astron. Soc. 2001, 328, 958. [Google Scholar] [CrossRef] [Green Version]
- Barr, P.; White, N.E.; Page, C.G. The discovery of low-level iron K line emission from CYG X-1. Mon. Not. R. Astron. Soc. 1985, 216, 65. [Google Scholar] [CrossRef] [Green Version]
- Nandra, K.; Pounds, K.A.; Stewart, G.C.; Fabian, A.C.; Rees, M.J. Detection of iron features in the X-ray spectrum of the Seyfert I galaxy MCG -6-30-15. Mon. Not. R. Astron. Soc. 1989, 236, 39. [Google Scholar] [CrossRef] [Green Version]
- Pounds, K.A.; Nandra, K.; Stewart, G.C.; George, I.M.; Fabian, A.C. X-ray reflection from cold matter in the nuclei of active galaxies. Nature 1990, 344, 132. [Google Scholar] [CrossRef]
- Fabian, A.C.; Rees, M.J.; Stella, L.; White, N.E. X-ray fluorescence from the inner disc in Cygnus X-1. Mon. Not. R. Astron. Soc. 1989, 238, 729. [Google Scholar] [CrossRef]
- Laor, A. Line Profiles from a Disk around a Rotating Black Hole. Astrophys. J. 1991, 376, 90. [Google Scholar] [CrossRef]
- Brenneman, L.W.; Reynolds, C.S. Constraining Black Hole Spin via X-Ray Spectroscopy. Astrophys. J. 2006, 652, 1028. [Google Scholar] [CrossRef]
- Reynolds, C.S. The spin of supermassive black holes. Class. Quantum Gravity 2013, 30, 244004. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, C.S.; Fabian, A.C. Broad Iron-Kα Emission Lines as a Diagnostic of Black Hole Spin. Astrophys. J. 2008, 675, 1048. [Google Scholar] [CrossRef] [Green Version]
- Ballantyne, D.R.; Vaughan, S.; Fabian, A.C. A two-component ionized reflection model of MCG-6-30-15. Mon. Not. R. Astron. Soc. 2003, 342, 239. [Google Scholar] [CrossRef] [Green Version]
- Iwasawa, K. The variable iron K emission line in MCG-6-30-15. Mon. Not. R. Astron. Soc. 1996, 282, 1038. [Google Scholar] [CrossRef] [Green Version]
- Risaliti, G. A rapidly spinning supermassive black hole at the centre of NGC 1365. Nature 2013, 494, 449. [Google Scholar] [CrossRef] [Green Version]
- Mondal, S.; Chakrabarti, S.K.; Debnath, D. Spectral study of GX 339-4 with TCAF using Swift and NuSTAR observation. Astrophys. Space Sci. 2016, 361, 309. [Google Scholar] [CrossRef]
- Ross, R.R.; Fabian, A.C. A comprehensive range of X-ray ionized-reflection models. Mon. Not. R. Astron. Soc. 2005, 358, 211. [Google Scholar] [CrossRef]
- Ross, R.R.; Fabian, A.C.; Young, A.J. X-ray reflection spectra from ionized slabs. Mon. Not. R. Astron. Soc. 1999, 306, 461. [Google Scholar] [CrossRef] [Green Version]
- Huchra, J.P.; Vogeley, M.S.; Geller, M.J. The CFA Redshift Survey: Data for the South Galactic CAP. Astrophys. J. Suppl. 1999, 121, 287. [Google Scholar] [CrossRef]
- Grier, C.J.; Peterson, B.M.; Pogge, R.W. A Reverberation Lag for the High-ionization Component of the Broad-line Region in the Narrow-line Seyfert 1 Mrk 335. Astrophys. J. 2012, 744, L4. [Google Scholar] [CrossRef]
- Longinotti, A.L.; Krongold, Y.; Kriss, G.A.; Ely, J.; Pradhan, A. The Rise of an Ionized Wind in the Narrow-line Seyfert 1 Galaxy Mrk 335 Observed by XMM-Newton and HST. Astrophys. J. 2013, 766, 104. [Google Scholar] [CrossRef] [Green Version]
- Grupe, D.; Komossa, S.; Gallo, L.C. Discovery of the Narrow-Line Seyfert 1 Galaxy Markarian 335 in a Historical Low X-Ray Flux State. Astrophys. J. 2007, 668, L111. [Google Scholar] [CrossRef] [Green Version]
- Grupe, D. XMM-Newton Observations of the Narrow-Line Seyfert 1 Galaxy Mrk 335 in a Historical Low X-Ray Flux State. Astrophys. J. 2008, 681, 982. [Google Scholar] [CrossRef] [Green Version]
- Gallo, L.C.; Fabian, A.C.; Grupe, D.; Bonson, K.; Komossa, S.; Longinotti, A.L.; Miniutti, G.; Walton, D.J.; Zoghbi, A.; Mathur, S. A blurred reflection interpretation for the intermediate flux state in Mrk 335. Mon. Not. R. Astron. Soc. 2013, 428, 1191. [Google Scholar] [CrossRef] [Green Version]
