A Review of Recent Observations of Galactic Winds Driven by Star Formation
Abstract
:1. Introduction
2. Winds Driven by Star Formation at Low Redshift
2.1. Ultraviolet Surveys
2.2. Single-Aperture Surveys
2.3. IFS Results
2.4. Molecular Gas and Dust
3. The Nearest Galactic Wind
4. Winds Driven by Star Formation at High redshift
5. Summary
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ALMA | Atacama Large Millimeter/submillimeter Array |
COS | Cosmic Origins Spectrograph |
FIR | far-infrared |
GW | galactic wind |
IFS | integral field spectrograph |
LBG | Lyman-break galaxy |
LIRG | luminous infrared galaxy |
MIR | mid-infrared |
NIR | near-infrared |
SFR | star formation rate |
sSFR | specific star formation rate |
ULIRG | ultraluminous infrared galaxy |
References
- Heckman, T.M.; Lehnert, M.D.; Armus, L. Galactic Superwinds. In The Environment and Evolution of Galaxies; Shull, J.M., Thronson, H.A., Eds.; Springer Netherlands: Dordrecht, The Netherlands, 1993; Volume 188, p. 455. [Google Scholar]
- Veilleux, S.; Cecil, G.; Bland-Hawthorn, J. Galactic Winds. Annu. Rev. Astron. Astrophys. 2005, 43, 769–826. [Google Scholar] [CrossRef]
- Zahid, H.J.; Torrey, P.; Vogelsberger, M.; Hernquist, L.; Kewley, L.; Davé, R. Empirical constraints for the magnitude and composition of galactic winds. Astrophys. Space Sci. 2014, 349, 873–879. [Google Scholar] [CrossRef]
- Tumlinson, J.; Thom, C.; Werk, J.K.; Prochaska, J.X.; Tripp, T.M.; Weinberg, D.H.; Peeples, M.S.; O’Meara, J.M.; Oppenheimer, B.D.; Meiring, J.D.; et al. The Large, Oxygen-Rich Halos of Star-Forming Galaxies Are a Major Reservoir of Galactic Metals. Science 2011, 334, 948–952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borthakur, S.; Heckman, T.; Strickland, D.; Wild, V.; Schiminovich, D. The Impact of Starbursts on the Circumgalactic Medium. Astrophys. J. 2013, 768, 18. [Google Scholar] [CrossRef]
- Bordoloi, R.; Tumlinson, J.; Werk, J.K.; Oppenheimer, B.D.; Peeples, M.S.; Prochaska, J.X.; Tripp, T.M.; Katz, N.; Davé, R.; Fox, A.J.; et al. The COS-Dwarfs Survey: The Carbon Reservoir around Sub-L* Galaxies. Astrophys. J. 2014, 796, 136. [Google Scholar] [CrossRef]
- Borthakur, S.; Heckman, T.; Tumlinson, J.; Bordoloi, R.; Kauffmann, G.; Catinella, B.; Schiminovich, D.; Davé, R.; Moran, S.M.; Saintonge, A. The Properties of the Circumgalactic Medium in Red and Blue Galaxies: Results from the COS-GASS+COS-Halos Surveys. Astrophys. J. 2016, 833, 259. [Google Scholar] [CrossRef]
- Heckman, T.; Borthakur, S.; Wild, V.; Schiminovich, D.; Bordoloi, R. COS-burst: Observations of the Impact of Starburst-driven Winds on the Properties of the Circum-galactic Medium. Astrophys. J. 2017, 846, 151. [Google Scholar] [CrossRef] [Green Version]
- Li, J.T.; Wang, Q.D. Chandra survey of nearby highly inclined disc galaxies—II. Correlation analysis of galactic coronal properties. Mon. Not. R. Astron. Soc. 2013, 435, 3071–3084. [Google Scholar] [CrossRef]
- Oppenheimer, B.D.; Davé, R.; Kereš, D.; Fardal, M.; Katz, N.; Kollmeier, J.A.; Weinberg, D.H. Feedback and recycled wind accretion: Assembling the z = 0 galaxy mass function. Mon. Not. R. Astron. Soc. 2010, 406, 2325–2338. [Google Scholar] [CrossRef]
- Hopkins, P.F.; Kereš, D.; Oñorbe, J.; Faucher-Giguère, C.A.; Quataert, E.; Murray, N.; Bullock, J.S. Galaxies on FIRE (Feedback In Realistic Environments): Stellar feedback explains cosmologically inefficient star formation. Mon. Not. R. Astron. Soc. 2014, 445, 581–603. [Google Scholar] [CrossRef]
- Anglés-Alcázar, D.; Davé, R.; Özel, F.; Oppenheimer, B.D. Cosmological Zoom Simulations of z = 2 Galaxies: The Impact of Galactic Outflows. Astrophys. J. 2014, 782, 84. [Google Scholar] [CrossRef]
- Fabian, A.C. Observational Evidence of Active Galactic Nuclei Feedback. Annu. Rev. Astron. Astrophys. 2012, 50, 455–489. [Google Scholar] [CrossRef] [Green Version]
- Harrison, C.M. Impact of supermassive black hole growth on star formation. Nat. Astron. 2017, 1, 0165. [Google Scholar] [CrossRef] [Green Version]
- Aird, J.; Coil, A.L.; Moustakas, J.; Blanton, M.R.; Burles, S.M.; Cool, R.J.; Eisenstein, D.J.; Smith, M.S.M.; Wong, K.C.; Zhu, G. PRIMUS: The Dependence of AGN Accretion on Host Stellar Mass and Color. Astrophys. J. 2012, 746, 90. [Google Scholar] [CrossRef]
- Jones, M.L.; Hickox, R.C.; Black, C.S.; Hainline, K.N.; DiPompeo, M.A.; Goulding, A.D. The Intrinsic Eddington Ratio Distribution of Active Galactic Nuclei in Star-forming Galaxies from the Sloan Digital Sky Survey. Astrophys. J. 2016, 826, 12. [Google Scholar] [CrossRef]
