Long-Term Optical Monitoring of Blazars
Abstract
:1. Introduction
2. Optical Sky Surveys and Monitoring Programs
- BATC Survey: a spectrophotometric survey on selected areas of the northern sky down to 21 mag limit, in combination of Beijing-Arizona-Taiwan-Connecticut telescopes. Aims for quasars of known properties, bright nearby galaxies and randomly selected objects (Burstein et al. [15]).
- Sloan Digital Sky Survey—SDSS: imaging and spectroscopy with a 2.5 m telescope. Aims to cover more than galaxies and quasars at north galactic cap (York et al. [4]).
- Sedentary Survey: combination of monitoring surveys in X-rays, optical and radio signals, aiming for high energy blazars, covering the equatorial zone (Giommi et al. [16]).
- Lincoln Near-Earth Asteroid Research (LINEAR) survey: based on the near-Earth asteroid survey program, which was first presented in Stokes et al. [17]. The extracted data set contains more than 5 billion photometric measurements, mostly of stellar objects. It overlaps with SDSS catalog and goes down to 17 mag in r-band (Sesar et al. [18]).
- Robotic Optical Transient Search Experiment—ROTSE-I: designed to search for bright (10 mag < V < 15.5 mag) astrophysical transients, associated with GRBs. Covered 2000 deg2 twice. (Akerlof et al. [19]).
- Northern Sky Variability Survey (NSVS): temporal sky monitoring in optical bands, covering the bright sources (8 mag < V < 15.5 mag), based on ROTSE-I catalog (Wozniak et al. [20]).
- All-Sky Automated Survey—ASAS: entire southern sky and part of northern down to 14 mag. Monitoring about 14 million stars and transient objects (Pojmanski [6]).
- Lowell Observatory Near-Earth-Object Search—LONEOS I: a clear aperture (no photometric filter) survey of 1430 deg2 of the northern sky down to 18.5 mag (Miceli et al. [21]).
- Palomar Transient Factory—PTF: wide area coverage in two optical bands down to 20 mag, aiming at systematic exploration of the optical transient sky (Rau et al. [11]).
- Pan-STARRS (1 & 2): wide field optical and near-IR imaging. Aims to discover NEO and stellar transients in the galactic plane and bulge and perform a time domain survey in specific targets with 1.8 m telescope (Kaiser et al. [9]).
- Catalina Sky Survey—CSS: large sky coverage (26,000 deg2) down to 15 mag, aiming to detect real time transient phenomena with Catalina Real-Time Transient Survey (Drake et al. [10]).
- Blazar Optical Sky Survey—BOSS Project: optical monitoring program, initiated on April 2013 at the University of Athens (http://users.uoa.gr/~kgaze/boss_project.html). It aims at monitoring the optical multi-band variability on active Blazars, in parallel with other multi-wavelength observations obtained from space and ground-based observatories. More than 20 bright targets are observed in a long-term on a daily basis, in order to cover the frequency range from IDV to STV and LDV (Figure 1).
- Two-degree Field Galaxy Redshift Survey—2dFGRS: spectroscopic survey of 140,000 galaxies with a 4 m telescope in southern hemisphere, covering a small area in narrow sky strips (Peterson et al. [22]).
- Two-Micron All Sky Survey—2MASS: near-IR survey in both hemispheres with 1.3 m telescopes. Performs photometric and astrometric measurements down to 15 mag (Skrutskie et al. [5]).
- Optical Gravitational Lensing Experiment—OGLE: long-term large scale photometric sky survey on stellar variability, aiming to detect microlensing phenomena. Utilizes 1 m and 1.3 m telescopes, covering 2000 deg2 down to 18.5 mag (22 mag in the future) (Udalski et al. [7]).
- Kilo-Degree Survey—KIDS: optical imaging survey of 1500 deg2 in the southern hemisphere, utilizing a VLT survey telescope (VST) with a wide field camera and four filter photometry. Overlaps with SDSS catalog and covers several extragalactic sources (de Jong et al. [24]).
- CFHT optical survey: photometry and multi-slit spectroscopy, performed for a short duration (a few days) with the Canada-France-Hawaii Telescope, aiming on galactic redshifts, faint galaxies and clusters (Adami et al. [25])
- UKIRT Infrared Deep Sky Survey—UKIDSS: near-IR photometric survey, conducted for 7 years at 1800 deg2 on north galactic plane, aiming for high proper motion sources (Smith et al. [26]).
