Powerful Jets from Radiatively Efficient Disks, a Decades-Old Unresolved Problem in High Energy Astrophysics
Abstract
:1. Introduction
2. Disks and Jets in GRMHD
2.1. FSRQ Jets from Moderately Thin Disks
2.2. Jet and Disk Efficiency in GRMHD
2.3. Scale Invariance and the Jet-Disk Connection
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fanaroff, B.L.; Riley, J.M. The morphology of extragalactic radio sources of high and low luminosity. Mon. Not. R. Astron. Soc. 1974, 167, 31P–36P. [Google Scholar] [CrossRef] [Green Version]
- Shakura, N.I.; Sunyaev, R.A. Black holes in binary systems. Observational appearance. Astron. Astrophys. 1973, 24, 337–355. [Google Scholar]
- Hardcastle, M.J.; Evans, D.A.; Croston, J.H. Hot and cold gas accretion and feedback in radio-loud active galaxies. Mon. Not. R. Astron. Soc. 2007, 376, 1849–1856. [Google Scholar] [CrossRef] [Green Version]
- Garofalo, D.; Evans, D.A.; Sambruna, R.M. The evolution of radio-loud active galactic nuclei as a function of black hole spin. Mon. Not. R. Astron. Soc. 2010, 406, 975–986. [Google Scholar] [CrossRef] [Green Version]
- Neilsen, J.; Lee, J. Accretion disk winds as the jet suppression mechanism in the microquasar GRS 1915+ 105. Nature 2009, 458, 481–484. [Google Scholar] [CrossRef] [PubMed]
- Ponti, G.; Fender, R.P.; Begelman, M.C.; Dunn, R.J.H.; Neilsen, J.; Coriat, M. Ubiquitous equatorial accretion disc winds in black hole soft states. Mon. Not. R. Astron. Soc. Lett. 2012, 422, L11–L15. [Google Scholar] [CrossRef]
- Fender, R.P.; Belloni, T.M.; Gallo, E. Towards a unified model for black hole X-ray binary jets. Mon. Not. R. Astron. Soc. 2004, 355, 1105–1118. [Google Scholar] [CrossRef] [Green Version]
- Remillard, R.A.; McClintock, J.E. X-ray properties of black-hole binaries. Annu. Rev. Astron. Astrophys. 2006, 44, 49–92. [Google Scholar] [CrossRef] [Green Version]
- Fender, R.P.; Gallo, E.; Russell, D. No evidence for black hole spin powering of jets in X-ray binaries. Mon. Not. R. Astron. Soc. 2010, 406, 1425–1434. [Google Scholar] [CrossRef] [Green Version]
- Heckman, T.M.; Best, P.N. The coevolution of galaxies and supermassive black holes: Insights from surveys of the contemporary universe. Annu. Rev. Astron. Astrophys. 2014, 52, 589–660. [Google Scholar] [CrossRef] [Green Version]
- Mirabel, I.F.; Rodriguez, L.F. A superluminal source in the Galaxy. Nature 1994, 371, 46–48. [Google Scholar] [CrossRef]
- Hannikainen, D.; Campbell-Wilson, D.; Hunstead, R.; McIntyre, V.; Lovell, J.; Reynolds, J.; Wu, K. XTE J1550–564: A superluminal ejection during the September 1998 outburst. Microquasars 2001, 276, 45–50. [Google Scholar]
- Narayan, R.; McClintock, J.E. Observational evidence for a correlation between jet power and black hole spin. Mon. Not. R. Astron. Soc. Lett. 2012, 419, L69–L73. [Google Scholar] [CrossRef] [Green Version]
- Migliari, S.; Fender, R.P.; Rupen, M.; Wachter, S.; Jonker, P.G.; Homan, J.; Klis, M.V.D. Radio detections of the neutron star X-ray binaries 4U 1820–1830 and Ser X-1 in soft X-ray states. Mon. Not. R. Astron. Soc. 2004, 351, 186–192. [Google Scholar] [CrossRef] [Green Version]
- Miller-Jones, J.C.A.; Sivakoff, G.R.; Altamirano, D.; Tudose, V.; Migliari, S.; Dhawan, V.; Spencer, R.E. Evolution of the radio-X-ray coupling throughout an entire outburst of Aquila X-1. Astrophys. J. Lett. 2010, 716, L109. [Google Scholar] [CrossRef]