- Madau, P.; Dickinson, M. Cosmic Star-Formation History. Annu. Rev. Astron. Astrophys. 2014, 52, 415–486. [Google Scholar] [CrossRef] [Green Version]
- Tacconi, L.J.; Neri, R.; Genzel, R.; Combes, F.; Bolatto, A.; Cooper, M.C.; Wuyts, S.; Bournaud, F.; Burkert, A.; Comerford, J.; et al. Phibss: Molecular Gas Content and Scaling Relations in z ~1-3 Massive, Main-sequence Star-forming Galaxies. Astrophys. J. 2013, 768, 74. [Google Scholar] [CrossRef]
- van Dokkum, P.G.; Nelson, E.J.; Franx, M.; Oesch, P.; Momcheva, I.; Brammer, G.; Förster Schreiber, N.M.; Skelton, R.E.; Whitaker, K.E.; van der Wel, A.; et al. Forming Compact Massive Galaxies. Astrophys. J. 2015, 813, 23. [Google Scholar] [CrossRef]
- Nelson, E.J.; van Dokkum, P.G.; Förster Schreiber, N.M.; Franx, M.; Brammer, G.B.; Momcheva, I.G.; Wuyts, S.; Whitaker, K.E.; Skelton, R.E.; Fumagalli, M.; et al. Where Stars Form: Inside-out Growth and Coherent Star Formation from HST Hα Maps of 3200 Galaxies across the Main Sequence at 0.7 < z < 1.5. Astrophys. J. 2016, 828, 27. [Google Scholar]
- Lehnert, M.D.; Heckman, T.M. Ionized Gas in the Halos of Edge-on Starburst Galaxies: Evidence for Supernova-driven Superwinds. Astrophys. J. 1996, 462, 651. [Google Scholar] [CrossRef]
- Martin, C.L. The Impact of Star Formation on the Interstellar Medium in Dwarf Galaxies. II. The Formation of Galactic Winds. Astrophys. J. 1998, 506, 222–252. [Google Scholar] [CrossRef] [Green Version]
- Rupke, D.S.; Veilleux, S.; Sanders, D.B. Outflows in Infrared-Luminous Starbursts at z < 0.5. II. Analysis and Discussion. Astrophys. J. Suppl. Ser. 2005, 160, 115–148. [Google Scholar]
- Veilleux, S.; Cecil, G.; Bland-Hawthorn, J.; Tully, R.B.; Filippenko, A.V.; Sargent, W.L.W. The Nuclear Superbubble of NGC 3079. Astrophys. J. 1994, 433, 48. [Google Scholar] [CrossRef]
- Lehnert, M.D.; Heckman, T.M.; Weaver, K.A. Very Extended X-Ray and Hα Emission in M82: Implications for the Superwind Phenomenon. Astrophys. J. 1999, 523, 575–584. [Google Scholar] [CrossRef]
- Veilleux, S.; Rupke, D.S. Identification of Galactic Wind Candidates Using Excitation Maps: Tunable-Filter Discovery of a Shock-excited Wind in the Galaxy NGC 1482. Astrophys. J. 2002, 565, L63–L66. [Google Scholar] [CrossRef] [Green Version]
- Strickland, D.K.; Heckman, T.M. Supernova Feedback Efficiency and Mass Loading in the Starburst and Galactic Superwind Exemplar M82. Astrophys. J. 2009, 697, 2030–2056. [Google Scholar] [CrossRef]
- Chisholm, J.; Tremonti, C.A.; Leitherer, C.; Chen, Y.; Wofford, A.; Lundgren, B. Scaling Relations between Warm Galactic Outflows and Their Host Galaxies. Astrophys. J. 2015, 811, 149. [Google Scholar] [CrossRef]
- Heckman, T.M.; Borthakur, S. The Implications of Extreme Outflows from Extreme Starbursts. Astrophys. J. 2016, 822, 9. [Google Scholar] [CrossRef]
- Heckman, T.M.; Alexandroff, R.M.; Borthakur, S.; Overzier, R.; Leitherer, C. The Systematic Properties of the Warm Phase of Starburst-Driven Galactic Winds. Astrophys. J. 2015, 809, 147. [Google Scholar] [CrossRef]
- Sell, P.H.; Tremonti, C.A.; Hickox, R.C.; Diamond- Stanic, A.M.; Moustakas, J.; Coil, A.; Williams, A.; Rudnick, G.; Robaina, A.; Geach, J.E.; et al. Massive compact galaxies with high-velocity outflows: Morphological analysis and constraints on AGN activity. Mon. Not. R. Astron. Soc. 2014, 441, 3417–3443. [Google Scholar] [CrossRef]
- Geach, J.E.; Hickox, R.C.; Diamond-Stanic, A.M.; Krips, M.; Rudnick, G.H.; Tremonti, C.A.; Sell, P.H.; Coil, A.L.; Moustakas, J. Stellar feedback as the origin of an extended molecular outflow in a starburst galaxy. Nature 2014, 516, 68–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, C.L. Mapping Large-Scale Gaseous Outflows in Ultraluminous Galaxies with Keck II ESI Spectra: Variations in Outflow Velocity with Galactic Mass. Astrophys. J. 2005, 621, 227–245. [Google Scholar] [CrossRef]
- Cazzoli, S.; Arribas, S.; Maiolino, R.; Colina, L. Neutral gas outflows in nearby [U]LIRGs via optical NaD feature. Astron. Astrophys. 2016, 590, A125. [Google Scholar] [CrossRef]
- Arribas, S.; Colina, L.; Bellocchi, E.; Maiolino, R.; Villar-Martín, M. Ionized gas outflows and global kinematics of low-z luminous star- forming galaxies. Astron. Astrophys. 2014, 568, A14. [Google Scholar] [CrossRef]
- Chisholm, J.; Tremonti, C.A.; Leitherer, C.; Chen, Y. The mass and momentum outflow rates of photoionized galactic outflows. Mon. Not. R. Astron. Soc. 2017, 469, 4831–4849. [Google Scholar] [CrossRef] [Green Version]