- La Silla/QUEST survey: optical photometry with 1 m telescope down to 21.5 mag (Walker et al. [27]).
- Robotic Polarimeter—RoboPol: specialized photopolarimeter designed specifically for the 1.3 m telescope at the Skinakas Observatory, Crete. Aims to monitor the optical linear polarization of >100 gamma-ray bright blazars, which will allow testing models of the jet structure, composition, magnetic fields, and emission mechanism (Pavlidou et al. [28]) (Figure 2).
- Polar-Areas Stellar-Imaging in Polarization High-Accuracy Experiment—PASIPHAE: aims to map the polarization of millions of stars at areas of the sky away from the Galactic plane, in both the Northern and the Southern hemispheres. The goal is to clear the path towards the detection of the imprint of inflation on primordial light. The experiment will take place at the Skinakas Observatory, Crete, and the South African Astronomical Observatory in Sutherland, South Africa (Tassis et al. [29]).
- Tuorla blazar monitoring program: a long-term photometric program, dedicated on blazar variability. Performs monitoring of 24 bright blazars with a 1 m telescope in R band, supporting the VHE γ-ray observations of the MAGIC telescope (Takalo et al. [33]).
- The Whole Earth Telescope (WET): (Nather et al. [35]) is an international cooperative network structured to provide precision time-series photometric observations on multiple targets during campaigns lasting 2–8 weeks. Continuous observations with these time bases are required to fully capitalize on the tools of asteroseismology. Because of their numbers and availability, small telescopes (apertures less than 2 m) play vital roles in the WET network.
- The Whole Earth Blazar Telescope (WEBT): international consortium, utilizing several telescopes in optical, near-IR and radio regime, dedicated to observe blazars in a long-term monitoring mode (Villata et al. [36]).
- SkyNet robotic telescope network: global network of fully automated, or robotic telescopes serving over the Internet. The top scientific priority for Skynet Telescopes is to observe γ-ray bursts (GRBs) (Reichart [37]).
- Panchromatic Robotic Optical Monitoring and Polarimetry Telescopes (PROMPT): scanning the night sky in a regular basis with six 0.41 m telescopes with a fast response to GRB alerts and transient phenomena (Reichart et al. [40]).
- BCK: network of optical telescopes: consists of three research grade robotic telescopes of 0.6 m–1.3 m telescopes. The network is designed to observe variable stars, blazars and transient events (McGrunder et al. [41]).
- The Automatic Telescope Network (ATN): Automated monitoring program, performing simultaneous optical monitoring of blazars during the FERMI-LAT γ-ray NASA mission (Mattox et al. [42]).
- LCO network: utilizes 21 telescopes around the world in order to contribute in time domain astronomy (Brown et al. [43].)
3. Large Scale Surveys in Various Domains
3.1. The Time Domain
3.2. The Covered Area Domain
3.3. The Luminosity Domain
3.4. The Location Domain
4. Discussion—The Future of Long-Term Surveys on Blazars
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
2dFGRS | Two-degree Field Galaxy Redshift Survey |
