Massive Stars in the Tarantula Nebula: A Rosetta Stone for Extragalactic Supergiant HII Regions
Abstract
:1. Introduction
2. Tarantula Nebula
3. Massive Star Content
4. Physical Properties
5. Binaries, Rotation and Runaways
6. Wind Properties
7. Fate of Massive Stars in the Tarantula
8. Integrated Properties and Comparison With Star-Forming Regions, Near And Far
9. Summary and Outlook
Funding
Acknowledgments
Conflicts of Interest
References
- Kennicutt, R.C., Jr. Star Formation in Galaxies Along the Hubble Sequence. Ann. Rev. Astron. Astrophys. 1998, 36, 189–232. [Google Scholar] [CrossRef]
- Evans, C.J.; Taylor, W.D.; Hénault-Brunet, V.; Sana, H.; de Koter, A.; Simón-Díaz, S.; Carraro, G.; Bagnoli, T.; Bastian, N.; Bestenlehner, J.M.; et al. The VLT-FLAMES Tarantula Survey. I. Introduction and observational overview. Astron. Astrophys. 2011, 530, A108. [Google Scholar] [CrossRef]
- Tsamis, Y.G.; Péquignot, D. A photoionization-modelling study of 30 Doradus: The case for small-scale chemical inhomogeneity. Mon. Not. R. Astron. Soc. 2005, 364, 687–704. [Google Scholar] [CrossRef]
- Baldwin, J.A.; Ferland, G.J.; Martin, P.G.; Corbin, M.R.; Cota, S.A.; Peterson, B.M.; Slettebak, A. Physical conditions in the Orion Nebula and an assessment of its helium abundance. Astrophys. J. 1991, 374, 580–609. [Google Scholar] [CrossRef]
- Crowther, P.A.; Caballero-Nieves, S.M.; Bostroem, K.A.; Maíz Apellániz, J.; Schneider, F.R.N.; Walborn, N.R.; Angus, C.R.; Brott, I.; Bonanos, A.; de Koter, A.; et al. The R136 star cluster dissected with Hubble Space Telescope/STIS. I. Far-ultraviolet spectroscopic census and the origin of He II λ1640 in young star clusters. Mon. Not. R. Astron. Soc. 2016, 458, 624–659. [Google Scholar] [CrossRef]
- Britavskiy, N.; Lennon, D.J.; Patrick, L.R.; Evans, C.J.; Herrero, A.; Langer, N.; van Loon, J.T.; Clark, J.S.; Schneider, F.R.N.; Almeida, L.A.; et al. The VLT-FLAMES Tarantula Survey. XXX. Red stragglers in the clusters Hodge 301 and SL 639. Astron. Astrophys. 2019, 624, A128. [Google Scholar] [CrossRef]
- Walborn, N.R. The Starburst Region 30 Doradus. In The Magellanic Clouds: Proceedings of the 148th Symposium of the International Astronomical UnionThe Magellanic Clouds; Haynes, R., Milne, D., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherland, 1991; Volume 148, p. 145. [Google Scholar]
- Sabbi, E.; Anderson, J.; Lennon, D.J.; van der Marel, R.P.; Aloisi, A.; Boyer, M.L.; Cignoni, M.; de Marchi, G.; de Mink, S.E.; Evans, C.J.; et al. Hubble Tarantula Treasury Project: Unraveling Tarantula’s Web. I. Observational Overview and First Results. Astron. J. 2013, 146, 53. [Google Scholar] [CrossRef]
- Crowther, P.A.; Schnurr, O.; Hirschi, R.; Yusof, N.; Parker, R.J.; Goodwin, S.P.; Kassim, H.A. The R136 star cluster hosts several stars whose individual masses greatly exceed the accepted 150Msolar stellar mass limit. Mon. Not. R. Astron. Soc. 2010, 408, 731–751. [Google Scholar] [CrossRef]
- Castro, N.; Crowther, P.A.; Evans, C.J.; Mackey, J.; Castro-Rodriguez, N.; Vink, J.S.; Melnick, J.; Selman, F. Mapping the core of the Tarantula Nebula with VLT-MUSE. I. Spectral and nebular content around R136. Astron. Astrophys. 2018, 614, A147. [Google Scholar] [CrossRef]
- Castro, N.; Crowther, P.A.; Evans, C.J.; Mackey, J.; Castro-Rodriguez, N.; Vink, J.S.; Melnick, J.; Selman, F. Mapping the core of the Tarantula Nebula with VLT-MUSE. III. The spectroscopic Hertzsprung-Russell diagram of OB stars in NGC2070. Astron. Astrophys. in preparation.