- Reyes, R.; Mandelbaum, R.; Gunn, J.E.; Pizagno, J.; Lackner, C.N. Calibrated Tully-Fisher relations for improved estimates of disc rotation velocities. Mon. Not. R. Astron. Soc. 2011, 417, 2347–2386. [Google Scholar] [CrossRef] [Green Version]
- Hopkins, P.F.; Quataert, E.; Murray, N. Stellar feedback in galaxies and the origin of galaxy-scale winds. Mon. Not. R. Astron. Soc. 2012, 421, 3522–3537. [Google Scholar] [CrossRef] [Green Version]
- Lagos, C.D.P.; Lacey, C.G.; Baugh, C.M. A dynamical model of supernova feedback: Gas outflows from the interstellar medium. Mon. Not. R. Astron. Soc. 2013, 436, 1787–1817. [Google Scholar] [CrossRef]
- Muratov, A.L.; Kereš, D.; Faucher- Giguère, C.A.; Hopkins, P.F.; Quataert, E.; Murray, N. Gusty, gaseous flows of FIRE: Galactic winds in cosmological simulations with explicit stellar feedback. Mon. Not. R. Astron. Soc. 2015, 454, 2691–2713. [Google Scholar] [CrossRef]
- Mitra, S.; Davé, R.; Finlator, K. Equilibrium model constraints on baryon cycling across cosmic time. Mon. Not. R. Astron. Soc. 2015, 452, 1184–1200. [Google Scholar] [CrossRef] [Green Version]
- Tanner, R.; Cecil, G.; Heitsch, F. Scaling Relations of Starburst-Driven Galactic Winds. Astrophys. J. 2017, 843, 137. [Google Scholar] [CrossRef]
- Wofford, A.; Leitherer, C.; Salzer, J. Lyα Escape from z ~0.03 Star-forming Galaxies: The Dominant Role of Outflows. Astrophys. J. 2013, 765, 118. [Google Scholar] [CrossRef]
- Martin, C.L.; Dijkstra, M.; Henry, A.; Soto, K.T.; Danforth, C.W.; Wong, J. The Lyα Line Profiles of Ultraluminous Infrared Galaxies: Fast Winds and Lyman Continuum Leakage. Astrophys. J. 2015, 803, 6. [Google Scholar] [CrossRef]
- Rivera-Thorsen, T.E.; Hayes, M.; Östlin, G.; Duval, F.; Orlitová, I.; Verhamme, A.; Mas-Hesse, J.M.; Schaerer, D.; Cannon, J.M.; Otí-Floranes, H.; et al. The Lyman Alpha Reference Sample. V. The Impact of Neutral ISM Kinematics and Geometry on Lyα Escape. Astrophys. J. 2015, 805, 14. [Google Scholar] [CrossRef]
- Henry, A.; Scarlata, C.; Martin, C.L.; Erb, D. Lyα Emission from Green Peas: The Role of Circumgalactic Gas Density, Covering, and Kinematics. Astrophys. J. 2015, 809, 19. [Google Scholar] [CrossRef]
- Alexandroff, R.M.; Heckman, T.M.; Borthakur, S.; Overzier, R.; Leitherer, C. Indirect Evidence for Escaping Ionizing Photons in Local Lyman Break Galaxy Analogs. Astrophys. J. 2015, 810, 104. [Google Scholar] [CrossRef]
- Chisholm, J.; Orlitová, I.; Schaerer, D.; Verhamme, A.; Worseck, G.; Izotov, Y.I.; Thuan, T.X.; Guseva, N.G. Do galaxies that leak ionizing photons have extreme outflows? Astron. Astrophys. 2017, 605, A67. [Google Scholar] [CrossRef] [Green Version]
- Jaskot, A.E.; Oey, M.S.; Scarlata, C.; Dowd, T. Kinematics and Optical Depth in the Green Peas: Suppressed Superwinds in Candidate LyC Emitters. Astrophys. J. 2017, 851, L9. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.M.; Tremonti, C.A.; Heckman, T.M.; Kauffmann, G.; Weiner, B.J.; Brinchmann, J.; Wang, J. Absorption-line Probes of the Prevalence and Properties of Outflows in Present-day Star-forming Galaxies. Astron. J. 2010, 140, 445–461. [Google Scholar] [CrossRef]
- Cicone, C.; Maiolino, R.; Marconi, A. Outflows and complex stellar kinematics in SDSS star-forming galaxies. Astron. Astrophys. 2016, 588, A41. [Google Scholar] [CrossRef]
- Kauffmann, G.; Heckman, T.M.; Tremonti, C.; Brinchmann, J.; Charlot, S.; White, S.D.M.; Ridgway, S.E.; Brinkmann, J.; Fukugita, M.; Hall, P.B.; et al. The host galaxies of active galactic nuclei. Mon. Not. R. Astron. Soc. 2003, 346, 1055–1077. [Google Scholar] [CrossRef] [Green Version]
- Concas, A.; Popesso, P.; Brusa, M.; Mainieri, V.; Erfanianfar, G.; Morselli, L. Light breeze in the local Universe. Astron. Astrophys. 2017, 606, A36. [Google Scholar] [CrossRef]
- Stasińska, G.; Cid Fernandes, R.; Mateus, A.; Sodré, L.; Asari, N.V. Semi-empirical analysis of Sloan Digital Sky Survey galaxies—III. How to distinguish AGN hosts. Mon. Not. R. Astron. Soc. 2006, 371, 972–982. [Google Scholar] [CrossRef]
- Rich, J.A.; Dopita, M.A.; Kewley, L.J.; Rupke, D.S.N. NGC 839: Shocks in an M82-like Superwind. Astrophys. J. 2010, 721, 505–517. [Google Scholar] [CrossRef]
- Fogarty, L.M.R.; Bland-Hawthorn, J.; Croom, S.M.; Green, A.W.; Bryant, J.J.; Lawrence, J.S.; Richards, S.; Allen, J.T.; Bauer, A.E.; Birchall, M.N.; et al. First Science with SAMI: A Serendipitously Discovered Galactic Wind in ESO 185-G031. Astrophys. J. 2012, 761, 169. [Google Scholar] [CrossRef]