2FGL-3FGL | Fermi Gamma-Ray LAT |
2MASS | 2-Micron All Sky Survey |
AGN | Active Galactic Nuclei |
AMON | Astrophysical Multi-messenger Observatory Network |
AMON | Astrophysical Multi-messenger Observatory Network |
ASAS | All-Sky Automated Survey |
ATN | Automatic Telescope Network |
BATC Survey | Beijing-Arizona-Taiwan-Connecticut Survey |
BCK Network | Bell-Crimean-Kitt Peak Network |
BOSS | Blazar Optical Sky Survey |
CCD | Charge-Coupled Device |
CFHT | Canada-France-Hawaii Telescope |
CSS | Catalina Sky Survey |
FFT | Fast Fourier Transform |
FSRQ | Flat-Spectrum Radio Quasar |
IDV | Intra-Day Variability |
KIDS | Kilo-Degree Survey |
LAT | Large Area Telescope |
LCO | Las Cumbres Observatory |
LINEAR | Lincoln Near-Earth Asteroid Research |
LONEOS | Lowell Observatory Near-Earth-Object Search |
LSST | Large Synoptic Survey Telescope |
LTV | Long-Term Variability |
MASTER | Mobile Astronomical System of TElescope Robots |
NSVS | Northern Sky Variability Survey |
OGLE | Optical Gravitational Lensing Experiment |
Pan-STARRS | Panoramic Survey Telescope and Rapid Response System |
PASIPHAE | Polar-Areas Stellar-Imaging in Polarization High-Accuracy Experiment |
PROMPT | Panchromatic Robotic Optical Monitoring and Polarimetry Telescopes |
PROMPT | Panchromatic Robotic Optical Monitoring and Polarimetry Telescopes |
PTF | Palomar Transient Factory |
QUEST | Quasar Equatorial Survey Team |
RAVE | Radial Velocity |
RoboPol | Robotic Polarimeter |
ROTSE | Robotic Optical Transient Search Experiment |
SAAO | South Africa Astronomical Observatory |
SDSS | Sloan Digital Sky Survey |
SED | Spectral Energy Distribution |
STV | Short-Term Variability |
SWASP | Super Wide Angle Search for Planets |
UKIDSS | UKIRT Infrared Deep Sky Survey |
UKIRT | United Kingdom Infra-Red Telescope |
WEBT | Whole Earth Blazar Telescope |
WET | The Whole Earth Telescope |
References
- Ulrich, M.H.; Maraschi, L.; Urry, C.M. Variability of Active Galactic Nuclei. Annu. Rev. Astron. Astrophys. 1997, 35, 445–502. [Google Scholar] [CrossRef]
- Atwood, W.B.; Abdo, A.A.; Ackermann, M.; Althouse, W.; Anderson, B.; Axelsson, M.; Baldini, L.; Ballet, J.; Band, D.L.; Barbiellini, G.; et al. The Large Area Telescope on the Fermi Gamma-Ray Space Telescope Mission. Astrophys. J. 2009, 697, 1071–1102. [Google Scholar] [CrossRef]
- Nolan, P.L.; Abdo, A.A.; Ackermann, M.; Ajello, M.; Allafort, A.; Antolini, E.; Atwood, W.B.; Axelsson, M.; Baldini, L.; Ballet, J.; et al. Fermi Large Area Telescope Second Source Catalog. Astrophys. J. Suppl. 2012, 199, 31. [Google Scholar] [CrossRef]
- York, D.G.; Adelman, J.; Anderson, J.E., Jr.; Anderson, S.F.; Annis, J.; Bahcall, N.A.; Bakken, J.A.; Barkhouser, R.; Bastian, S.; et al. The Sloan Digital Sky Survey: Technical Summary. Astron. J. 2000, 120, 1579–1587. [Google Scholar] [CrossRef]
- Skrutskie, M.F.; Cutri, R.M.; Stiening, R.; Weinberg, M.D.; Schneider, S.; Carpenter, J.M.; Beichman, C.; Capps, R.; Chester, T.; Elias, J.; et al. The Two Micron All Sky Survey (2MASS). Astron. J. 2006, 131, 1163–1183. [Google Scholar] [CrossRef]
- Pojmanski, G. The All Sky Automated Survey. Catalog of Variable Stars. I. 0 h–6 h Quarter of the Southern Hemisphere. Acta Astron. 2002, 52, 397–427. [Google Scholar]