- Doran, E.I.; Crowther, P.A.; de Koter, A.; Evans, C.J.; McEvoy, C.; Walborn, N.R.; Bastian, N.; Bestenlehner, J.M.; Gräfener, G.; Herrero, A.; et al. The VLT-FLAMES Tarantula Survey. XI. A census of the hot luminous stars and their feedback in 30 Doradus. Astron. Astrophys. 2013, 558, A134. [Google Scholar] [CrossRef]
- De Marchi, G.; Paresce, F.; Panagia, N.; Beccari, G.; Spezzi, L.; Sirianni, M.; Andersen, M.; Mutchler, M.; Balick, B.; Dopita, M.A.; et al. Star Formation in 30 Doradus. Astrophys. J. 2011, 739, 27. [Google Scholar] [CrossRef]
- Sabbi, E.; Lennon, D.J.; Anderson, J.; Cignoni, M.; van der Marel, R.P.; Zaritsky, D.; De Marchi, G.; Panagia, N.; Gouliermis, D.A.; Grebel, E.K.; et al. Hubble Tarantula Treasury Project. III. Photometric Catalog and Resulting Constraints on the Progression of Star Formation in the 30 Doradus Region. Astrophys. J. 2016, 222, 11. [Google Scholar] [CrossRef]
- Schneider, F.R.N.; Ramírez-Agudelo, O.H.; Tramper, F.; Bestenlehner, J.M.; Castro, N.; Sana, H.; Evans, C.J.; Sabín-Sanjulián, C.; Simón-Díaz, S.; Langer, N.; et al. The VLT-FLAMES Tarantula Survey. XXIX. Massive star formation in the local 30 Doradus starburst. Astron. Astrophys. 2018, 618, A73. [Google Scholar] [CrossRef]
- Wright, N.J.; Bouy, H.; Drew, J.E.; Sarro, L.M.; Bertin, E.; Cuillandre, J.C.; Barrado, D. Cygnus OB2 DANCe: A high-precision proper motion study of the Cygnus OB2 association. Mon. Not. R. Astron. Soc. 2016, 460, 2593–2610. [Google Scholar] [CrossRef] [Green Version]
- Walborn, N.R. The Pillars of the Second Generation. In Hot Star Workshop III: The Earliest Phases of Massive Star Birth; Astronomical Society of the Pacific Conference Series; Crowther, P.A., Ed.; Astronomical Society of the Pacific: San Francisco, CA, USA, 2002; Volume 267, p. 111. [Google Scholar]
- Walborn, N.R.; Barbá, R.H.; Sewiło, M.M. The Top 10 Spitzer Young Stellar Objects in 30 Doradus. Astron. J. 2013, 145, 98. [Google Scholar] [CrossRef]
- Indebetouw, R.; Brogan, C.; Chen, C.H.R.; Leroy, A.; Johnson, K.; Muller, E.; Madden, S.; Cormier, D.; Galliano, F.; Hughes, A.; et al. ALMA Resolves 30 Doradus: Sub-parsec Molecular Cloud Structure near the Closest Super Star Cluster. Astrophys. J. 2013, 774, 73. [Google Scholar] [CrossRef]
- Kennicutt, R.C., Jr. Structural properties of giant H II regions in nearby galaxies. Astrophys. J. 1984, 287, 116–130. [Google Scholar] [CrossRef]
- Parker, J.W. The OB associations of 30 Doradus in the Large Magellanic Cloud. I—Stellar observations and data reductions. Astron. J. 1993, 106, 560–577. [Google Scholar] [CrossRef]
- Parker, J.W.; Garmany, C.D. The OB associations of 30 Doradus in the Large Magellanic Cloud. II—Stellar content and initial mass function. Astron. J. 1993, 106, 1471–1483. [Google Scholar] [CrossRef]
- Massey, P.; Hunter, D.A. Star Formation in R136: A Cluster of O3 Stars Revealed by Hubble Space Telescope Spectroscopy. Astrophys. J. 1998, 493, 180–194. [Google Scholar] [CrossRef]
- Bosch, G.; Terlevich, R.; Melnick, J.; Selman, F. The ionising cluster of 30 Doradus. II. Spectral classification for 175 stars. Astron. Astrophys. 1999, 137, 21–41. [Google Scholar] [CrossRef]
- Selman, F.; Melnick, J.; Bosch, G.; Terlevich, R. The ionizing cluster of 30 Doradus. III. Star-formation history and initial mass function. Astron. Astrophys. 1999, 347, 532–549. [Google Scholar]
- Breysacher, J.; Azzopardi, M.; Testor, G. The fourth catalogue of Population I Wolf-Rayet stars in the Large Magellanic Cloud. Astron. Astrophys. 1999, 137, 117–145. [Google Scholar]
- Walborn, N.R.; Gamen, R.C.; Morrell, N.I.; Barbá, R.H.; Fernández Lajús, E.; Angeloni, R. Active Luminous Blue Variables in the Large Magellanic Cloud. Astron. J. 2017, 154, 15. [Google Scholar] [CrossRef]