- Rupke, D.S.N.; Veilleux, S. The Multiphase Structure and Power Sources of Galactic Winds in Major Mergers. Astrophys. J. 2013, 768, 75. [Google Scholar] [CrossRef]
- Vogt, F.P.A.; Dopita, M.A.; Kewley, L.J. Galaxy Interactions in Compact Groups. I. The Galactic Winds of HCG16. Astrophys. J. 2013, 768, 151. [Google Scholar] [CrossRef]
- Ho, I.T.; Kewley, L.J.; Dopita, M.A.; Medling, A.M.; Allen, J.T.; Bland-Hawthorn, J.; Bloom, J.V.; Bryant, J.J.; Croom, S.M.; Fogarty, L.M.R.; et al. The SAMI Galaxy Survey: Shocks and outflows in a normal star-forming galaxy. Mon. Not. R. Astron. Soc. 2014, 444, 3894–3910. [Google Scholar] [CrossRef]
- Medling, A.M.; U, V.; Rich, J.A.; Kewley, L.J.; Armus, L.; Dopita, M.A.; Max, C.E.; Sanders, D.; Sutherland, R. Shocked gas in IRAS F17207-0014: ISM collisions and outflows. Mon. Not. R. Astron. Soc. 2015, 448, 2301–2311. [Google Scholar] [CrossRef] [Green Version]
- Martín-Fernández, P.; Jiménez-Vicente, J.; Zurita, A.; Mediavilla, E.; Castillo- Morales, Á. The multiphase starburst-driven galactic wind in NGC 5394. Mon. Not. R. Astron. Soc. 2016, 461, 6–21. [Google Scholar] [CrossRef] [Green Version]
- López-Cobá, C.; Sánchez, S.F.; Moiseev, A.V.; Oparin, D.V.; Bitsakis, T.; Cruz-González, I.; Morisset, C.; Galbany, L.; Bland-Hawthorn, J.; Roth, M.M.; et al. Star formation driven galactic winds in UGC 10043. Mon. Not. R. Astron. Soc. 2017, 467, 4951–4964. [Google Scholar] [CrossRef]
- Cresci, G.; Vanzi, L.; Telles, E.; Lanzuisi, G.; Brusa, M.; Mingozzi, M.; Sauvage, M.; Johnson, K. The MUSE view of He 2-10: No AGN ionization but a sparkling starburst. Astron. Astrophys. 2017, 604, A101. [Google Scholar] [CrossRef] [Green Version]
- Cortijo-Ferrero, C.; González Delgado, R.M.; Pérez, E.; Sánchez, S.F.; Cid Fernandes, R.; de Amorim, A.L.; Di Matteo, P.; García-Benito, R.; Lacerda, E.A.D.; López Fernández, R.; et al. The spatially resolved stellar population and ionized gas properties in the merger LIRG NGC 2623. Astron. Astrophys. 2017, 606, A95. [Google Scholar] [CrossRef] [Green Version]
- Rich, J.A.; Kewley, L.J.; Dopita, M.A. Composite Spectra in Merging U/LIRGs Caused by Shocks. Astrophys. J. 2014, 781, L12. [Google Scholar] [CrossRef]
- Rich, J.A.; Kewley, L.J.; Dopita, M.A. Galaxy Mergers Drive Shocks: An Integral Field Study of GOALS Galaxies. Astrophys. J. Suppl. Ser. 2015, 221, 28. [Google Scholar] [CrossRef]
- Soto, K.T.; Martin, C.L.; Prescott, M.K.M.; Armus, L. The Emission-line Spectra of Major Mergers: Evidence for Shocked Outflows. Astrophys. J. 2012, 757, 86. [Google Scholar] [CrossRef]
- Bryant, J.J.; Owers, M.S.; Robotham, A.S.G.; Croom, S.M.; Driver, S.P.; Drinkwater, M.J.; Lorente, N.P.F.; Cortese, L.; Scott, N.; Colless, M.; et al. The SAMI Galaxy Survey: Instrument specification and target selection. Mon. Not. R. Astron. Soc. 2015, 447, 2857–2879. [Google Scholar] [CrossRef]
- Bundy, K.; Bershady, M.A.; Law, D.R.; Yan, R.; Drory, N.; MacDonald, N.; Wake, D.A.; Cherinka, B.; Sánchez-Gallego, J.R.; Weijmans, A.M.; et al. Overview of the SDSS-IV MaNGA Survey: Mapping nearby Galaxies at Apache Point Observatory. Astrophys. J. 2015, 798, 7. [Google Scholar] [CrossRef]
- Ho, I.T.; Medling, A.M.; Bland-Hawthorn, J.; Groves, B.; Kewley, L.J.; Kobayashi, C.; Dopita, M.A.; Leslie, S.K.; Sharp, R.; Allen, J.T.; et al. The SAMI Galaxy Survey: Extraplanar gas, galactic winds and their association with star formation history. Mon. Not. R. Astron. Soc. 2016, 457, 1257–1278. [Google Scholar]
- Tescari, E.; Cortese, L.; Power, C.; Wyithe, J.S.B.; Ho, I.T.; Crain, R.A.; Bland-Hawthorn, J.; Croom, S.M.; Kewley, L.J.; Schaye, J.; et al. The SAMI Galaxy Survey: Understanding observations of large-scale outflows at low redshift with EAGLE simulations. Mon. Not. R. Astron. Soc. 2018, 473, 380–397. [Google Scholar] [CrossRef]
- Tsai, A.L.; Matsushita, S.; Nakanishi, K.; Kohno, K.; Kawabe, R.; Inui, T.; Matsumoto, H.; Tsuru, T.G.; Peck, A.B.; Tarchi, A. Molecular Superbubbles and Outflows from the Starburst Galaxy NGC 2146. Publ. Astron. Soc. Jpn. 2009, 61, 237. [Google Scholar] [CrossRef]
- Sakamoto, K.; Aalto, S.; Combes, F.; Evans, A.; Peck, A. An Infrared-luminous Merger with Two Bipolar Molecular Outflows: ALMA and SMA Observations of NGC 3256. Astrophys. J. 2014, 797, 90. [Google Scholar] [CrossRef]