- Liska, M.; Tchekhovskoy, A.; Ingram, A.; van der Klis, M. Bardeen—Petterson alignment, jets, and magnetic truncation in GRMHD simulations of tilted thin accretion discs. Mon. Not. R. Astron. Soc. 2019, 487, 550–561. [Google Scholar] [CrossRef]
- Chatterjee, K.; Liska, M.; Tchekhovskoy, A.; Markoff, S.B. Accelerating AGN jets to parsec scales using general relativistic MHD simulations. Mon. Not. R. Astron. Soc. 2019, 490, 2200–2218. [Google Scholar] [CrossRef] [Green Version]
- De Villiers, J.P.; Hawley, J.F.; Krolik, J.H. Magnetically driven accretion flows in the Kerr metric. I. Models and overall structure. Astrophys. J. 2003, 599, 1238. [Google Scholar] [CrossRef]
- Hirose, S.; Krolik, J.H.; De Villiers, J.P.; Hawley, J.H. Magnetically driven accretion flows in the Kerr metric. II. Structure of the magnetic field. Astrophys. J. 2004, 606, 1083. [Google Scholar] [CrossRef]
- McKinney, J.C.; Gammie, C.F. A measurement of the electromagnetic luminosity of a Kerr black hole. Astrophys. J. 2004, 611, 977. [Google Scholar] [CrossRef] [Green Version]
- De Villiers, J.P.; Hawley, J.F.; Krolik, J.H.; Hirose, S. Magnetically driven accretion in the Kerr metric. III. Unbound outflows. Astrophys. J. 2005, 620, 878. [Google Scholar] [CrossRef] [Green Version]
- Krolik, J.H.; Hawley, J.F.; Hirose, S. Magnetically driven accretion flows in the Kerr metric. IV. Dynamical properties of the inner disk. Astrophys. J. 2005, 622, 1008. [Google Scholar] [CrossRef] [Green Version]
- McKinney, J.C. General relativistic magnetohydrodynamic simulations of the jet formation and large-scale propagation from black hole accretion systems. Mon. Not. R. Astron. Soc. 2006, 368, 1561–1582. [Google Scholar] [CrossRef] [Green Version]
- Hawley, J.F.; Krolik, J.H. Magnetically driven jets in the Kerr metric. Astrophys. J. 2006, 641, 103. [Google Scholar] [CrossRef] [Green Version]
- Avara, M.J.; McKinney, J.C.; Reynolds, C.S. Efficiency of thin magnetically arrested discs around black holes. Mon. Not. R. Astron. Soc. 2016, 462, 636–648. [Google Scholar] [CrossRef] [Green Version]
- Novikov, I.D.; Thorne, K.S. Black Holes. In Les Astres Occlus; De Witt, C., De Witt, B.S., Eds.; Gordon and Breach: New York, NY, USA, 1973; p. 343. [Google Scholar]
- Noble, S.C.; Krolik, J.H.; Hawley, J.F. Direct calculation of the radiative efficiency of an accretion disk around a black hole. Astrophys. J. 2009, 692, 411. [Google Scholar] [CrossRef]
- Noble, S.C.; Krolik, J.H.; Hawley, J.F. Dependence of inner accretion disk stress on parameters: The schwarzschild case. Astrophys. J. 2010, 711, 959. [Google Scholar] [CrossRef] [Green Version]
- Penna, R.F.; McKinney, J.C.; Narayan, R.; Tchekhovskoy, A.; Shafee, R.; McClintock, J.E. Simulations of magnetized discs around black holes: Effects of black hole spin, disc thickness and magnetic field geometry. Mon. Not. R. Astron. Soc. 2010, 408, 752–782. [Google Scholar] [CrossRef] [Green Version]
- Soares, G.; Nemmen, R. Jet efficiencies and black hole spins in jetted quasars. Mon. Not. R. Astron. Soc. 2020, 495, 981–991. [Google Scholar] [CrossRef]
- Nemmen, R.S.; Georganopoulos, M.; Guiriec, S.; Meyer, E.T.; Gehrels, N.; Sambruna, R.M. A universal scaling for the energetics of relativistic jets from black hole systems. Science 2012, 338, 1445–1448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garofalo, D. Resolving the Radio-loud/Radio-quiet Dichotomy without Thick Disks. Astrophys. J. Lett. 2019, 876, L20. [Google Scholar] [CrossRef]