- Lennon, D.J.; Evans, C.J.; van der Marel, R.P.; Anderson, J.; Platais, I.; Herrero, A.; de Mink, S.E.; Sana, H.; Sabbi, E.; Bedin, L.R.; et al. Gaia DR2 reveals a very massive runaway star ejected from R136. Astron. Astrophys. 2018, 619, A78. [Google Scholar] [CrossRef] [Green Version]
- Dufton, P.L.; Dunstall, P.R.; Evans, C.J.; Brott, I.; Cantiello, M.; de Koter, A.; de Mink, S.E.; Fraser, M.; Hénault-Brunet, V.; Howarth, I.D.; et al. The VLT-FLAMES Tarantula Survey: The Fastest Rotating O-type Star and Shortest Period LMC Pulsar: Remnants of a Supernova Disrupted Binary? Astrophys. J. Lett. 2011, 743, L22. [Google Scholar] [CrossRef]
- Almeida, L.A.; Sana, H.; de Mink, S.E.; Tramper, F.; Soszyński, I.; Langer, N.; Barbá, R.H.; Cantiello, M.; Damineli, A.; de Koter, A.; et al. Discovery of the Massive Overcontact Binary VFTS352: Evidence for Enhanced Internal Mixing. Astrophys. J. 2015, 812, 102. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Q.D.; Gotthelf, E.V.; Jiang, B.; Chu, Y.H.; Gruendl, R. Chandra ACIS Spectroscopy of N157B: A Young Composite Supernova Remnant in a Superbubble. Astrophys. J. 2006, 651, 237–249. [Google Scholar] [CrossRef]
- Savage, B.D.; Fitzpatrick, E.L.; Cassinelli, J.P.; Ebbets, D.C. The nature of R136a, the superluminous central object of the 30 Doradus nebula. Astrophys. J. 1983, 273, 597–623. [Google Scholar] [CrossRef]
- Weigelt, G.; Baier, G. R136a in the 30 Doradus nebula resolved by holographic speckle interferometry. Astron. Astrophys. 1985, 150, L18–L20. [Google Scholar]
- Hunter, D.A.; Shaya, E.J.; Holtzman, J.A.; Light, R.M.; O’Neil, E.J., Jr.; Lynds, R. The Intermediate Stellar Mass Population in R136 Determined from Hubble Space Telescope Planetary Camera 2 Images. Astrophys. J. 1995, 448, 179. [Google Scholar] [CrossRef]
- de Koter, A.; Heap, S.R.; Hubeny, I. On the Evolutionary Phase and Mass Loss of the Wolf-Rayet–like Stars in R136a. Astrophys. J. 1997, 477, 792. [Google Scholar] [CrossRef]
- Khorrami, Z.; Vakili, F.; Lanz, T.; Langlois, M.; Lagadec, E.; Meyer, M.R.; Robbe-Dubois, S.; Abe, L.; Avenhaus, H.; Beuzit, J.L.; et al. Uncrowding R 136 from VLT/SPHERE extreme adaptive optics. Astron. Astrophys. 2017, 602, A56. [Google Scholar] [CrossRef]
- Tehrani, K.A.; Crowther, P.A.; Bestenlehner, J.M.; Littlefair, S.P.; Pollock, A.M.T.; Parker, R.J.; Schnurr, O. Weighing Melnick 34: The most massive binary system known. Mon. Not. R. Astron. Soc. 2019, 484, 2692–2710. [Google Scholar] [CrossRef]
- Pollock, A.M.T.; Crowther, P.A.; Tehrani, K.; Broos, P.S.; Townsley, L.K. The 155-day X-ray cycle of the very massive Wolf-Rayet star Melnick 34 in the Large Magellanic Cloud. Mon. Not. R. Astron. Soc. 2018, 474, 3228–3236. [Google Scholar] [CrossRef]
- Smith, N. A census of the Carina Nebula - I. Cumulative energy input from massive stars. Mon. Not. R. Astron. Soc. 2006, 367, 763–772. [Google Scholar] [CrossRef]
- Schneider, F.R.N.; Sana, H.; Evans, C.J.; Bestenlehner, J.M.; Castro, N.; Fossati, L.; Gräfener, G.; Langer, N.; Ramírez-Agudelo, O.H.; Sabín-Sanjulián, C.; et al. An excess of massive stars in the local 30 Doradus starburst. Science 2018, 359, 69–71. [Google Scholar] [CrossRef] [Green Version]
- Puls, J.; Urbaneja, M.A.; Venero, R.; Repolust, T.; Springmann, U.; Jokuthy, A.; Mokiem, M.R. Atmospheric NLTE-models for the spectroscopic analysis of blue stars with winds. II. Line-blanketed models. Astron. Astrophys. 2005, 435, 669–698. [Google Scholar] [CrossRef]
- Hillier, D.J.; Miller, D.L. The Treatment of Non-LTE Line Blanketing in Spherically Expanding Outflows. Astrophys. J. 1998, 496, 407–427. [Google Scholar] [CrossRef]
- Gräfener, G.; Koesterke, L.; Hamann, W.R. Line-blanketed model atmospheres for WR stars. Astron. Astrophys. 2002, 387, 244–257. [Google Scholar] [CrossRef] [Green Version]
- Lanz, T.; Hubeny, I. A Grid of NLTE Line-blanketed Model Atmospheres of Early B-Type Stars. Astrophys. J. Suppl. 2007, 169, 83–104. [Google Scholar] [CrossRef]