- Cicone, C.; Maiolino, R.; Sturm, E.; Graciá-Carpio, J.; Feruglio, C.; Neri, R.; Aalto, S.; Davies, R.; Fiore, F.; Fischer, J.; et al. Massive molecular outflows and evidence for AGN feedback from CO observations. Astron. Astrophys. 2014, 562, A21. [Google Scholar] [CrossRef] [Green Version]
- García-Burillo, S.; Combes, F.; Usero, A.; Aalto, S.; Colina, L.; Alonso-Herrero, A.; Hunt, L.K.; Arribas, S.; Costagliola, F.; Labiano, A.; et al. High-resolution imaging of the molecular outflows in two mergers: IRAS 17208-0014 and NGC 1614. Astron. Astrophys. 2015, 580, A35. [Google Scholar] [CrossRef]
- Pereira-Santaella, M.; Colina, L.; García-Burillo, S.; Alonso-Herrero, A.; Arribas, S.; Cazzoli, S.; Emonts, B.; Piqueras López, J.; Planesas, P.; Storchi Bergmann, T.; et al. High-velocity extended molecular outflow in the star-formation dominated luminous infrared galaxy ESO 320-G030. Astron. Astrophys. 2016, 594, A81. [Google Scholar] [CrossRef]
- Sakamoto, K.; Aalto, S.; Barcos-Muñoz, L.; Costagliola, F.; Evans, A.S.; Harada, N.; Martín, S.; Wiedner, M.; Wilner, D. Resolved Structure of the Arp 220 Nuclei at λ ≈ 3 mm. Astrophys. J. 2017, 849, 14. [Google Scholar] [CrossRef]
- Barcos-Muñoz, L.; Aalto, S.; Thompson, T.A.; Sakamoto, K.; Martín, S.; Leroy, A.K.; Privon, G.C.; Evans, A.S.; Kepley, A. Fast, Collimated Outflow in the Western Nucleus of Arp 220. Astrophys. J. 2018, 853, L28. [Google Scholar] [CrossRef] [Green Version]
- Falstad, N.; Aalto, S.; Mangum, J.G.; Costagliola, F.; Gallagher, J.S.; González-Alfonso, E.; Sakamoto, K.; König, S.; Muller, S.; Evans, A.S.; et al. Hidden molecular outflow in the LIRG Zw 049.057. Astron. Astrophys. 2018, 609, A75. [Google Scholar] [CrossRef] [Green Version]
- Tsai, A.L.; Matsushita, S.; Kong, A.K.H.; Matsumoto, H.; Kohno, K. First Detection of a Subkiloparsec Scale Molecular Outflow in the Starburst Galaxy NGC 3628. Astrophys. J. 2012, 752, 38. [Google Scholar] [CrossRef]
- Bolatto, A.D.; Warren, S.R.; Leroy, A.K.; Walter, F.; Veilleux, S.; Ostriker, E.C.; Ott, J.; Zwaan, M.; Fisher, D.B.; Weiss, A.; et al. Suppression of star formation in the galaxy NGC 253 by a starburst- driven molecular wind. Nature 2013, 499, 450–453. [Google Scholar] [CrossRef]
- Leroy, A.K.; Walter, F.; Martini, P.; Roussel, H.; Sandstrom, K.; Ott, J.; Weiss, A.; Bolatto, A.D.; Schuster, K.; Dessauges-Zavadsky, M. The Multi-phase Cold Fountain in M82 Revealed by a Wide, Sensitive Map of the Molecular Interstellar Medium. Astrophys. J. 2015, 814, 83. [Google Scholar] [CrossRef]
- Salak, D.; Nakai, N.; Hatakeyama, T.; Miyamoto, Y. Gas Dynamics and Outflow in the Barred Starburst Galaxy NGC 1808 Revealed with ALMA. Astrophys. J. 2016, 823, 68. [Google Scholar] [CrossRef]
- García-Burillo, S.; Martín-Pintado, J.; Fuente, A.; Neri, R. SiO Chimneys and Supershells in M82. Astrophys. J. 2001, 563, L27–L30. [Google Scholar] [CrossRef]
- Walter, F.; Weiss, A.; Scoville, N. Molecular Gas in M82: Resolving the Outflow and Streamers. Astrophys. J. 2002, 580, L21–L25. [Google Scholar] [CrossRef] [Green Version]
- Strickland, D.K.; Heckman, T.M.; Weaver, K.A.; Dahlem, M. Chandra Observations of NGC 253: New Insights into the Nature of Starburst-driven Superwinds. Astron. J. 2000, 120, 2965–2974. [Google Scholar] [CrossRef]
- Salas, P.; Galaz, G.; Salter, D.; Herrera-Camus, R.; Bolatto, A.D.; Kepley, A. Extended HCN and HCO+ Emission in the Starburst Galaxy M82. Astrophys. J. 2014, 797, 134. [Google Scholar] [CrossRef]
- Kepley, A.A.; Leroy, A.K.; Frayer, D.; Usero, A.; Marvil, J.; Walter, F. The Green Bank Telescope Maps the Dense, Star-forming Gas in the Nearby Starburst Galaxy M82. Astrophys. J. 2014, 780, L13. [Google Scholar] [CrossRef]
- Walter, F.; Bolatto, A.D.; Leroy, A.K.; Veilleux, S.; Warren, S.R.; Hodge, J.; Levy, R.C.; Meier, D.S.; Ostriker, E.C.; Ott, J.; et al. Dense Molecular Gas Tracers in the Outflow of the Starburst Galaxy NGC 253. Astrophys. J. 2017, 835, 265. [Google Scholar] [CrossRef] [Green Version]
- Salak, D.; Tomiyasu, Y.; Nakai, N.; Kuno, N.; Miyamoto, Y.; Kaneko, H. Dense Molecular Gas in the Starburst Nucleus of NGC 1808. Astrophys. J. 2018, 856, 97. [Google Scholar] [CrossRef] [Green Version]
- Sakamoto, K.; Aalto, S.; Wilner, D.J.; Black, J.H.; Conway, J.E.; Costagliola, F.; Peck, A.B.; Spaans, M.; Wang, J.; Wiedner, M.C. P Cygni Profiles of Molecular Lines Toward Arp 220 Nuclei. Astrophys. J. 2009, 700, L104–L108. [Google Scholar] [CrossRef]