- Garofalo, D.; North, M.; Belga, L.; Waddell, K. Why radio quiet quasars are preferred over radio loud quasars regardless of environment and redshift. Astrophys. J. 2020, 890, 144. [Google Scholar] [CrossRef]
- Garofalo, D.; Webster, B.; Bishop, K. Merger Signatures in Radio Loud and Radio Quiet Quasars. Acta Astron. 2020, 70, 75–85. [Google Scholar]
- Garofalo, D.; Bishop, K. Evidence for radio loud to radio quiet evolution from red and blue quasars. Publ. Astron. Soc. Pac. 2020, 132, 114103. [Google Scholar] [CrossRef]
- Morales Texeira, D.; Avara, M.J.; McKinney, J.C. General relativistic radiation magnetohydrodynamic simulations of thin magnetically arrested discs. Mon. Not. R. Astron. Soc. 2018, 480, 3547–3561. [Google Scholar] [CrossRef] [Green Version]
- Liska, M.; Hesp, C.; Tchekhovskoy, A.; Ingram, A.; van der Klis, M.; Markoff, S. Formation of precessing jets by tilted black hole discs in 3D general relativistic MHD simulations. Mon. Not. R. Astron. Soc. Lett. 2018, 474, L81–L85. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Davis, S.W.; Narayan, R.; Kulkarni, A.K.; Penna, R.F.; McClintock, J.E. The eye of the storm: Light from the inner plunging region of black hole accretion discs. Mon. Not. R. Astron. Soc. 2012, 424, 2504–2521. [Google Scholar] [CrossRef] [Green Version]
- Beckwith, K.; Hawley, J.F.; Krolik, J.H. The influence of magnetic field geometry on the evolution of black hole accretion flows: Similar disks, drastically different jets. Astrophys. J. 2008, 678, 1180. [Google Scholar] [CrossRef] [Green Version]
- Tchekhovskoy, A.; Narayan, R.; McKinney, J.C. Efficient generation of jets from magnetically arrested accretion on a rapidly spinning black hole. Mon. Not. R. Astron. Soc. Lett. 2011, 418, L79–L83. [Google Scholar] [CrossRef]
- McKinney, J.C.; Tchekhovskoy, A.; Blandford, R.D. General relativistic magnetohydrodynamic simulations of magnetically choked accretion flows around black holes. Mon. Not. R. Astron. Soc. 2012, 423, 3083–3117. [Google Scholar] [CrossRef] [Green Version]
- Liska, M.; Tchekhovskoy, A.; Quataert, E. Large-scale poloidal magnetic field dynamo leads to powerful jets in GRMHD simulations of black hole accretion with toroidal field. Mon. Not. R. Astron. Soc. 2020, 494, 3656–3662. [Google Scholar] [CrossRef]
- McKinney, J.C.; Tchekhovskoy, A.; Sadowski, A.; Narayan, R. Three-dimensional general relativistic radiation magnetohydrodynamical simulation of super-Eddington accretion, using a new code HARMRAD with M1 closure. Mon. Not. R. Astron. Soc. 2014, 441, 3177–3208. [Google Scholar] [CrossRef] [Green Version]
- Sadowski, A. Thin accretion discs are stabilized by a strong magnetic field. Mon. Not. R. Astron. Soc. 2016, 459, 4397–4407. [Google Scholar] [CrossRef] [Green Version]
- Sadowski, A.; Narayan, R.; Tchekhovskoy, A.; Zhu, Y. Semi-implicit scheme for treating radiation under M1 closure in general relativistic conservative fluid dynamics codes. Mon. Not. R. Astron. Soc. 2013, 429, 3533–3550. [Google Scholar] [CrossRef]
- Sadowski, A.; Narayan, R.; McKinney, J.C. Tchekhovskoy A.Numerical simulations of super-critical black hole accretion flows in general relativity. Mon. Not. R. Astron. Soc. 2014, 439, 503–520. [Google Scholar] [CrossRef] [Green Version]
