Testing Noncommutativity-Like Model as a Galactic Density Profile
Abstract
:1. Introduction
2. Noncommutative-Like and Einasto Rotation Velocity
2.1. Noncommutativity-Like Density Profile
2.2. Einasto Density Profile
3. Data Samples and Fits
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sofue, Y.; Rubin, V. Rotation curves of spiral galaxies. Annu. Rev. Astron. Astrophys. 2001, 39, 137–177. [Google Scholar] [CrossRef] [Green Version]
- Frenk, C.S.; White, S.D.M. Dark matter and cosmic structure. Ann. Phys. 2012, 524, 507–534. [Google Scholar] [CrossRef] [Green Version]
- Diaferio, A. From the vacuum to the universe. In Proceedings of the Symposium, Innsbruck, Austria, 19–20 October 2007; pp. 71–85. [Google Scholar]
- Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak, S.; et al. Planck 2018 results. VI. Cosmological parameters, Planck. Astron. Astrophys. 2020, 641. [Google Scholar] [CrossRef] [Green Version]
- Springel, V.; White, S.; Jenkins, A.; Frenk, C.; Yoshida, N.; Gao, L.; Navarro, J.; Thacker, R.; Croton, D.; Helly, J.; et al. Simulations of the formation, evolution and clustering of galaxies and quasars. Nature 2005, 435, 629–636. [Google Scholar] [CrossRef]
- Sawala, T.; Frenk, C.; Fattahi, A.; Navarro, J.; Bower, R.; Crain, R.; Vecchia, C.; Furlong, M.; Helly, J.; Jenkins, A.; et al. The APOSTLE simulations: Solutions to the Local Group’s cosmic puzzles. Mon. Not. R. Astron. Soc. 2016, 457, 1931–1943. [Google Scholar] [CrossRef] [Green Version]
- Navarro, J.F.; Frenk, C.S.; White, S.D.M. A Universal Density Profile from Hierarchical Clustering. Astrophys. J. 1997, 490, 493–508. [Google Scholar] [CrossRef]
- Begeman, K.G.; Broeils, A.H.; Sanders, R.H. Extended rotation curves of spiral galaxies: Dark haloes and modified dynamics. Mon. Not. R. Astron. Soc. 1991, 294, 523–537. [Google Scholar] [CrossRef] [Green Version]
- Burkert, A. The Structure of Dark Matter Halos in Dwarf Galaxies. Astrophys. J. Lett. 1995, L25. [Google Scholar] [CrossRef] [Green Version]
- Einasto, J. On the Construction of a Composite Model for the Galaxy and on the Determination of the System of Galactic Parameters. Trudy Inst. Astrofiz. Alma-Ata 1965, 87, 87–100. [Google Scholar]
- Hernández-Almada, A.; García-Aspeitia, M.A. Multistate scalar field dark matter and its correlation with galactic properties. Int. J. Mod. Phys. D 2017, 27, 1850031. [Google Scholar] [CrossRef] [Green Version]
- Dehnen, W. A family of potential-density pairs for spherical galaxies and bulges. Mon. Not. Roy. Astron. Soc. 1993, 265, 250–256. [Google Scholar] [CrossRef] [Green Version]
- Subramanian, K.; Cen, R.; Ostriker, J. The structure of dark matter halos in hierarchical clustering theories. ApJ 2000, 538, 528–542. [Google Scholar] [CrossRef] [Green Version]
- Gentile, G.; Salucci, P.; Klein, U.; Vergani, D.; Kalberla, P. The cored distribution of dark matter in spiral galaxies. Mon. Not. R. Astron. Soc. 2004, 351, 903–922. [Google Scholar] [CrossRef] [Green Version]
- Horava, P.; Witten, E. Eleven-dimensional supergravity on a manifold with boundary. Nucl. Phys. 1996, B475, 94–114. [Google Scholar] [CrossRef] [Green Version]
- Horava, P.; Witten, E. Heterotic and Type I string dynamics from eleven dimensions. Nucl. Phys. 1996, B460, 506–524. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.-W.; Koh, I.-G. Galactic halos as boson stars. Phys. Rev. 1996, D53, 2236–2239. [Google Scholar] [CrossRef] [Green Version]