- Kara, E.; Fabian, A.C.; Cackett, E.M.; Uttley, P.; Wilkins, D.R.; Zoghbi, A. Discovery of high-frequency iron K lags in Ark 564 and Mrk 335. Mon. Not. R. Astron. Soc. 2013, 434, 1129. [Google Scholar] [CrossRef] [Green Version]
- Wilkins, D.R.; Gallo, L.C. Driving extreme variability: The evolving corona and evidence for jet launching in Markarian 335. Mon. Not. R. Astron. Soc. 2015, 449, 129. [Google Scholar] [CrossRef]
- Wilkins, D.R.; Gallo, L.C.; Grupe, D.; Bonson, K.; Komossa, S.; Fabian, A.C. Flaring from the supermassive black hole in Mrk 335 studied with Swift and NuSTAR. Mon. Not. R. Astron. Soc. 2015, 454, 4440. [Google Scholar] [CrossRef] [Green Version]
- Gallo, L.C.; Blue, D.M.; Grupe, D.; Komossa, S.; Wilkins, D.R. Eleven years of monitoring the Seyfert 1 Mrk 335 with Swift: Characterizing the X-ray and UV/optical variability. Mon. Not. R. Astron. Soc. 2018, 478, 2557. [Google Scholar] [CrossRef] [Green Version]
- Gallo, L.C.; Gonzalez, A.G.; Waddell, S.G.H.; Ehler, H.J.S.; Wilkins, D.R.; Longinotti, A.L.; Grupe, D.; Komossa, S.; Kriss, G.A.; Pinto, C. Evidence for an emerging disc wind and collimated outflow during an X-ray flare in the narrow-line Seyfert 1 galaxy Mrk 335. Mon. Not. R. Astron. Soc. 2019, 484, 4287. [Google Scholar] [CrossRef] [Green Version]
- Arnaud, K.A. XSPEC: The First Ten Years. ASP Conf. Ser. 1996, 101, 17. [Google Scholar]
- Wilms, J.; Allen, A.; McCray, R. On the Absorption of X-Rays in the Interstellar Medium. Astrophys. J. 2000, 542, 914. [Google Scholar] [CrossRef] [Green Version]
- Kalberla, P.M.W.; Burton, W.B.; Hartmann, D.; Arnal, E.M.; Bajaja, E.; Morras, R.; Poppel, W.G.L. The Leiden/Argentine/Bonn (LAB) Survey of Galactic HI. Final data release of the combined LDS and IAR surveys with improved stray-radiation corrections. Astron. Astrophys. 2005, 440, 775. [Google Scholar] [CrossRef]
- Magdziarz, P.; Zdziarski, A.A. Angle-dependent Compton reflection of X-rays and gamma-rays. Mon. Not. R. Astron. Soc. 1995, 273, 837. [Google Scholar] [CrossRef] [Green Version]
- Mondal, S.; Chakrabarti, S.K.; Nagarkoti, S.; Arevalo, P. Possible range of viscosity parameter to trigger black hole candidates to exhibit different states of outbursts. Astrophys. J. 2017, 850, 47. [Google Scholar] [CrossRef] [Green Version]
- Mastroserio, G.; Ingram, A.; van der Klis, M. Multi-timescale reverberation mapping of Mrk 335. Mon. Not. R. Astron. Soc. 2020, 498, 4971. [Google Scholar] [CrossRef]
- Garcia, J.A.; Steiner, J.F.; Mcclintock, J.E.; Remillard, R.A.; Grinberg, V.; Dauser, T. X-Ray Reflection Spectroscopy of the Black Hole GX 339–4: Exploring the Hard State with Unprecedented Sensitivity. Astrophys. J. 2015, 813, 84. [Google Scholar] [CrossRef]
- Chainakun, P.; Young, A.J. Simultaneous spectral and reverberation modelling of relativistic reflection in Mrk 335. Mon. Not. R. Astron. Soc. 2015, 452, 333. [Google Scholar] [CrossRef] [Green Version]
- Ezhikode, S.H.; Dewangan, G.C.; Misra, R.; Philip, N.S. Correlation between relativistic reflection fraction and photon index in NuSTAR sample of Seyfert 1 AGN. Mon. Not. R. Astron. Soc. 2020, 495, 3373. [Google Scholar] [CrossRef]
- Reeves, J.; Done, C.; Pounds, K.; Terashima, Y.; Hayashida, K.; Anabuki, N.; Uchino, M.; Turner, M. On why the Iron K-shell absorption in AGN is not a signature of the local Warm/Hot Intergalactic Medium. Mon. Not. R. Astron. Soc. 2008, 385L, 108. [Google Scholar] [CrossRef] [Green Version]
- Chakrabarti, S.K. Estimation and effects of the mass outflow from shock compressed flow around compact objects. Astron. Astrophys. 1999, 351, 185. [Google Scholar]