- Udalski, A.; Szymański, M.K.; Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 2015, 65, 1–38. [Google Scholar]
- Pollacco, D.L.; Skillen, I.; Collier Cameron, A.; Christian, D.J.; Hellier, C.; Irwin, J.; Lister, T.A.; Street, R.A.; West, R.G.; Anderson, D.R.; et al. The WASP Project and the SuperWASP Cameras. Publ. Astron. Soc. Pac. 2006, 118, 1407–1418. [Google Scholar] [CrossRef] [Green Version]
- Kaiser, N.; Burgett, W.; Chambers, K.; Denneau, L.; Heasley, J.; Jedicke, R.; Magnier, E.; Morgan, J.; Onaka, P.; Tonry, J. The Pan-STARRS wide-field optical/NIR imaging survey. Proc. SPIE 2010, 7733, 14. [Google Scholar] [CrossRef]
- Drake, A.J.; Djorgovski, S.G.; Mahabal, A.; Beshore, E.; Larson, S.; Graham, M.J.; Williams, R.; Christensen, E.; Catelan, M.; Boattini, A.; et al. First Results from the Catalina Real-Time Transient Survey. Astrophys. J. 2009, 696, 870–884. [Google Scholar] [CrossRef]
- Rau, A.; Kulkarni, S.R.; Law, N.M.; Bloom, J.S.; Ciardi, D.; Djorgovski, G.S.; Fox, D.B.; Gal-Yam, A.; Grillmair, C.C.; Kasliwal, M.M.; et al. Exploring the Optical Transient Sky with the Palomar Transient Factory. Publ. Astron. Soc. Pac. 2009, 121, 1334. [Google Scholar] [CrossRef]
- Ivezic, Z.; Axelrod, T.; Brandt, W.N.; Burke, D.L.; Claver, C.F.; Connolly, A.; Cook, K.H.; Gee, P.; Gilmore, D.K.; Jacoby, S.H.; et al. Large Synoptic Survey Telescope: From Science Drivers To Reference Design. Serbian Astron. J. 2008, 176, 1–13. [Google Scholar] [CrossRef]
- Webb, J.R.; Smith, A.G.; Leacock, R.J.; Fitzgibbons, G.L.; Gombola, P.P.; Shepherd, D.W. Optical observations of 22 violently variable extragalactic sources—1968–1986. Astron. J. 1988, 95, 374–397. [Google Scholar] [CrossRef]
- Carini, M.T.; Miller, H.R.; Noble, J.C.; Goodrich, B.D. The timescales of the optical variability of blazars. III—OJ 287 and BL Lacertae. Astron. J. 1992, 104, 15–27. [Google Scholar] [CrossRef]
- Burstein, D.; Hester, J.J.; Windhorst, R.A.; Clampitt, L.; Li, Y.; Moore, B.; Fang, L.Z.; Chen, J.S.; Zhu, J.; Jiang, Z.J.; et al. The Beijing-Arizona-Taipei-Connecticut (BATC) Color Survey of the Sky. Bull. Am. Astron. Soc. 1994, 26, 1372. [Google Scholar]
- Giommi, P.; Menna, M.T.; Padovani, P. The sedentary multifrequency survey—I. Statistical identification and cosmological properties of high-energy peaked BL Lacs. Mon. Not. R. Astron. Soc. 1999, 310, 465–475. [Google Scholar] [CrossRef]
- Stokes, G.H.; Evans, J.B.; Viggh, H.E.M.; Shelly, F.C.; Pearce, E.C. Lincoln Near-Earth Asteroid Program (LINEAR). Icarus 2000, 148, 21–28. [Google Scholar] [CrossRef] [Green Version]
- Sesar, B.; Stuart, J.S.; Ivezić, Ž.; Morgan, D.P.; Becker, A.C.; Woźniak, P. Exploring the Variable Sky with LINEAR. I. Photometric Recalibration with the Sloan Digital Sky Survey. Astron. J. 2011, 142, 190. [Google Scholar] [CrossRef]
- Akerlof, C.; Amrose, S.; Balsano, R.; Bloch, J.; Casperson, D.; Fletcher, S.; Gisler, G.; Hills, J.; Kehoe, R.; Lee, B.; et al. ROTSE All-Sky Surveys for Variable Stars. I. Test Fields. Astron. J. 2000, 119, 1901–1913. [Google Scholar] [CrossRef] [Green Version]