- Gustafsson, B.; Edvardsson, B.; Eriksson, K.; Jørgensen, U.G.; Nordlund, Å.; Plez, B. A grid of MARCS model atmospheres for late-type stars. I. Methods and general properties. Astron. Astrophys. 2008, 486, 951–970. [Google Scholar] [CrossRef]
- Langer, N.; Kudritzki, R.P. The spectroscopic Hertzsprung-Russell diagram. Astron. Astrophys. 2014, 564, A52. [Google Scholar] [CrossRef] [Green Version]
- Gordon, M.S.; Humphreys, R.M.; Jones, T.J. Luminous and Variable Stars in M31 and M33. III. The Yellow and Red Supergiants and Post-red Supergiant Evolution. Astrophys. J. 2016, 825, 50. [Google Scholar] [CrossRef]
- Davies, B.; Crowther, P.A.; Beasor, E.R. The luminosities of cool supergiants in the Magellanic Clouds, and the Humphreys-Davidson limit revisited. Mon. Not. R. Astron. Soc. 2018, 478, 3138–3148. [Google Scholar] [CrossRef]
- Schneider, F.R.N.; Langer, N.; de Koter, A.; Brott, I.; Izzard, R.G.; Lau, H.H.B. Bonnsai: A Bayesian tool for comparing stars with stellar evolution models. Astron. Astrophys. 2014, 570, A66. [Google Scholar] [CrossRef]
- Sabín-Sanjulián, C.; Simón-Díaz, S.; Herrero, A.; Puls, J.; Schneider, F.R.N.; Evans, C.J.; Garcia, M.; Najarro, F.; Brott, I.; Castro, N.; et al. The VLT-FLAMES Tarantula Survey. XXVI. Properties of the O-dwarf population in 30 Doradus. Astron. Astrophys. 2017, 601, A79. [Google Scholar] [CrossRef]
- Bestenlehner, J.M.; Gräfener, G.; Vink, J.S.; Najarro, F.; de Koter, A.; Sana, H.; Evans, C.J.; Crowther, P.A.; Hénault-Brunet, V.; Herrero, A.; et al. The VLT-FLAMES Tarantula Survey. XVII. Physical and wind properties of massive stars at the top of the main sequence. Astron. Astrophys. 2014, 570, A38. [Google Scholar] [CrossRef]
- McEvoy, C.M.; Dufton, P.L.; Evans, C.J.; Kalari, V.M.; Markova, N.; Simón-Díaz, S.; Vink, J.S.; Walborn, N.R.; Crowther, P.A.; de Koter, A.; et al. The VLT-FLAMES Tarantula Survey. XIX. B-type supergiants: Atmospheric parameters and nitrogen abundances to investigate the role of binarity and the width of the main sequence. Astron. Astrophys. 2015, 575, A70. [Google Scholar] [CrossRef]
- Ramírez-Agudelo, O.H.; Sana, H.; de Koter, A.; Tramper, F.; Grin, N.J.; Schneider, F.R.N.; Langer, N.; Puls, J.; Markova, N.; Bestenlehner, J.M.; et al. The VLT-FLAMES Tarantula Survey. XXIV. Stellar properties of the O-type giants and supergiants in 30 Doradus. Astron. Astrophys. 2017, 600, A81. [Google Scholar] [CrossRef]
- Dufton, P.L.; Thompson, A.; Crowther, P.A.; Evans, C.J.; Schneider, F.R.N.; de Koter, A.; de Mink, S.E.; Garland, R.; Langer, N.; Lennon, D.J.; et al. The VLT-FLAMES Tarantula Survey. XXVIII. Nitrogen abundances for apparently single dwarf and giant B-type stars with small projected rotational velocities. Astron. Astrophys. 2018, 615, A101. [Google Scholar] [CrossRef]
- Bestenlehner, J.M.; Crowther, P.; Caballero-Nieves, S.M.; Simón-Díaz, S.; Schneider, F. The R136 star cluster dissected with Hubble Space Telescope.III Physical properties of the most massive stars in R136. Mon. Not. R. Astron. Soc. in preparation.
- Hainich, R.; Rühling, U.; Todt, H.; Oskinova, L.M.; Liermann, A.; Gräfener, G.; Foellmi, C.; Schnurr, O.; Hamann, W.R. The Wolf-Rayet stars in the Large Magellanic Cloud. A comprehensive analysis of the WN class. Astron. Astrophys. 2014, 565, A27. [Google Scholar] [CrossRef]
- Garland, R.; Dufton, P.L.; Evans, C.J.; Crowther, P.A.; Howarth, I.D.; de Koter, A.; de Mink, S.E.; Grin, N.J.; Langer, N.; Lennon, D.J.; et al. The VLT-FLAMES Tarantula Survey. XXVII. Physical parameters of B-type main-sequence binary systems in the Tarantula nebula. Astron. Astrophys. 2017, 603, A91. [Google Scholar] [CrossRef]
- Mahy, L.; Sana, H.; Abdul-Masih, M.; Almeida, L.A.; Langer, N.; Shenar, T.; de Koter, A.; de Mink, S.; de Wit, S.; Grin, N.; et al. The Tarantula Massive Binary Monitoring: III. Atmosphere analysis of double-lined spectroscopic systems. Astron. Astrophys. submitted.