- Chakrabarti, S.K. Spectral signature of mass loss (and mass gain by) an accretion disk around a black hole. Astrophys. J. 2002, 579L, 21. [Google Scholar] [CrossRef]
- Mondal, S.; Chakrabarti, S.K.; Debnath, D. Spectral signatures of dissipative standing shocks and mass outflow in presence of Comptonization around a black hole. Astrophys. Space Sci. 2014, 353, 223. [Google Scholar] [CrossRef] [Green Version]
- Chatterjee, D.; Debnath, D.; Jana, A.; Chakrabarti, S.K. Properties of the black hole candidate XTE J1118+480 with the TCAF solution during its jet activity induced 2000 outburst. Astrophys. Space Sci. 2019, 364, 14. [Google Scholar] [CrossRef] [Green Version]
- Chakrabarti, S.K.; Wiita, P.J. Spiral Shocks in Accretion Disks As a Contributor to Variability in Active Galactic Nuclei. Astrophys. J. 1993, 411, 602. [Google Scholar] [CrossRef]
- Komossa, S. Lifting the curtain: The Seyfert galaxy Mrk 335 emerges from deep low-state in a sequence of rapid flare events. Astron. Astrophys. 2020, 643L, 7. [Google Scholar] [CrossRef]
- Parker, M.L. The nuclear environment of the NLS1 Mrk 335: Obscuration of the X-ray line emission by a variable outflow. Mon. Not. R. Astron. Soc. 2019, 490, 683. [Google Scholar] [CrossRef] [Green Version]
- Sarma, R.; Tripathi, S.; Misra, R.; Dewangan, G.; Pathak, A.; Sarma, J.K. Relationship between X-ray spectral index and X-ray Eddington ratio for Mrk 335 and Ark 564. Mon. Not. R. Astron. Soc. 2015, 448, 1541. [Google Scholar] [CrossRef] [Green Version]
Date | MJD | OBSID | Exposure (s) |
---|---|---|---|
13 June 2013 | 56,456 | 60001041002 | 21,299 |
13 June 2013 | 56,456 | 60001041003 | 21,525 |
25 June 2013 | 56,468 | 60001041005 | 93,028 |
20 September 2014 | 56,920 | 80001020002 | 68,908 |
10 July 2018 | 58,309 | 80201001002 | 82,257 |
06 June 2020 | 59,006 | 90602619004 | 30,156 |
07 June 2020 | 59,007 | 90602619006 | 30,495 |
08 June 2020 | 59,008 | 90602619008 | 22,452 |
OBSID | [keV] | [keV] | |||
---|---|---|---|---|---|
60001041002 | 71.91/65 | ||||
60001041003 | 102.1/85 | ||||
60001041005 | 452.94/316 | ||||
80001020002 | 320.71/264 | ||||
80201001002 | 136.14/124 | ||||
90602619004 | 107.16/79 | ||||
90602619006 | 82.39/106 | ||||
90602619008 | 92.29/80 |
OBSID | [keV] | [keV] | [keV] | |||
---|---|---|---|---|---|---|
60001041002 | 68.01/63 | |||||
60001041003 | 89.72/83 | |||||
323.19/311 | ||||||
80001020002 | 253.39/262 | |||||
80201001002 | 128.70/122 | |||||
90602619004 | 96.97/77 | |||||
90602619006 | 81.39/104 | |||||
90602619008 | 78.82/78 |
OBSID | [] | [] | R | [keV] | [keV] | |||
---|---|---|---|---|---|---|---|---|
60001041002 | 72.45/61 | |||||||
60001041003 | 101.75/81 | |||||||
333.54/309 | ||||||||
244.18/256 | ||||||||
130.29/117 | ||||||||
87.65/72 | ||||||||
90602619006 | 82.35/102 | |||||||
90602619008 | 95.42/76 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mondal, S.; Stalin, C.S. Changing Accretion Geometry of Seyfert 1 Mrk 335 with NuSTAR: A Comparative Study. Galaxies 2021, 9, 21. https://doi.org/10.3390/galaxies9020021
Mondal S, Stalin CS. Changing Accretion Geometry of Seyfert 1 Mrk 335 with NuSTAR: A Comparative Study. Galaxies. 2021; 9(2):21. https://doi.org/10.3390/galaxies9020021
Chicago/Turabian StyleMondal, Santanu, and C. S. Stalin. 2021. "Changing Accretion Geometry of Seyfert 1 Mrk 335 with NuSTAR: A Comparative Study" Galaxies 9, no. 2: 21. https://doi.org/10.3390/galaxies9020021
APA StyleMondal, S., & Stalin, C. S. (2021). Changing Accretion Geometry of Seyfert 1 Mrk 335 with NuSTAR: A Comparative Study. Galaxies, 9(2), 21. https://doi.org/10.3390/galaxies9020021