- Woźniak, P.R.; Vestrand, W.T.; McGowan, K.E.; Kinemuchi, K.; ROTSE Collaboration. Northern Sky Variability Survey (NSVS). Bull. Am. Astron. Soc. 2003, 35, 1300. [Google Scholar]
- Miceli, A.; Rest, A.; Stubbs, C.W.; Hawley, S.L.; Cook, K.H.; Magnier, E.A.; Krisciunas, K.; Bowell, E.; Koehn, B. Evidence for Distinct Components of the Galactic Stellar Halo from 838 RR Lyrae Stars Discovered in the LONEOS-I Survey. Astrophys. J. 2008, 678, 865–887. [Google Scholar] [CrossRef]
- Peterson, B.A. The Two Degree Field Galaxy Redshift Survey (2dFGRS): The Instrument, Data and Science. In Proceedings of the IAU 8th Asian-Pacific Regional Meeting, Tokyo, Japan, 2–5 July 2002; Volume 289, pp. 219–226. [Google Scholar]
- Christian, D.J.; Pollacco, D.L.; Skillen, I.; Street, R.A.; Keenan, F.P.; Clarkson, W.I.; Collier Cameron, A.; Kane, S.R.; Lister, T.A.; West, R.G.; et al. The SuperWASP wide-field exoplanetary transit survey: Candidates from fields 23 h < RA < 03 h. Mon. Not. R. Astron. Soc. 2006, 372, 1117–1128. [Google Scholar] [CrossRef]
- De Jong, J.T.A.; Kuijken, K.; Applegate, D.; Begeman, K.; Belikov, A.; Blake, C.; Bout, J.; Boxhoorn, D.; Buddelmeijer, H.; Buddendiek, A.; et al. The Kilo-Degree Survey. Messenger 2013, 154, 44–46. [Google Scholar] [CrossRef]
- Adami, C.; Holden, B.P.; Castander, F.J.; Nichol, R.C.; Mazure, A.; Ulmer, M.P.; Postman, M.; Lubin, L.M. The Canada-France-Hawaii Telescope Optical PDCS Survey (COP). I. The Data. Astron. J. 2000, 120, 1–22. [Google Scholar] [CrossRef]
- Smith, L.; Lucas, P.W.; Bunce, R.; Burningham, B.; Jones, H.R.A.; Smart, R.L.; Skrzypek, N.; Rodriguez, D.R.; Faherty, J.; Barentsen, G.; et al. High proper motion objects from the UKIDSS Galactic plane survey. Mon. Not. R. Astron. Soc. 2014, 443, 2327–2341. [Google Scholar] [CrossRef]
- Walker, E.S.; Baltay, C.; Campillay, A.; Citrenbaum, C.; Contreras, C.; Ellman, N.; Feindt, U.; González, C.; Graham, M.L.; Hadjiyska, E.; et al. First Results from the La Silla-QUEST Supernova Survey and the Carnegie Supernova Project. Astrophys. J. Suppl. 2015, 219, 13. [Google Scholar] [CrossRef]
- Pavlidou, V.; Angelakis, E.; Myserlis, I.; Blinov, D.; King, O.G.; Papadakis, I.; Tassis, K.; Hovatta, T.; Pazderska, B.; Paleologou, E.; Baloković, M.; et al. The RoboPol optical polarization survey of gamma-ray-loud blazars. Mon. Not. R. Astron. Soc. 2014, 442, 1693–1705. [Google Scholar] [CrossRef]
- Tassis, K.; Ramaprakash, A.N.; Readhead, A.C.S.; Potter, S.B.; Wehus, I.K.; Panopoulou, G.V.; Blinov, D.; Eriksen, H.K.; Hensley, B.; et al. PASIPHAE: A high-Galactic-latitude, high-accuracy optopolarimetric survey. arXiv 2018, arXiv:1810.05652. [Google Scholar]
- Benítez, E.; Heidt, J.; Hiriart, D.; Agudo, I.; Cabrera, J.I.; Dultzin, D.; González, M.M.; López, J.M.; Mújica, R.; Nilsson, K.; Sacahui, R.; et al. Long-Term Optical Photopolarimetric Monitoring of Blazars at San Pedro Mártir. Revista Mexicana de Astronomia y Astrofisica Conference Series. Rev. Mex. Astron. Astrofisica 2011, 40, 44–45. [Google Scholar]
- Kordopatis, G.; Gilmore, G.; Steinmetz, M.; Boeche, C.; Seabroke, G.M.; Siebert, A.; Zwitter, T.; Binney, J.; de Laverny, P.; Recio-Blanco, A.; et al. The Radial Velocity Experiment (RAVE): Fourth Data Release. Astron. J. 2013, 146, 134. [Google Scholar] [CrossRef]