- Shenar, T.; Sablowski, D.P.; Hainich, R.; Todt, H.; Moffat, A.F.J.; Oskinova, L.M.; Ramachandran, V.; Sana, H.; Sander, A.A.C.; Schnurr, O.; et al. The Wolf-Rayet binaries of the nitrogen sequence in the Large Magellanic Cloud. Spectroscopy, orbital analysis, formation, and evolution. Astron. Astrophys. 2019, 627, A151. [Google Scholar] [CrossRef]
- Brott, I.; de Mink, S.E.; Cantiello, M.; Langer, N.; de Koter, A.; Evans, C.J.; Hunter, I.; Trundle, C.; Vink, J.S. Rotating massive main-sequence stars. I. Grids of evolutionary models and isochrones. Astron. Astrophys. 2011, 530, A115. [Google Scholar] [CrossRef]
- Köhler, K.; Langer, N.; de Koter, A.; de Mink, S.E.; Crowther, P.A.; Evans, C.J.; Gräfener, G.; Sana, H.; Sanyal, D.; Schneider, F.R.N.; et al. The evolution of rotating very massive stars with LMC composition. Astron. Astrophys. 2015, 573, A71. [Google Scholar] [CrossRef]
- Vanbeveren, D.; De Loore, C.; Van Rensbergen, W. Massive stars. Astron. Astrophys. Rev. 1998, 9, 63–152. [Google Scholar] [CrossRef]
- Sana, H.; de Mink, S.E.; de Koter, A.; Langer, N.; Evans, C.J.; Gieles, M.; Gosset, E.; Izzard, R.G.; Le Bouquin, J.B.; Schneider, F.R.N. Binary Interaction Dominates the Evolution of Massive Stars. Science 2012, 337, 444. [Google Scholar] [CrossRef] [PubMed]
- Sana, H.; de Koter, A.; de Mink, S.E.; Dunstall, P.R.; Evans, C.J.; Hénault-Brunet, V.; Maíz Apellániz, J.; Ramírez-Agudelo, O.H.; Taylor, W.D.; Walborn, N.R.; et al. The VLT-FLAMES Tarantula Survey. VIII. Multiplicity properties of the O-type star population. Astron. Astrophys. 2013, 550, A107. [Google Scholar] [CrossRef]
- Dunstall, P.R.; Dufton, P.L.; Sana, H.; Evans, C.J.; Howarth, I.D.; Simón-Díaz, S.; de Mink, S.E.; Langer, N.; Maíz Apellániz, J.; Taylor, W.D. The VLT-FLAMES Tarantula Survey. XXII. Multiplicity properties of the B-type stars. Astron. Astrophys. 2015, 580, A93. [Google Scholar] [CrossRef]
- Almeida, L.A.; Sana, H.; Taylor, W.; Barbá, R.; Bonanos, A.Z.; Crowther, P.; Damineli, A.; de Koter, A.; de Mink, S.E.; Evans, C.J.; et al. The Tarantula Massive Binary Monitoring. I. Observational campaign and OB-type spectroscopic binaries. Astron. Astrophys. 2017, 598, A84. [Google Scholar] [CrossRef]
- Götberg, Y.; de Mink, S.E.; Groh, J.H.; Kupfer, T.; Crowther, P.A.; Zapartas, E.; Renzo, M. Spectral models for binary products: Unifying subdwarfs and Wolf-Rayet stars as a sequence of stripped-envelope stars. Astron. Astrophys. 2018, 615, A78. [Google Scholar] [CrossRef] [Green Version]
- Simón-Díaz, S.; Herrero, A. The IACOB project. I. Rotational velocities in northern Galactic O- and early B-type stars revisited. The impact of other sources of line-broadening. Astron. Astrophys. 2014, 562, A135. [Google Scholar] [CrossRef]
- Ramírez-Agudelo, O.H.; Simón-Díaz, S.; Sana, H.; de Koter, A.; Sabín-Sanjulían, C.; de Mink, S.E.; Dufton, P.L.; Gräfener, G.; Evans, C.J.; Herrero, A.; et al. The VLT-FLAMES Tarantula Survey. XII. Rotational velocities of the single O-type stars. Astron. Astrophys. 2013, 560, A29. [Google Scholar] [CrossRef]
- Ramírez-Agudelo, O.H.; Sana, H.; de Mink, S.E.; Hénault-Brunet, V.; de Koter, A.; Langer, N.; Tramper, F.; Gräfener, G.; Evans, C.J.; Vink, J.S.; et al. The VLT-FLAMES Tarantula Survey. XXI. Stellar spin rates of O-type spectroscopic binaries. Astron. Astrophys. 2015, 580, A92. [Google Scholar] [CrossRef]
- Dufton, P.L.; Langer, N.; Dunstall, P.R.; Evans, C.J.; Brott, I.; de Mink, S.E.; Howarth, I.D.; Kennedy, M.; McEvoy, C.; Potter, A.T.; et al. The VLT-FLAMES Tarantula Survey. X. Evidence for a bimodal distribution of rotational velocities for the single early B-type stars. Astron. Astrophys. 2013, 550, A109. [Google Scholar] [CrossRef]
- Wolff, S.C.; Strom, S.E.; Cunha, K.; Daflon, S.; Olsen, K.; Dror, D. Rotational Velocities for Early-Type Stars in the Young Large Magellanic Cloud Cluster R136: Further Study of the Relationship Between Rotation Speed and Density in Star-Forming Regions. Astron. J. 2008, 136, 1049–1060. [Google Scholar] [CrossRef]
- Platais, I.; Lennon, D.J.; van der Marel, R.P.; Bellini, A.; Sabbi, E.; Watkins, L.L.; Sohn, S.T.; Walborn, N.R.; Bedin, L.R.; Evans, C.J.; et al. HST Astrometry in the 30 Doradus Region. II. Runaway Stars from New Proper Motions in the Large Magellanic Cloud. Astron. J. 2018, 156, 98. [Google Scholar] [CrossRef]