- Barranco, J.; Bernal, A. Self-gravitating system made of axions. Phys. Rev. 2011, D83, 043525. [Google Scholar] [CrossRef] [Green Version]
- Urena-Lopez, L.A.; Matos, T. New cosmological tracker solution for quintessence. Phys. Rev. 2000, D62, 081302. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Meza, M.A. Study of rotation curves of spiral galaxies with a scalar field dark matter model. Aip Conf. Proc. 2012, 1473, 74. [Google Scholar] [CrossRef] [Green Version]
- Robles, V.H.; Lora, V.; Matos, T.; Sánchez-Salcedo, F.J. Evolution of a dwarf satellite galaxy embedded in a scalar field dark matter halo. Astrophys. J. 2015, 810, 99. [Google Scholar] [CrossRef] [Green Version]
- Martins, C.F.; Salucci, P. Analysis of rotation curves in the framework of Rn gravity. Mon. Not. R. Astron. Soc. 2007, 381, 1103–1108. [Google Scholar] [CrossRef] [Green Version]
- Randall, L.; Sundrum, R. Large Mass Hierarchy from a Small Extra Dimension. Phys. Rev. Lett. 1999, 83, 3370–3373. [Google Scholar] [CrossRef] [Green Version]
- Randall, L.; Sundrum, R. An Alternative to Compactification. Phys. Rev. Lett. 1999, 83, 4690–4693. [Google Scholar] [CrossRef] [Green Version]
- Maartens, R.; Koyama, K. Brane-World Gravity. Living Rev. Relativ. 2010, 13, 5. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Aspeitia, M.A.; Rodriguez-Meza, M.A. Constraining brane tension using rotation curves of galaxies. arXiv 2015, arXiv:1509.05960. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Aspeitia, M.A.; Hernandez-Almada, A.; Magaña, J.; Amante, M.H.; Motta, V.; Martínez-Robles, C. Brane with variable tension as a possible solution to the problem of the late cosmic acceleration. Phys. Rev. D 2018, 97, 101301. [Google Scholar] [CrossRef] [Green Version]
- García-Aspeitia, M.A.; Magaña, J.; Hernández-Almada, A.; Motta, V. Probing dark energy with braneworld cosmology in the light of recent cosmological data. Int. J. Mod. Phys. D 2017, 27, 1850006. [Google Scholar] [CrossRef]
- Rahaman, F.; Kuhfittig, P.K.F.; Chakraborty, K.; Usmani, A.A.; Ray, S. Galactic rotation curves inspired by a noncommutative-geometry background. Gen. Rel. Grav. 2012, 44, 905–916. [Google Scholar] [CrossRef] [Green Version]
- Seiberg, N.; Witten, E. String theory and noncommutative geometry. JHEP 1999, 9, 032. [Google Scholar] [CrossRef] [Green Version]
- Romero, J.M.; Vergara, J.D. The Kepler Problem and Noncommutativity. Mod. Phys. Lett. 2003, A18, 1673–1680. [Google Scholar] [CrossRef] [Green Version]
- Smailagic, A.; Spallucci, E. Feynman path integral on the non-commutative plane. J. Phys. 2003, A36, L467–L471. [Google Scholar] [CrossRef] [Green Version]
- Smailagic, A.; Spallucci, E. UV divergence-free QFT on noncommutative plane. J. Phys. Math. Gen. 2003, 36, L517–L521. [Google Scholar] [CrossRef]
- Nicolini, P. Noncommutative black holes, the final appeal to quantum gravity: A review. Int. J. Mod. Phys. 2009, A24, 1229–1308. [Google Scholar] [CrossRef]
- Spallucci, E.; Smailagic, A.; Nicolini, P. Non-commutative geometry inspired higher-dimensional charged black holes. Phys. Lett. B 2009, 670, 449–454. [Google Scholar] [CrossRef] [Green Version]
- Ansoldi, S.; Nicolini, P.; Smailagic, A.; Spallucci, E. Noncommutative geometry inspired charged black holes. Phys. Lett. B 2007, 645, 261–266. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Lelli, F.; McGaugh, S.; Schombert, J. A Comprehensive Catalog of Dark Matter Halo Models for SPARC Galaxies. Astrophys. J. Suppl. Ser. 2020, 247, 31. [Google Scholar] [CrossRef]