- Begelman, M.C.; Pringle, J.E. Accretion discs with strong toroidal magnetic fields. Mon. Not. R. Astron. Soc. 2007, 375, 1070–1076. [Google Scholar] [CrossRef] [Green Version]
- Begelman, M.C.; Silk, J. Magnetically elevated accretion discs in active galactic nuclei: Broad emission-line regions and associated star formation. Mon. Not. R. Astron. Soc. 2017, 464, 2311–2317. [Google Scholar] [CrossRef] [Green Version]
- Dexter, J.; Begelman, M.C. Extreme AGN variability: Evidence of magnetically elevated accretion? Mon. Not. R. Astron. Soc. Lett. 2019, 483, L17–L21. [Google Scholar] [CrossRef] [Green Version]
- Garofalo, D.; Kim, M.I.; Christian, D.J. Constraints on the radio-loud/radio-quiet dichotomy from the Fundamental Plane. Mon. Not. R. Astron. Soc. 2014, 442, 3097–3104. [Google Scholar] [CrossRef] [Green Version]
- Garofalo, D.; Singh, C.B. Scale-invariant jet suppression across the black hole mass scale. Astrophys. Space Sci. 2016, 361, 97. [Google Scholar] [CrossRef] [Green Version]
- Garofalo, D. The jet–disc connection: Evidence for a reinterpretation in radio loud and radio quiet active galactic nuclei. Mon. Not. R. Astron. Soc. 2013, 434, 3196–3201. [Google Scholar] [CrossRef] [Green Version]
- Rusinek, K.; Sikora, M.; Koziel-Wierzbowska, D.; Gupta, M. On the Diversity of Jet Production Efficiency in Swift/BAT AGNs. Astrophys. J. 2020, 900, 125. [Google Scholar] [CrossRef]
- Miraghaei, H. The Effect of Environment on AGN Activity: The Properties of Radio and Optical AGN in Void, Isolated, and Group Galaxies. Astron. J. 2020, 160, 227. [Google Scholar] [CrossRef]
- Piotrovich, M.Y.; Afanasiev, A.G.; Buliga, S.D.; Natsvlishvili, T.M. Determination of magnetic field strength on the event horizon of supermassive black holes in active galactic nuclei. Mon. Not. R. Astron. Soc. 2020, 495, 614–620. [Google Scholar] [CrossRef]
- Baldi, R.D.; Williams, D.R.A.; McHardy, I.M.; Beswick, R.J.; Argo, M.K.; Dullo, B.T.; Westcott, J. LeMMINGs–I. The eMERLIN legacy survey of nearby galaxies. 1.5-GHz parsec-scale radio structures and cores. Mon. Not. R. Astron. Soc. 2018, 476, 3478–3522. [Google Scholar] [CrossRef]
- Mikhailov, A.G.; Piotrovich, M.Y.; Gnedin, Y.N.; Natsvlishvili, T.M.; Buliga, S.D. Criteria for retrograde rotation of accreting black holes. Mon. Not. R. Astron. Soc. 2018, 476, 4872–4876. [Google Scholar] [CrossRef]
- Afanasiev, V.L.; Gnedin, Y.N.; Piotrovich, M.Y.; Buliga, S.D.; Natsvlishvili, T.M.; Buliga, S.D. Determination of Supermassive Black Hole Spins Based on the Standard Shakura—Sunyaev Accretion Disk Model and Polarimetric Observations. Astron. Lett. 2018, 44, 362–369. [Google Scholar] [CrossRef]
- Mondal, T.; Mukhopadhyay, B. Magnetized advective accretion flows: Formation of magnetic barriers in magnetically arrested discs. Mon. Not. R. Astron. Soc. 2018, 476, 2396–2409. [Google Scholar] [CrossRef] [Green Version]
- Christodoulou, D.M.; Laycock, S.G.T.; Kazanas, D. Retrograde accretion discs in high-mass Be/X-ray binaries. Mon. Not. R. Astron. Soc. Lett. 2017, 470, L21–L24. [Google Scholar] [CrossRef]
- Bhattacharya, D.; Parameswaran, S.; Mukhopadhyay, B.; Tomar, I. Does black hole spin play a key role in the FSRQ/BL Lac dichotomy? Res. Astron. Astrophys. 2016, 16, 54. [Google Scholar] [CrossRef]