- Evans, C.J.; Walborn, N.R.; Crowther, P.A.; Hénault-Brunet, V.; Massa, D.; Taylor, W.D.; Howarth, I.D.; Sana, H.; Lennon, D.J.; van Loon, J.T. A Massive Runaway Star from 30 Doradus. Astrophys. J. Lett. 2010, 715, L74–L79. [Google Scholar] [CrossRef]
- Renzo, M.; de Mink, S.E.; Lennon, D.J.; Platais, I.; van der Marel, R.P.; Laplace, E.; Bestenlehner, J.M.; Evans, C.J.; Hénault-Brunet, V.; Justham, S.; et al. Space astrometry of the very massive 150 M⊙ candidate runaway star VFTS682. Mon. Not. R. Astron. Soc. 2019, 482, L102–L106. [Google Scholar] [CrossRef]
- Pallavicini, R.; Golub, L.; Rosner, R.; Vaiana, G.S.; Ayres, T.; Linsky, J.L. Relations among stellar X-ray emission observed from Einstein, stellar rotation and bolometric luminosity. Astrophys. J. 1981, 248, 279–290. [Google Scholar] [CrossRef]
- Stevens, I.R.; Blondin, J.M.; Pollock, A.M.T. Colliding winds from early-type stars in binary systems. Astrophys. J. 1992, 386, 265–287. [Google Scholar] [CrossRef]
- Massey, P.; Penny, L.R.; Vukovich, J. Orbits of Four Very Massive Binaries in the R136 Cluster. Astrophys. J. 2002, 565, 982–993. [Google Scholar] [CrossRef]
- Taylor, W.D.; Evans, C.J.; Sana, H.; Walborn, N.R.; de Mink, S.E.; Stroud, V.E.; Alvarez-Candal, A.; Barbá, R.H.; Bestenlehner, J.M.; Bonanos, A.Z.; et al. The VLT-FLAMES Tarantula Survey. II. R139 revealed as a massive binary system. Astron. Astrophys. 2011, 530, L10. [Google Scholar] [CrossRef]
- Clark, J.S.; Bartlett, E.S.; Broos, P.S.; Townsley, L.K.; Taylor, W.D.; Walborn, N.R.; Bird, A.J.; Sana, H.; de Mink, S.E.; Dufton, P.L.; et al. The VLT-FLAMES Tarantula survey. XX. The nature of the X-ray bright emission-line star VFTS 399. Astron. Astrophys. 2015, 579, A131. [Google Scholar] [CrossRef]
- Castor, J.I.; Abbott, D.C.; Klein, R.I. Radiation-driven winds in Of stars. Astrophys. J. 1975, 195, 157–174. [Google Scholar] [CrossRef]
- Mokiem, M.R.; de Koter, A.; Vink, J.S.; Puls, J.; Evans, C.J.; Smartt, S.J.; Crowther, P.A.; Herrero, A.; Langer, N.; Lennon, D.J.; et al. The empirical metallicity dependence of the mass-loss rate of O- and early B-type stars. Astron. Astrophys. 2007, 473, 603–614. [Google Scholar] [CrossRef]
- Vink, J.S.; de Koter, A.; Lamers, H.J.G.L.M. Mass-loss predictions for O and B stars as a function of metallicity. Astron. Astrophys. 2001, 369, 574–588. [Google Scholar] [CrossRef]
- Prinja, R.K.; Barlow, M.J.; Howarth, I.D. Terminal velocities for a large sample of O stars, B supergiants, and Wolf-Rayet stars. Astrophys. J. 1990, 361, 607–620. [Google Scholar] [CrossRef]
- Roman-Duval, J.; Jenkins, E.B.; Williams, B.; Tchernyshyov, K.; Gordon, K.; Meixner, M.; Hagen, L.; Peek, J.; Sandstrom, K.; Werk, J.; et al. METAL: The Metal Evolution, Transport, and Abundance in the Large Magellanic Cloud Hubble Program. I. Overview and Initial Results. Astrophys. J. 2019, 871, 151. [Google Scholar] [CrossRef] [Green Version]
- Schmutz, W.; Hamann, W.R.; Wessolowski, U. Spectral analysis of 30 Wolf-Rayet stars. Astron. Astrophys. 1989, 210, 236–248. [Google Scholar]
- St.-Louis, N.; Moffat, A.F.J.; Drissen, L.; Bastien, P.; Robert, C. Polarization variability among Wolf-Rayet stars. III - A new way to derive mass-loss rates for Wolf-Rayet stars in binary systems. Astrophys. J. 1988, 330, 286–304. [Google Scholar] [CrossRef]
- Hillier, D.J. The effects of electron scattering and wind clumping for early emission line stars. Astron. Astrophys. 1991, 247, 455–468. [Google Scholar]
- Fullerton, A.W.; Massa, D.L.; Prinja, R.K. The Discordance of Mass-Loss Estimates for Galactic O-Type Stars. Astrophys. J. 2006, 637, 1025–1039. [Google Scholar] [CrossRef]
- Sundqvist, J.O.; Puls, J. Atmospheric NLTE models for the spectroscopic analysis of blue stars with winds. IV. Porosity in physical and velocity space. Astron. Astrophys. 2018, 619, A59. [Google Scholar] [CrossRef]
- Lamers, H.J.G.L.M.; Snow, T.P.; Lindholm, D.M. Terminal Velocities and the Bistability of Stellar Winds. Astrophys. J. 1995, 455, 269. [Google Scholar] [CrossRef]
- Kudritzki, R.P.; Puls, J. Winds from Hot Stars. Ann. Rev. Astron. Astrophys. 2000, 38, 613–666. [Google Scholar] [CrossRef] [Green Version]
- Gräfener, G.; Vink, J.S.; de Koter, A.; Langer, N. The Eddington factor as the key to understand the winds of the most massive stars. Evidence for a Γ-dependence of Wolf-Rayet type mass loss. Astron. Astrophys. 2011, 535, A56. [Google Scholar] [CrossRef]
- Bestenlehner, J.M. Mass loss and the Eddington factor: An updated stellar wind theory for hot massive stars. Mon. Not. R. Astron. Soc. in preparation.