- Tunnard, R.; Greve, T.R.; Garcia-Burillo, S.; Graciá Carpio, J.; Fischer, J.; Fuente, A.; González-Alfonso, E.; Hailey-Dunsheath, S.; Neri, R.; Sturm, E.; et al. Chemically Distinct Nuclei and Outflowing Shocked Molecular Gas in Arp 220. Astrophys. J. 2015, 800, 25. [Google Scholar] [CrossRef]
- Zschaechner, L.K.; Ott, J.; Walter, F.; Meier, D.S.; Momjian, E.; Scoville, N. High-resolution Observations of Molecular Lines in Arp 220: Kinematics, Morphology, and Limits on the Applicability of the Ammonia Thermometer. Astrophys. J. 2016, 833, 41. [Google Scholar] [CrossRef]
- Martín, S.; Aalto, S.; Sakamoto, K.; González- Alfonso, E.; Muller, S.; Henkel, C.; García-Burillo, S.; Aladro, R.; Costagliola, F.; Harada, N.; et al. The unbearable opaqueness of Arp220. Astron. Astrophys. 2016, 590, A25. [Google Scholar] [CrossRef] [Green Version]
- Rangwala, N.; Maloney, P.R.; Glenn, J.; Wilson, C.D.; Rykala, A.; Isaak, K.; Baes, M.; Bendo, G.J.; Boselli, A.; Bradford, C.M.; et al. Observations of Arp 220 Using Herschel-SPIRE: An Unprecedented View of the Molecular Gas in an Extreme Star Formation Environment. Astrophys. J. 2011, 743, 94. [Google Scholar] [CrossRef]
- Sturm, E.; González-Alfonso, E.; Veilleux, S.; Fischer, J.; Graciá-Carpio, J.; Hailey- Dunsheath, S.; Contursi, A.; Poglitsch, A.; Sternberg, A.; Davies, R.; et al. Massive Molecular Outflows and Negative Feedback in ULIRGs Observed by Herschel-PACS. Astrophys. J. 2011, 733, L16. [Google Scholar] [CrossRef]
- Spoon, H.W.W.; Farrah, D.; Lebouteiller, V.; Gonzá lez-Alfonso, E.; Bernard-Salas, J.; Urrutia, T.; Rigopoulou, D.; Westmoquette, M.S.; Smith, H.A.; Afonso, J.; et al. Diagnostics of AGN-Driven Molecular Outflows in ULIRGs from Herschel- PACS Observations of OH at 119 μm. Astrophys. J. 2013, 775, 127. [Google Scholar] [CrossRef]
- Veilleux, S.; Meléndez, M.; Sturm, E.; Gracia-Carpio, J.; Fischer, J.; González-Alfonso, E.; Contursi, A.; Lutz, D.; Poglitsch, A.; Davies, R.; et al. Fast Molecular Outflows in Luminous Galaxy Mergers: Evidence for Quasar Feedback from Herschel. Astrophys. J. 2013, 776, 27. [Google Scholar] [CrossRef]
- González-Alfonso, E.; Fischer, J.; Spoon, H.W.W.; Stewart, K.P.; Ashby, M.L.N.; Veilleux, S.; Smith, H.A.; Sturm, E.; Farrah, D.; Falstad, N.; et al. Molecular Outflows in Local ULIRGs: Energetics from Multitransition OH Analysis. Astrophys. J. 2017, 836, 11. [Google Scholar] [CrossRef] [Green Version]
- Janssen, A.W.; Christopher, N.; Sturm, E.; Veilleux, S.; Contursi, A.; González-Alfonso, E.; Fischer, J.; Davies, R.; Verma, A.; Graciá-Carpio, J.; et al. Broad [C II] Line Wings as Tracer of Molecular and Multi-phase Outflows in Infrared Bright Galaxies. Astrophys. J. 2016, 822, 43. [Google Scholar]
- Rupke, D.S.; Veilleux, S.; Sanders, D.B. Outflows in Active Galactic Nucleus/Starburst-Composite Ultraluminous Infrared Galaxies1. Astrophys. J. 2005, 632, 751–780. [Google Scholar] [CrossRef]
- Contursi, A.; Poglitsch, A.; Grácia Carpio, J.; Veilleux, S.; Sturm, E.; Fischer, J.; Verma, A.; Hailey-Dunsheath, S.; Lutz, D.; Davies, R.; et al. Spectroscopic FIR mapping of the disk and galactic wind of M 82 with Herschel-PACS. Astron. Astrophys. 2013, 549, A118. [Google Scholar] [CrossRef]
- Kreckel, K.; Armus, L.; Groves, B.; Lyubenova, M.; Díaz-Santos, T.; Schinnerer, E.; Appleton, P.; Croxall, K.V.; Dale, D.A.; Hunt, L.K.; et al. A Far-IR View of the Starburst-driven Superwind in NGC 2146. Astrophys. J. 2014, 790, 26. [Google Scholar] [CrossRef]
- Krips, M.; Martín, S.; Sakamoto, K.; Aalto, S.; Bisbas, T.G.; Bolatto, A.D.; Downes, D.; Eckart, A.; Feruglio, C.; García-Burillo, S.; et al. ACA [CI] observations of the starburst galaxy NGC 253. Astron. Astrophys. 2016, 592, L3. [Google Scholar] [CrossRef] [Green Version]
- Martini, P.; Leroy, A.K.; Mangum, J.G.; Bolatto, A.; Keating, K.M.; Sandstrom, K.; Walter, F. H I Kinematics along the Minor Axis of M82. Astrophys. J. 2018, 856, 61. [Google Scholar] [CrossRef]
- Veilleux, S.; Rupke, D.S.N.; Swaters, R. Warm Molecular Hydrogen in the Galactic Wind of M82. Astrophys. J. 2009, 700, L149–L153. [Google Scholar] [CrossRef]
- Beirão, P.; Armus, L.; Lehnert, M.D.; Guillard, P.; Heckman, T.; Draine, B.; Hollenbach, D.; Walter, F.; Sheth, K.; Smith, J.D.; et al. Spatially resolved Spitzer-IRS spectral maps of the superwind in M82. Mon. Not. R. Astron. Soc. 2015, 451, 2640–2655. [Google Scholar] [CrossRef] [Green Version]