- Bonning, E.W.; Shields, G.A.; Stevens, A.C.; Salviander, S. Accretion disk temperatures of QSOs: Constraints from the emission lines. Astrophys. J. 2013, 770, 30. [Google Scholar] [CrossRef] [Green Version]
- Kalfountzou, E.; Jarvis, M.J.; Bonfield, D.G.; Hardcastle, M.J. Star formation in high-redshift quasars: Excess [O II] emission in the radio-loud population. Mon. Not. R. Astron. Soc. 2012, 427, 2401–2410. [Google Scholar] [CrossRef] [Green Version]
- Meier, D.L. Black Hole Astrophysics: The Engine Paradigm; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Komissarov, S.S. Central engines: Acceleration, Collimation and Confinement of Jets. In Relativistic Jets from Active Galactic Nuclei; Böottcher, M., Harris, D.E., Krawczynski, H., Eds.; Wiley-VCH: Weinheim, Germany, 2012; pp. 81–114. [Google Scholar]
- Sambruna, R.M.; Tombesi, F.; Reeves, J.N.; Braito, V.; Ballo, L.; Gliozzi, M.; Reynolds, C.S. The Suzaku view of 3C 382. Astrophys. J. 2011, 734, 105. [Google Scholar] [CrossRef]
- Meyer, E.T.; Fossati, G.; Georganopoulos, M.; Lister, M.L. From the blazar sequence to the blazar envelope: Revisiting the relativistic jet dichotomy in radio-loud active galactic nuclei. Astrophys. J. 2011, 740, 98. [Google Scholar] [CrossRef] [Green Version]
- McNamara, B.R.; Rohanizadegan, M.; Nulsen, P.E.J. Are radio active galactic nuclei powered by accretion or black hole spin? Astrophys. J. 2010, 727, 39. [Google Scholar] [CrossRef] [Green Version]
References | a/M | H/R | Cooling | |||
---|---|---|---|---|---|---|
Penna et al. (2010) | 0–0.98 | 0.07–0.3 | Less than 4.5% deviation from | NA | Close to | Ad hoc as in Shafee et al. (2008) |
McKinney, Tchekhovskoy & Blandford (2012) | −0.9375–0.99 | 0.2–1 | NA | Up to 50 times higher than | Up to 120 times higher than | No |
Avara, McKinney & Reynolds (2016) | 0.5 | 0.05–1 | 15% (almost 2 times higher than = | (almost an order less than ) | (around 2.5 times higher than ) | Ad hoc as in Noble et al. (2010) |
Sadowski (2016) | 0 | 0.15 | 5.5 ± 0.5% (very close to = 5.7%) | NA | NA | Radiative transfer |
Morales Texeira, Avara & McKinney (2018) | 0.5 | 0.1 | 2.9% (less than half of = 8.2%) | 4.3% (around half of ) | 18.6% (more than twice of ) | Radiative transfer |
Liska et al. (2019) | 0.9375 | 0.03 | 18% (close to = 17.9%) | 20–50% (Up to 2.5 times higher than ) | 60–80% (3–4 times higher than ) | Ad hoc as in Noble et al. (2010) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, C.B.; Garofalo, D.; Lang, B. Powerful Jets from Radiatively Efficient Disks, a Decades-Old Unresolved Problem in High Energy Astrophysics. Galaxies 2021, 9, 10. https://doi.org/10.3390/galaxies9010010
Singh CB, Garofalo D, Lang B. Powerful Jets from Radiatively Efficient Disks, a Decades-Old Unresolved Problem in High Energy Astrophysics. Galaxies. 2021; 9(1):10. https://doi.org/10.3390/galaxies9010010
Chicago/Turabian StyleSingh, Chandra B., David Garofalo, and Benjamin Lang. 2021. "Powerful Jets from Radiatively Efficient Disks, a Decades-Old Unresolved Problem in High Energy Astrophysics" Galaxies 9, no. 1: 10. https://doi.org/10.3390/galaxies9010010
APA StyleSingh, C. B., Garofalo, D., & Lang, B. (2021). Powerful Jets from Radiatively Efficient Disks, a Decades-Old Unresolved Problem in High Energy Astrophysics. Galaxies, 9(1), 10. https://doi.org/10.3390/galaxies9010010