- Kunder, A.; Kordopatis, G.; Steinmetz, M.; Zwitter, T.; McMillan, P.J.; Casagrande, L.; Enke, H.; Wojno, J.; Valentini, M.; Chiappini, C.; et al. The Radial Velocity Experiment (RAVE): Fifth Data Release. Astron. J. 2017, 153, 75. [Google Scholar] [CrossRef]
- Takalo, L.O.; Nilsson, K.; Lindfors, E.; Sillanpää, A.; Berdyugin, A.; Pasanen, M. Tuorla Blazar Monitoring Program. AIP Conf. Proc. 2008, 1085, 705–707. [Google Scholar] [CrossRef]
- Fraija, N.; Benítez, E.; Hiriart, D.; Sorcia, M.; López, J.M.; Mújica, R.; Cabrera, J.I.; de Diego, J.A.; Rojas-Luis, M.; Salazar-Vázquez, F.A.; et al. Long-term Optical Polarization Variability and Multiwavelength Analysis of Blazar Mrk 421. Astrophys. J. Suppl. 2017, 232, 7. [Google Scholar] [CrossRef] [Green Version]
- Nather, R.E.; Winget, D.E.; Clemens, J.C.; Hansen, C.J.; Hine, B.P. The whole earth telescop—A new astronomical instrument. Astrophys. J. 1990, 361, 309–317. [Google Scholar] [CrossRef]
- Villata, M.; Raiteri, C.M.; Tosti, G.; Ciprini, S.; Ibrahimov, M.A.; Kurtanidze, O.M.; Massaro, E.; Mattox, J.R.; Nesci, R.; Nikolashvili, M.G.; et al. The Whole Earth Blazar Telescope (WEBT). Memor. Soc. Astronom. Ital. 2002, 73, 1191–1192. [Google Scholar]
- Reichart, D. The Skynet Robotic Telescope Network. In Proceedings of the 75th Annual Meeting of the Southeastern Section of American Physical Society, Raleigh, NC, USA, 30 October–1 November 2008. [Google Scholar]
- Lipunov, V.; Kornilov, V.; Gorbovskoy, E.; Shatskij, N.; Kuvshinov, D.; Tyurina, N.; Belinski, A.; Krylov, A.; Balanutsa, P.; Chazov, V.; et al. Master Robotic Net. Adv. Astron. 2010, 2010, 349171. [Google Scholar] [CrossRef]
- Kornilov, V.G.; Lipunov, V.M.; Gorbovskoy, E.S.; Belinski, A.A.; Kuvshinov, D.A.; Tyurina, N.V.; Shatsky, N.I.; Sankovich, A.V.; Krylov, A.E.V.; Balanutsa, P.V.; et al. Robotic optical telescopes global network MASTER II. Equipment, structure, algorithms. Exp. Astron. 2012, 33, 173–196. [Google Scholar] [CrossRef]
- Reichart, D.; Nysewander, M.; Moran, J.; Bartelme, J.; Bayliss, M.; Foster, A.; Clemens, J.C.; Price, P.; Evans, C.; Salmonson, J.; et al. PROMPT: Panchromatic Robotic Optical Monitoring and Polarimetry Telescopes. Nuovo Cimento C 2005, 28, 767. [Google Scholar] [CrossRef]
- McGruder, C.H.; Antoniuk, K.; Carini, M.T.; Gelderman, R.; Hammond, B.; Hicks, S.; Laney, D.; Shakhovskoy, D.; Strolger, L.G.; Williams, J. BCK Network of Optical Telescopes. In Proceedings of the 225th Meeting of the American Astronomical Society Meeting, Seattle, WA, USA, 4–8 January 2015. [Google Scholar]
- Mattox, J.R. Networked Automatic Optical Telescopes. Bull. Am. Astron. Soc. 2000, 32, 686. [Google Scholar]
- Brown, T.M.; Baliber, N.; Bianco, F.B.; Bowman, M.; Burleson, B.; Conway, P.; Crellin, M.; Depagne, É.; De Vera, J.; Dilday, B.; et al. Las Cumbres Observatory Global Telescope Network. Publ. Astron. Soc. Pac. 2013, 125, 1031. [Google Scholar] [CrossRef]
- Padovani, P. Deep Blazar Surveys. In Blazar Demographics and Physics; Padovani, P., Urry, C.M., Eds.; Astronomical Society of the Pacific: San Francisco, CA, USA, 2001; Volume 227, p. 163. [Google Scholar]
