Black Holes and Other Clues to the Quantum Structure of Gravity
Abstract
:Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maldacena, J.M. The Large N limit of superconformal field theories and supergravity. Int. J. Theor. Phys. 1999, 38, 1113–1133. [Google Scholar] [CrossRef] [Green Version]
- Giddings, S.B. Holography and unitarity. JHEP 2020, 11, 056. [Google Scholar] [CrossRef]
- Hawking, S.W. Particle Creation by Black Holes. Commun. Math. Phys. 1975, 43, 199–220. [Google Scholar] [CrossRef]
- Giddings, S.B. Why aren’t black holes infinitely produced? Phys. Rev. D 1995, 51, 6860–6869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Susskind, L. Trouble for Remnants. arXiv 1995, arXiv:hep-th/9501106. [Google Scholar]
- Banks, T.; Susskind, L.; Peskin, M.E. Difficulties for the Evolution of Pure States Into Mixed States. Nucl. Phys. B 1984, 244, 125–134. [Google Scholar] [CrossRef]
- Unruh, W.G.; Wald, R.M. On evolution laws taking pure states to mixed states in quantum field theory. Phys. Rev. D 1995, 52, 2176–2182. [Google Scholar] [CrossRef] [Green Version]
- Hawking, S.W.; Perry, M.J.; Strominger, A. Soft Hair on Black Holes. Phys. Rev. Lett. 2016, 116, 231301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hawking, S.W.; Perry, M.J.; Strominger, A. Superrotation Charge and Supertranslation Hair on Black Holes. JHEP 2017, 5, 161. [Google Scholar] [CrossRef] [Green Version]
- Strominger, A. Lectures on the Infrared Structure of Gravity and Gauge Theory. arXiv 2017, arXiv:1703.05448. [Google Scholar]
- Strominger, A. Black Hole Information Revisited. arXiv 2017, arXiv:1706.07143. [Google Scholar]
- Haco, S.; Hawking, S.W.; Perry, M.J.; Strominger, A. Black Hole Entropy and Soft Hair. JHEP 2018, 12, 98. [Google Scholar] [CrossRef] [Green Version]
- Van Raamsdonk, M. Building up spacetime with quantum entanglement. Gen. Rel. Grav. 2010, 42, 2323–2329. [Google Scholar] [CrossRef]
- Maldacena, J.; Susskind, L. Cool horizons for entangled black holes. Fortsch. Phys. 2013, 61, 781–811. [Google Scholar] [CrossRef] [Green Version]
- Haag, R. Local Quantum Physics: Fields, Particles, Algebras; Texts and Monographs in Physics; Springer: Berlin/Heidelberg, Germany, 1992. [Google Scholar]
- Torre, C.G. Gravitational observables and local symmetries. Phys. Rev. 1993, D48, R2373–R2376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donnelly, W.; Giddings, S.B. Diffeomorphism-invariant observables and their nonlocal algebra. Phys. Rev. 2016, D93, 024030. [Google Scholar] [CrossRef] [Green Version]
- Doplicher, S.; Longo, R. Standard and split inclusions of von Neumann algebras. Invent. Math. 1984, 75, 493–536. [Google Scholar] [CrossRef]
- Donnelly, W.; Giddings, S.B. Gravitational splitting at first order: Quantum information localization in gravity. Phys. Rev. 2018, D98, 086006. [Google Scholar] [CrossRef] [Green Version]
- Giddings, S.B. Gravitational dressing, soft charges, and perturbative gravitational splitting. Phys. Rev. D 2019, 100, 126001. [Google Scholar] [CrossRef] [Green Version]
- Giddings, S.; Weinberg, S. Gauge-invariant observables in gravity and electromagnetism: Black hole backgrounds and null dressings. Phys. Rev. D 2020, 102, 026010. [Google Scholar] [CrossRef]
- Giddings, S.B. Models for unitary black hole disintegration. Phys. Rev. 2012, D85, 044038. [Google Scholar] [CrossRef] [Green Version]
- Giddings, S.B. Black holes, quantum information, and unitary evolution. Phys. Rev. 2012, D85, 124063. [Google Scholar] [CrossRef] [Green Version]
- Giddings, S.B. Nonviolent nonlocality. Phys. Rev. 2013, D88, 064023. [Google Scholar] [CrossRef] [Green Version]
- Giddings, S.B. Modulated Hawking radiation and a nonviolent channel for information release. Phys. Lett. B 2014, 738, 92–96. [Google Scholar] [CrossRef] [Green Version]
- Nonviolent unitarization: Basic postulates to soft quantum structure of black holes. JHEP 2017, 12, 047. [CrossRef] [Green Version]
- Almheiri, A.; Marolf, D.; Polchinski, J.; Sully, J. Black Holes: Complementarity or Firewalls? JHEP 2013, 2, 062. [Google Scholar] [CrossRef] [Green Version]