- Emonts, B.H.C.; Piqueras-López, J.; Colina, L.; Arribas, S.; Villar-Martín, M.; Pereira-Santaella, M.; Garcia-Burillo, S.; Alonso-Herrero, A. Outflow of hot and cold molecular gas from the obscured secondary nucleus of NGC 3256: Closing in on feedback physics. Astron. Astrophys. 2014, 572, A40. [Google Scholar] [CrossRef]
- Emonts, B.H.C.; Colina, L.; Piqueras-López, J.; Garcia-Burillo, S.; Pereira-Santaella, M.; Arribas, S.; Labiano, A.; Alonso-Herrero, A. Outflows of hot molecular gas in ultra-luminous infrared galaxies mapped with VLT-SINFONI. Astron. Astrophys. 2017, 607, A116. [Google Scholar] [CrossRef] [Green Version]
- Hill, M.J.; Zakamska, N.L. Warm molecular hydrogen in outflows from ultraluminous infrared Galaxies. Mon. Not. R. Astron. Soc. 2014, 439, 2701–2716. [Google Scholar] [CrossRef] [Green Version]
- Phillips, A.C. Nuclear and large-Scale Outflows in NGC 1808. Astron. J. 1993, 105, 486. [Google Scholar] [CrossRef]
- Hoopes, C.G.; Heckman, T.M.; Strickland, D.K.; Seibert, M.; Madore, B.F.; Rich, R.M.; Bianchi, L.; Gil de Paz, A.; Burgarella, D.; Thilker, D.A.; et al. GALEX Observations of the Ultraviolet Halos of NGC 253 and M82. Astrophys. J. 2005, 619, L99–L102. [Google Scholar] [CrossRef]
- Yoshida, M.; Kawabata, K.S.; Ohyama, Y. Spectropolarimetry of the Superwind Filaments of the Starburst Galaxy M 82: Kinematics of Dust Outflow. Publ. Astron. Soc. Jpn. 2011, 63, 493. [Google Scholar] [CrossRef]
- Hutton, S.; Ferreras, I.; Wu, K.; Kuin, P.; Breeveld, A.; Yershov, V.; Cropper, M.; Page, M. A panchromatic analysis of starburst galaxy M82: Probing the dust properties. Mon. Not. R. Astron. Soc. 2014, 440, 150–160. [Google Scholar] [CrossRef]
- Hutton, S.; Ferreras, I.; Yershov, V. Variations of the dust properties of M82 with galactocentric distance. Mon. Not. R. Astron. Soc. 2015, 452, 1412–1420. [Google Scholar] [CrossRef] [Green Version]
- Kaneda, H.; Ishihara, D.; Suzuki, T.; Ikeda, N.; Onaka, T.; Yamagishi, M.; Ohyama, Y.; Wada, T.; Yasuda, A. Large-scale distributions of mid- and far-infrared emission from the center to the halo of M 82 revealed with AKARI. Astron. Astrophys. 2010, 514, A14. [Google Scholar] [CrossRef] [Green Version]
- Roussel, H.; Wilson, C.D.; Vigroux, L.; Isaak, K.G.; Sauvage, M.; Madden, S.C.; Auld, R.; Baes, M.; Barlow, M.J.; Bendo, G.J.; et al. SPIRE imaging of M 82: Cool dust in the wind and tidal streams. Astron. Astrophys. 2010, 518, L66. [Google Scholar] [CrossRef] [Green Version]
- Leeuw, L.L.; Robson, E.I. Submillimeter Continuum Properties of Cold Dust in the Inner Disk and Outflows of M 82. Astron. J. 2009, 137, 517–527. [Google Scholar] [CrossRef]
- Kaneda, H.; Yamagishi, M.; Suzuki, T.; Onaka, T. AKARI Detection of Far-Infrared Dust Emission in the Halo of NGC 253. Astrophys. J. 2009, 698, L125–L128. [Google Scholar] [CrossRef]
- Meléndez, M.; Veilleux, S.; Martin, C.; Engelbracht, C.; Bland-Hawthorn, J.; Cecil, G.; Heitsch, F.; McCormick, A.; Müller, T.; Rupke, D.; et al. Exploring the Dust Content of Galactic Winds with Herschel. I. NGC 4631. Astrophys. J. 2015, 804, 46. [Google Scholar] [CrossRef]
- McCormick, A.; Veilleux, S.; Meléndez, M.; Martin, C.L.; Bland-Hawthorn, J.; Cecil, G.; Heitsch, F.; Müller, T.; Rupke, D.S.N.; Engelbracht, C. Exploring the dust content of galactic winds with Herschel—II. Nearby dwarf galaxies. Mon. Not. R. Astron. Soc. 2018, 477, 699–726. [Google Scholar] [CrossRef]
- Suzuki, T.; Kaneda, H.; Onaka, T.; Yamagishi, M.; Ishihara, D.; Kokusho, T.; Tsuchikawa, T. Enhanced dust emissivity power-law index along the western H α filament of NGC 1569. Mon. Not. R. Astron. Soc. 2018, 477, 3065–3075. [Google Scholar] [CrossRef]
- Engelbracht, C.W.; Kundurthy, P.; Gordon, K.D.; Rieke, G.H.; Kennicutt, R.C.; Smith, J.D.T.; Regan, M.W.; Makovoz, D.; Sosey, M.; Draine, B.T.; et al. Extended Mid-Infrared Aromatic Feature Emission in M82. Astrophys. J. 2006, 642, L127–L132. [Google Scholar] [CrossRef] [Green Version]
- Yamagishi, M.; Kaneda, H.; Ishihara, D.; Kondo, T.; Onaka, T.; Suzuki, T.; Minh, Y.C. AKARI near-infrared spectroscopy of the aromatic and aliphatic hydrocarbon emission features in the galactic superwind of M 82. Astron. Astrophys. 2012, 541, A10. [Google Scholar] [CrossRef] [Green Version]
- Onaka, T.; Matsumoto, H.; Sakon, I.; Kaneda, H. Detection of unidentified infrared bands in a Hα filament in the dwarf galaxy NGC 1569 with AKARI. Astron. Astrophys. 2010, 514, A15. [Google Scholar] [CrossRef]
- McCormick, A.; Veilleux, S.; Rupke, D.S.N. Dusty Winds: Extraplanar Polycyclic Aromatic Hydrocarbon Features of Nearby Galaxies. Astrophys. J. 2013, 774, 126. [Google Scholar] [CrossRef]