- Lelli, F.; McGaugh, S.S.; Schombert, J.M. SPARC: Mass model for 175 disk galaxies with SPITZER photometry and accurate rotation curves. Astron. J. 2016, 152, 157. [Google Scholar] [CrossRef] [Green Version]
- Ding, J.; Tarokh, V.; Yang, Y. Bridging AIC and BIC: A New Criterion for Autoregression. IEEE Trans. Inf. Theory 2018, 64, 4024–4043. [Google Scholar] [CrossRef] [Green Version]
- Smailagic, A.; Spallucci, E. Lorentz invariance, unitarity in UV-finite of QFT on noncommutative spacetime. J. Phys. 2004, A37, 7169–7178, (Erratum). [Google Scholar] [CrossRef]
- Nicolini, P.; Smailagic, A.; Spallucci, E. Noncommutative geometry inspired Schwarzschild black hole. Phys. Lett. 2006, B632, 547–551. [Google Scholar] [CrossRef] [Green Version]
- Einasto, J. Kinematics and Dynamics of Stellar Systems. Trudy Inst. Astrofiz. Alma-Ata 1965, 51, 87. [Google Scholar]
- Newville, M.; Stensitzki, T.; Allen, D.B.; Rawlik, M.; Ingargiola, A.; Nelson, A. Lmfit: Non-Linear Least-Square Minimization and Curve-Fitting for Python. June 2016. Available online: https://ui.adsabs.harvard.edu/abs/2016ascl.soft06014N (accessed on 5 March 2021).
- Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Sugiura, N. Further analysts of the data by akaike’ s information criterion and the finite corrections. Commun. Stat. Theory Methods 1978, 7, 13–26. [Google Scholar] [CrossRef]
- Hurvich, C.M.; Tsai, C.L. Regression and time series model selection in small samples. Biometrika 1989, 76, 297–307. [Google Scholar] [CrossRef]
- Schwarz, G. Estimating the dimension of a model. Ann. Stat. 1978, 6, 461. [Google Scholar] [CrossRef]
Galaxy | |||||
---|---|---|---|---|---|
NGC2366 | 0.17 | ||||
NGC2403 | 24.32 | ||||
NGC3198 | 4.42 | ||||
NGC3521 | 0.16 | ||||
NGC3726 | 2.01 | ||||
NGC3877 | 1.91 | ||||
NGC3893 | 0.74 | ||||
NGC4010 | 0.97 | ||||
NGC7793 | 0.61 |
Galaxy | n | |||||
---|---|---|---|---|---|---|
NGC2366 | 0.19 | () | ||||
NGC2403 | 9.32 | () | ||||
NGC3198 | 1.03 | () | ||||
NGC3521 | 0.33 | () | ||||
NGC3726 | 2.62 | () | ||||
NGC3877 | 3.6 | () | ||||
NGC3893 | 0.34 | () | ||||
NGC4010 | 0.99 | () | ||||
NGC7793 | 0.46 | () |
Galaxy | AICc (NC-Like) | AICc (Einasto) | |ΔAIC| | BIC (NC-Like) | BIC (Einasto) | |ΔBIC| |
---|---|---|---|---|---|---|
NGC2366 | ||||||
NGC2403 | ||||||
NGC3198 | ||||||
NGC3521 | ||||||
NGC3726 | ||||||
NGC3877 | ||||||
NGC3893 | ||||||
NGC4010 | ||||||
NGC7793 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ancona-Flores, J.J.; Hernández-Almada, A.; García-Aspeitia, M.A. Testing Noncommutativity-Like Model as a Galactic Density Profile. Galaxies 2021, 9, 17. https://doi.org/10.3390/galaxies9010017
Ancona-Flores JJ, Hernández-Almada A, García-Aspeitia MA. Testing Noncommutativity-Like Model as a Galactic Density Profile. Galaxies. 2021; 9(1):17. https://doi.org/10.3390/galaxies9010017
Chicago/Turabian StyleAncona-Flores, Juan Jordi, Alberto Hernández-Almada, and Miguel Angel García-Aspeitia. 2021. "Testing Noncommutativity-Like Model as a Galactic Density Profile" Galaxies 9, no. 1: 17. https://doi.org/10.3390/galaxies9010017
APA StyleAncona-Flores, J. J., Hernández-Almada, A., & García-Aspeitia, M. A. (2021). Testing Noncommutativity-Like Model as a Galactic Density Profile. Galaxies, 9(1), 17. https://doi.org/10.3390/galaxies9010017