- Wagner, S.J.; Witzel, A. Intraday Variability In Quasars and BL Lac Objects. Annu. Rev. Astron. Astrophys. 1995, 33, 163–198. [Google Scholar] [CrossRef]
- Gupta, A.C.; Banerjee, D.P.K.; Ashok, N.M.; Joshi, U.C. Near infrared intraday variability of Mrk 421. Astron. Astrophys. 2004, 422, 505–508. [Google Scholar] [CrossRef]
- Raiteri, C.M.; Villata, M.; Capetti, A.; Aller, M.F.; Bach, U.; Calcidese, P.; Gurwell, M.A.; Larionov, V.M.; Ohlert, J.; Nilsson, K.; et al. WEBT multiwavelength monitoring and XMM-Newton observations of BL Lacertae in 2007–2008-Unveiling different emission components. Astron. Astrophys. 2009, 507, 769–779. [Google Scholar] [CrossRef]
- Nesci, R.; Maesano, M.; Massaro, E.; Montagni, F.; Tosti, G.; Fiorucci, M. Intraday variability of BL Lacertae in the great 1997 outburst. Astron. Astrophys. 1998, 332, L1–L4. [Google Scholar]
- Speziali, R.; Natali, G. BVI microvariability in BL Lacertae during the summer 1997 outburst. Astron. Astrophys. 1998, 339, 382–384. [Google Scholar]
- Papadakis, I.E.; Boumis, P.; Samaritakis, V.; Papamastorakis, J. Multi-band optical micro-variability observations of BL Lacertae. Astron. Astrophys. 2003, 397, 565–573. [Google Scholar] [CrossRef]
- Howard, E.S.; Webb, J.R.; Pollock, J.T.; Stencel, R.E. Microvariability and Long-Term Variability of Four Blazars. Astron. J. 2004, 127, 17–23. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, L.; Zhao, G.; Xie, Z.H.; Wu, L.; Zheng, Y.G. Optical Monitoring of Three Gamma-Ray-loud BL Lacertae Objects in 1999–2002. Astron. J. 2004, 128, 1929–1941. [Google Scholar] [CrossRef]
- Bachev, R.; Semkov, E.; Strigachev, A.; Gupta, A.C.; Gaur, H.; Mihov, B.; Boeva, S.; Slavcheva-Mihova, L. The nature of the intra-night optical variability in blazars. Mon. Not. R. Astron. Soc. 2012, 424, 2625–2634. [Google Scholar] [CrossRef] [Green Version]
- Gopal, R.; Sethi, S.K. Large Scale Magnetic Fields: Density Power Spectrum in Redshift Space. J. Astrophys. Astron. 2003, 24, 51–68. [Google Scholar] [CrossRef]
- Stalin, C.S.; Sagar, R.; Wiita, P.J. Intranight optical variability of radio-quiet and radio lobe-dominated quasars. Mon. Not. R. Astron. Soc. 2004, 350, 175–188. [Google Scholar] [CrossRef] [Green Version]
- Stalin, C.S.; Srianand, R. Long-term optical photometric monitoring of the quasar SDSS J153259.96-003944.1. Mon. Not. R. Astron. Soc. 2005, 359, 1022–1028. [Google Scholar] [CrossRef]
- Gupta, A.C.; Joshi, U.C. Intra-night optical variability of luminous radio-quiet QSOs. Astron. Astrophys. 2005, 440, 855–865. [Google Scholar] [CrossRef]
- Mushotzky, R.F.; Edelson, R.; Baumgartner, W.; Gandhi, P. Kepler Observations of Rapid Optical Variability in Active Galactic Nuclei. Astrophys. J. Lett. 2011, 743, L12. [Google Scholar] [CrossRef]
- Carini, M.T.; Miller, H.R.; Noble, J.C.; Sadun, A.C. The timescales of the optical variability of blazars. II—AP Librae. Astron. J. 1991, 101, 1196–1201. [Google Scholar] [CrossRef]
- Ghosh, K.K.; Ramsey, B.D.; Sadun, A.C.; Soundararajaperumal, S. Optical Variability of Blazars. Astrophys. J. Suppl. 2000, 127, 11–26. [Google Scholar] [CrossRef]