- Puls, J.; Vink, J.S.; Najarro, F. Mass loss from hot massive stars. Astron. Astrophys. Rev. 2008, 16, 209–325. [Google Scholar] [CrossRef] [Green Version]
- Langer, N. Presupernova Evolution of Massive Single and Binary Stars. Ann. Rev. Astron. Astrophys. 2012, 50, 107–164. [Google Scholar] [CrossRef] [Green Version]
- Yusof, N.; Hirschi, R.; Meynet, G.; Crowther, P.A.; Ekström, S.; Frischknecht, U.; Georgy, C.; Abu Kassim, H.; Schnurr, O. Evolution and fate of very massive stars. Mon. Not. R. Astron. Soc. 2013, 433, 1114–1132. [Google Scholar] [CrossRef] [Green Version]
- Pellegrini, E.W.; Baldwin, J.A.; Ferland, G.J. Structure and Feedback in 30 Doradus. I. Observations. Astrophys. J. Suppl. 2010, 191, 160–178. [Google Scholar] [CrossRef]
- Vacca, W.D.; Robert, C.; Leitherer, C.; Conti, P.S. The stellar content of 30 doradus derived from spatially integrated ultraviolet spectra: A test of spectral synthesis models. Astrophys. J. 1995, 444, 647–662. [Google Scholar] [CrossRef]
- Smith, L.J.; Crowther, P.A.; Calzetti, D.; Sidoli, F. The Very Massive Star Content of the Nuclear Star Clusters in NGC 5253. Astrophys. J. 2016, 823, 38. [Google Scholar] [CrossRef]
- Levesque, E.M.; Leitherer, C.; Ekstrom, S.; Meynet, G.; Schaerer, D. The Effects of Stellar Rotation. I. Impact on the Ionizing Spectra and Integrated Properties of Stellar Populations. Astrophys. J. 2012, 751, 67. [Google Scholar] [CrossRef]
- Eldridge, J.J.; Stanway, E.R.; Xiao, L.; McClelland, L.A.S.; Taylor, G.; Ng, M.; Greis, S.M.L.; Bray, J.C. Binary Population and Spectral Synthesis Version 2.1: Construction, Observational Verification, and New Results. Pub. Astron. Soc. Austr. 2017, 34, e058. [Google Scholar] [CrossRef]
- Moffat, A.F.J.; Corcoran, M.F.; Stevens, I.R.; Skalkowski, G.; Marchenko, S.V.; Mücke, A.; Ptak, A.; Koribalski, B.S.; Brenneman, L.; Mushotzky, R.; et al. Galactic Starburst NGC 3603 from X-Rays to Radio. Astrophys. J. 2002, 573, 191–198. [Google Scholar] [CrossRef]
- Melena, N.W.; Massey, P.; Morrell, N.I.; Zangari, A.M. The Massive Star Content of NGC 3603. Astron. J. 2008, 135, 878–891. [Google Scholar] [CrossRef]
- Ramachandran, V.; Hamann, W.R.; Oskinova, L.M.; Gallagher, J.S.; Hainich, R.; Shenar, T.; Sander, A.A.C.; Todt, H.; Fulmer, L. Testing massive star evolution, star formation history, and feedback at low metallicity. Spectroscopic analysis of OB stars in the SMC Wing. Astron. Astrophys. 2019, 625, A104. [Google Scholar] [CrossRef]
- Johnson, T.L.; Rigby, J.R.; Sharon, K.; Gladders, M.D.; Florian, M.; Bayliss, M.B.; Wuyts, E.; Whitaker, K.E.; Livermore, R.; Murray, K.T. Star Formation at z = 2.481 in the Lensed Galaxy SDSS J1110+6459: Star Formation Down to 30 pc Scales. Astrophys. J. Lett. 2017, 843, L21. [Google Scholar] [CrossRef] [PubMed]
- Baldwin, J.A.; Phillips, M.M.; Terlevich, R. Classification parameters for the emission-line spectra of extragalactic objects. Pub. Astron. Soc. Pac. 1981, 93, 5–19. [Google Scholar] [CrossRef]
- Micheva, G.; Oey, M.S.; Jaskot, A.E.; James, B.L. Mrk 71/NGC 2366: The Nearest Green Pea Analog. Astrophys. J. 2017, 845, 165. [Google Scholar] [CrossRef] [Green Version]
- Steidel, C.C.; Rudie, G.C.; Strom, A.L.; Pettini, M.; Reddy, N.A.; Shapley, A.E.; Trainor, R.F.; Erb, D.K.; Turner, M.L.; Konidaris, N.P.; et al. Strong Nebular Line Ratios in the Spectra of z ~ 2-3 Star Forming Galaxies: First Results from KBSS-MOSFIRE. Astrophys. J. 2014, 795, 165. [Google Scholar] [CrossRef]
- Izotov, Y.I.; Orlitová, I.; Schaerer, D.; Thuan, T.X.; Verhamme, A.; Guseva, N.G.; Worseck, G. Eight per cent leakage of Lyman continuum photons from a compact, star-forming dwarf galaxy. Nature 2016, 529, 178–180. [Google Scholar] [CrossRef] [Green Version]
- Izotov, Y.I.; Schaerer, D.; Thuan, T.X.; Worseck, G.; Guseva, N.G.; Orlitová, I.; Verhamme, A. Detection of high Lyman continuum leakage from four low-redshift compact star-forming galaxies. Mon. Not. R. Astron. Soc. 2016, 461, 3683–3701. [Google Scholar] [CrossRef] [Green Version]
- Steidel, C.C.; Strom, A.L.; Pettini, M.; Rudie, G.C.; Reddy, N.A.; Trainor, R.F. Reconciling the Stellar and Nebular Spectra of High-redshift Galaxies. Astrophys. J. 2016, 826, 159. [Google Scholar] [CrossRef]
- Kennicutt, R.C., Jr.; Lee, J.C.; Funes, J.G.; Sakai, S.; Akiyama, S. An Hα Imaging Survey of Galaxies in the Local 11 Mpc Volume. Astrophys. J. Suppl. 2008, 178, 247–279. [Google Scholar] [CrossRef]
- van Zee, L.; Skillman, E.D.; Haynes, M.P. Oxygen and Nitrogen in Leo A and GR 8. Astrophys. J. 2006, 637, 269–282. [Google Scholar] [CrossRef]
- Saviane, I.; Rizzi, L.; Held, E.V.; Bresolin, F.; Momany, Y. New abundance measurements in UKS 1927-177, a very metal-poor galaxy in the Local Group. Astron. Astrophys. 2002, 390, 59–64. [Google Scholar] [CrossRef]
- Garcia, M.; Herrero, A.; Najarro, F.; Camacho, I.; Lorenzo, M. Ongoing star formation at the outskirts of Sextans A: Spectroscopic detection of early O-type stars. Mon. Not. R. Astron. Soc. 2019, 484, 422–430. [Google Scholar] [CrossRef]
- Walborn, N.R.; Nichols-Bohlin, J.; Panek, R.J. International Ultraviolet Explorer Atlas of O-type Spectra from 1200 to 1900 Å; Technical Report NASA-RP-1155, NAS 1.61:1155; NASA Goddard Space Flight Center: Greenbelt, MD, USA, 1 December 1985; p. 56.