- Mathur, S.D. Fuzzballs and the Information Paradox: A Summary and Conjectures. arXiv 2008, arXiv:0810.4525. [Google Scholar] [CrossRef]
- Unruh, W.; Wald, R. How to mine energy from a black hole. Gen. Relat. Gravit. 1983, 15, 195–199. [Google Scholar] [CrossRef]
- Lawrence, A.E.; Martinec, E.J. Black hole evaporation along macroscopic strings. Phys. Rev. D 1994, 50, 2680–2691. [Google Scholar] [CrossRef] [Green Version]
- Frolov, V.P.; Fursaev, D. Mining energy from a black hole by strings. Phys. Rev. D 2001, 63, 124010. [Google Scholar] [CrossRef] [Green Version]
- Frolov, V.P. Cosmic strings and energy mining from black holes. Int. J. Mod. Phys. A 2002, 17, 2673–2676. [Google Scholar] [CrossRef]
- Saad, P.; Shenker, S.H.; Stanford, D. JT Gravity as a Matrix Integral. arXiv 2019, arXiv:1903.11115. [Google Scholar]
- Penington, G.; Shenker, S.H.; Stanford, D.; Yang, Z. Replica Wormholes and the Black Hole Interior. arXiv 2019, arXiv:1911.11977. [Google Scholar]
- Almheiri, A.; Hartman, T.; Maldacena, J.; Shaghoulian, E.; Tajdini, A. Replica Wormholes and the Entropy of Hawking Radiation. arXiv 2019, arXiv:1911.12333. [Google Scholar] [CrossRef]
- Marolf, D.; Maxfield, H. Transcending the ensemble: Baby universes, spacetime wormholes, and the order and disorder of black hole information. JHEP 2020, 08, 044. [Google Scholar] [CrossRef]
- Giddings, S.B.; Turiaci, G.J. Wormhole calculus, replicas, and entropies. JHEP 2020, 9, 194. [Google Scholar] [CrossRef]
- Page, D.N. Average entropy of a subsystem. Phys. Rev. Lett. 1993, 71, 1291–1294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Page, D.N. Information in black hole radiation. Phys. Rev. Lett. 1993, 71, 3743–3746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marolf, D.; Maxfield, H. Observations of Hawking radiation: The Page Curve and Baby Universes. arXiv 2020, arXiv:2010.06602. [Google Scholar]
- Lavrelashvili, G.V.; Rubakov, V.A.; Tinyakov, P.G. Disruption of Quantum Coherence upon a Change in Spatial Topology in Quantum Gravity. JETP Lett. 1987, 46, 167–169. [Google Scholar]
- Hawking, S.W. Quantum Coherence Down the Wormhole. Phys. Lett. 1987, B195, 337. [Google Scholar] [CrossRef]
- Giddings, S.B.; Strominger, A. Axion Induced Topology Change in Quantum Gravity and String Theory. Nucl. Phys. 1988, B306, 890–907. [Google Scholar] [CrossRef]
- Coleman, S.R. Black Holes as Red Herrings: Topological Fluctuations and the Loss of Quantum Coherence. Nucl. Phys. 1988, B307, 867–882. [Google Scholar] [CrossRef]
- Giddings, S.B.; Strominger, A. Loss of Incoherence and Determination of Coupling Constants in Quantum Gravity. Nucl. Phys. 1988, B307, 854–866. [Google Scholar] [CrossRef]
- Giddings, S.B.; Strominger, A. Baby Universes, Third Quantization and the Cosmological Constant. Nucl. Phys. 1989, B321, 481–508. [Google Scholar] [CrossRef]
- Giddings, S.B.; Rota, M. Quantum information or entanglement transfer between subsystems. Phys. Rev. 2018, A98, 062329. [Google Scholar] [CrossRef] [Green Version]
- Giddings, S.B. Black holes in the quantum universe. Phil. Trans. Roy. Soc. Lond. 2019, A377, 20190029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giddings, S.B.; Psaltis, D. Event Horizon Telescope Observations as Probes for Quantum Structure of Astrophysical Black Holes. Phys. Rev. D 2018, 97, 084035. [Google Scholar] [CrossRef] [Green Version]
- Giddings, S.B. Astronomical tests for quantum black hole structure. Nat. Astron. 2017, 1, 67. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giddings, S.B. Black Holes and Other Clues to the Quantum Structure of Gravity. Galaxies 2021, 9, 16. https://doi.org/10.3390/galaxies9010016
Giddings SB. Black Holes and Other Clues to the Quantum Structure of Gravity. Galaxies. 2021; 9(1):16. https://doi.org/10.3390/galaxies9010016
Chicago/Turabian StyleGiddings, Steven B. 2021. "Black Holes and Other Clues to the Quantum Structure of Gravity" Galaxies 9, no. 1: 16. https://doi.org/10.3390/galaxies9010016
APA StyleGiddings, S. B. (2021). Black Holes and Other Clues to the Quantum Structure of Gravity. Galaxies, 9(1), 16. https://doi.org/10.3390/galaxies9010016