- Bauer, A.; Baltay, C.; Coppi, P.; Ellman, N.; Jerke, J.; Rabinowitz, D.; Scalzo, R. Blazar Optical Variability in the Palomar-Quest Survey. Astrophys. J. 2009, 699, 1732–1741. [Google Scholar] [CrossRef]
- Bauer, A.; Baltay, C.; Coppi, P.; Donalek, C.; Drake, A.; Djorgovski, S.G.; Ellman, N.; Glikman, E.; Graham, M.; Jerke, J.; et al. Highly Variable Objects in the Palomar-QUEST Survey: A Blazar Search Using Optical Variability. Astrophys. J. 2009, 705, 46–53. [Google Scholar] [CrossRef]
- Ruan, J.; Anderson, S.; Eracleous, M.; Green, P.; Haggard, D.; MacLeod, C.; Runnoe, J. Chandra X-ray Clues to the Origin of Changing-Look Quasars. In Proceedings of the 235th American Astronomical Society Meeting, Seattle, WA, USA, 6–10 January 2019; Volume 233. [Google Scholar]
- Healey, S.E.; Romani, R.W.; Cotter, G.; Michelson, P.F.; Schlafly, E.F.; Readhead, A.C.S.; Giommi, P.; Chaty, S.; Grenier, I.A.; Weintraub, L.C. CGRaBS: An All-Sky Survey of Gamma-Ray Blazar Candidates. Astrophys. J. Suppl. 2008, 175, 97–104. [Google Scholar] [CrossRef]
- Ackermann, M.; Ajello, M.; Atwood, W.B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Becerra Gonzalez, J.; Bellazzini, R.; Bissaldi, E.; et al. The Third Catalog of Active Galactic Nuclei Detected by the Fermi Large Area Telescope. Astrophys. J. 2015, 810, 14. [Google Scholar] [CrossRef]
- Gazeas, K. The robotic and remotely controlled telescope at the University of Athens Observatory. Rev. Mex. Astron. Astrofisica 2016, 48, 22–23. [Google Scholar]
- Blinov, D.; Pavlidou, V.; Papadakis, I.; Kiehlmann, S.; Liodakis, I.; Panopoulou, G.V.; Angelakis, E.; Baloković, M.; Hovatta, T.; King, O.G.; et al. RoboPol: Connection between optical polarization plane rotations and gamma-ray flares in blazars. Mon. Not. R. Astron. Soc. 2018, 474, 1296–1306. [Google Scholar] [CrossRef]
- Raiteri, C.M.; Villata, M.; Kurtanidze, O.M.; Nikolashvili, M.G.; Ibrahimov, M.A.; Papadakis, I.E.; Tsinganos, K.; Sadakane, K.; Okada, N.; Takalo, L.O.; et al. The Whole Earth Blazar Telescope and the BL Lac Campaign 2000. In Proceedings of the Blazar Astrophysics with BeppoSAX and Other Observatories, Frascati, Italy, 10–11 December 2001; p. 219. [Google Scholar]
- Gazeas, K.; Petropoulou, M.; Mastichiadis, A. Continuous optical monitoring of the highly active blazar Mrk421. In Proceedings of the 11th Hellenic Astronomical Conference, Athens, Greece, 8–12 September 2013; p. 30. [Google Scholar]
- Smith, M.W.E.; Fox, D.B.; Cowen, D.F.; Mészáros, P.; Tešić, G.; Fixelle, J.; Bartos, I.; Sommers, P.; Ashtekar, A.; Jogesh Babu, G.; et al. The Astrophysical Multimessenger Observatory Network (AMON). Astropart. Phys. 2013, 45, 56–70. [Google Scholar] [CrossRef] [Green Version]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gazeas, K. Long-Term Optical Monitoring of Blazars. Galaxies 2019, 7, 58. https://doi.org/10.3390/galaxies7020058
Gazeas K. Long-Term Optical Monitoring of Blazars. Galaxies. 2019; 7(2):58. https://doi.org/10.3390/galaxies7020058
Chicago/Turabian StyleGazeas, Kosmas. 2019. "Long-Term Optical Monitoring of Blazars" Galaxies 7, no. 2: 58. https://doi.org/10.3390/galaxies7020058
APA StyleGazeas, K. (2019). Long-Term Optical Monitoring of Blazars. Galaxies, 7(2), 58. https://doi.org/10.3390/galaxies7020058