1 |
Region | Angular | Physical | N(LyC) | Content | Reference |
---|---|---|---|---|---|
Radius () | Radius (pc) | ( ph s) | |||
R136a | 0.8 | 0.2 | 2 | R136a1 (WN5h), R136a2 (WN5h) | [9] |
R136 | 4 | 1.0 | 4 | R136b (O4 If/WN8), R136c (WN5h+) | [5] |
NGC 2070 | 80 | 20. | 9 | R140a (WC4 + WN6+), Mk34 (WN5h + WN5h) | [10,11] |
Tarantula | 600 | 150. | 12 | Hodge 301, PSR J0537-6910 (pulsar), N157B (SNR) | [12] |
Region (Galaxy) | Diameter | L(H) | N(O7V) |
---|---|---|---|
pc | 10 erg s | ||
NGC 3372 (Milky Way) | 200 | 0.8 | 0045 |
NGC 346 (SMC) | 220 | 0.8 | 0045 |
NGC 3603 (Milky Way) | 100 | 1.5 | 0110 |
NGC 604 (M33) | 400 | 4.5 | 0320 |
Tarantula (LMC) | 370 | 150 | 1100 |
Telescope/inst | Target | N(O-type) | N(B-type) | N(WR) | N(Of/WN) | N(A+) | Reference |
---|---|---|---|---|---|---|---|
VLT/FLAMES | 30 Dor | 369 | 436 | 9 | 6 | 35 | [2] |
HST/STIS | R136 | 57 | .. | 3 | 2 | .. | [5] |
VLT/MUSE | NGC 2070 | 115 | 79 | .. | .. | 1 | [10] |
Other | 30 Dor | 29 | 8 | 16 | .. | 5 | [22,23,24,26] |
Total | 30 Dor | 570 | 523 | 28 | 8 | 41 |
Star (Alias) | Sp Type | log N(LyC) | Reference | |
---|---|---|---|---|
R136a1 (BAT99-108) | WN5h | 6.8 | 50.6 | [55] |
Mk 34 (BAT99-116) | WN5h + WN5h | 6.4 + 6.4 | 50.6 | [37] |
R136a2 (BAT99-109) | WN5h | 6.7 | 50.5 | [55] |
R144 (BAT99-118) | WN5-6 + WN6-7 | 6.7 | 50.5 | [56,64] |
R136a3 (BAT99-106) | WN5h | 6.6 | 50.5 | [55] |
Mk 49 (BAT99-98) | WN6(h) | 6.7 | 50.5 | [56] |
R145 (BAT99-119) | WN6h + O3.5If/WN7 | 6.3+6.3 | 50.4 | [59] |
Mk 42 (BAT99-105) | O2 If | 6.6 | 50.4 | [51] |
VFTS 682 | WN5h | 6.5 | 50.4 | [51] |
R136c (BAT99-112) | WN5h +? | 6.6 | 50.4 | [51] |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crowther, P.A. Massive Stars in the Tarantula Nebula: A Rosetta Stone for Extragalactic Supergiant HII Regions. Galaxies 2019, 7, 88. https://doi.org/10.3390/galaxies7040088
Crowther PA. Massive Stars in the Tarantula Nebula: A Rosetta Stone for Extragalactic Supergiant HII Regions. Galaxies. 2019; 7(4):88. https://doi.org/10.3390/galaxies7040088
Chicago/Turabian StyleCrowther, Paul A. 2019. "Massive Stars in the Tarantula Nebula: A Rosetta Stone for Extragalactic Supergiant HII Regions" Galaxies 7, no. 4: 88. https://doi.org/10.3390/galaxies7040088
APA StyleCrowther, P. A. (2019). Massive Stars in the Tarantula Nebula: A Rosetta Stone for Extragalactic Supergiant HII Regions. Galaxies, 7(4), 88. https://doi.org/10.3390/galaxies7040088