- Shopbell, P.L.; Bland-Hawthorn, J. The Asymmetric Wind in M82. Astrophys. J. 1998, 493, 129–153. [Google Scholar] [CrossRef] [Green Version]
- Lockhart, K.E.; Kewley, L.J.; Lu, J.R.; Allen, M.G.; Rupke, D.; Calzetti, D.; Davies, R.I.; Dopita, M.A.; Engel, H.; Heckman, T.M.; et al. HST/WFC3 Observations of an Off-nuclear Superbubble in Arp 220. Astrophys. J. 2015, 810, 149. [Google Scholar] [CrossRef]
- Rupke, D.S.N.; Veilleux, S. Breaking the Obscuring Screen: A Resolved Molecular Outflow in a Buried QSO. Astrophys. J. 2013, 775, L15. [Google Scholar] [CrossRef]
- Marconi, A.; Oliva, E.; van der Werf, P.P.; Maiolino, R.; Schreier, E.J.; Macchetto, F.; Moorwood, A.F.M. The elusive active nucleus of NGC 4945. Astron. Astrophys. 2000, 357, 24–36. [Google Scholar]
- Su, M.; Slatyer, T.R.; Finkbeiner, D.P. Giant Gamma-ray Bubbles from Fermi-LAT: Active Galactic Nucleus Activity or Bipolar Galactic Wind? Astrophys. J. 2010, 724, 1044–1082. [Google Scholar] [CrossRef]
- Ackermann, M.; Albert, A.; Atwood, W.B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Bissaldi, E.; Blandford, R.D.; et al. The Spectrum and Morphology of the Fermi Bubbles. Astrophys. J. 2014, 793, 64. [Google Scholar] [CrossRef]
- Crocker, R.M.; Bicknell, G.V.; Taylor, A.M.; Carretti, E. A Unified Model of the Fermi Bubbles, Microwave Haze, and Polarized Radio Lobes: Reverse Shocks in the Galactic Center’s Giant Outflows. Astrophys. J. 2015, 808, 107. [Google Scholar] [CrossRef]
- Yang, H.Y.; Ruszkowski, M.; Zweibel, E. Unveiling the Origin of the Fermi Bubbles. Galaxies 2018, 6, 29. [Google Scholar] [CrossRef]
- Carretti, E.; Crocker, R.M.; Staveley-Smith, L.; Haverkorn, M.; Purcell, C.; Gaensler, B.M.; Bernardi, G.; Kesteven, M.J.; Poppi, S. Giant magnetized outflows from the centre of the Milky Way. Nature 2013, 493, 66–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Planck Collaboration; Ade, P.A.R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday, A.J.; et al. A.R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday, A.J.; et al. Planck intermediate results. IX. Detection of the Galactic haze with Planck. Astron. Astrophys. 2013, 554, A139. [Google Scholar]
- McClure-Griffiths, N.M.; Green, J.A.; Hill, A.S.; Lockman, F.J.; Dickey, J.M.; Gaensler, B.M.; Green, A.J. Atomic Hydrogen in a Galactic Center Outflow. Astrophys. J. 2013, 770, L4. [Google Scholar] [CrossRef]
- Lockman, F.J.; McClure-Griffiths, N.M. Tracing the Milky Way Nuclear Wind with 21 cm Atomic Hydrogen Emission. Astrophys. J. 2016, 826, 215. [Google Scholar] [CrossRef]
- Di Teodoro, E.M.; McClure-Griffiths, N.M.; Lockman, F.J.; Denbo, S.R.; Endsley, R.; Ford, H.A.; Harrington, K. Blowing in the Milky Way Wind: Neutral Hydrogen Clouds Tracing the Galactic Nuclear Outflow. Astrophys. J. 2018, 855, 33. [Google Scholar] [CrossRef] [Green Version]
- Fang, T.; Jiang, X. High Resolution X-Ray Spectroscopy of the Local Hot Gas along the 3C 273 Sightline. Astrophys. J. 2014, 785, L24. [Google Scholar] [CrossRef]
- Bordoloi, R.; Fox, A.J.; Lockman, F.J.; Wakker, B.P.; Jenkins, E.B.; Savage, B.D.; Hernandez, S.; Tumlinson, J.; Bland- Hawthorn, J.; Kim, T.S. Mapping the Nuclear Outflow of the Milky Way: Studying the Kinematics and Spatial Extent of the Northern Fermi Bubble. Astrophys. J. 2017, 834, 191. [Google Scholar] [CrossRef]
- Savage, B.D.; Kim, T.S.; Fox, A.J.; Massa, D.; Bordoloi, R.; Jenkins, E.B.; Lehner, N.; Bland-Hawthorn, J.; Lockman, F.J.; Hernandez, S.; et al. Probing the Outflowing Multiphase Gas ∼1 kpc below the Galactic Center. Astrophys. J. Suppl. Ser. 2017, 232, 25. [Google Scholar] [CrossRef] [Green Version]
- Karim, M.T.; Fox, A.J.; Jenkins, E.B.; Bordoloi, R.; Wakker, B.P.; Savage, B.D.; Lockman, F.J.; Crawford, S.M.; Jorgenson, R.A.; Bland-Hawthorn, J. Probing the Southern Fermi Bubble in Ultraviolet Absorption Using Distant AGNs. Astrophys. J. 2018, 860, 98. [Google Scholar] [CrossRef] [Green Version]
- Barger, K.A.; Lehner, N.; Howk, J.C. Down-the-barrel and Transverse Observations of the Large Magellanic Cloud: Evidence for a Symmetric Galactic Wind on the Near and Far Sides of the Galaxy. Astrophys. J. 2016, 817, 91. [Google Scholar] [CrossRef]
- Pettini, M.; Steidel, C.C.; Adelberger, K.L.; Dickinson, M.; Giavalisco, M. The Ultraviolet Spectrum of MS 1512-CB58: An Insight into Lyman-Break Galaxies. Astrophys. J. 2000, 528, 96–107. [Google Scholar] [CrossRef]
- Pettini, M.; Shapley, A.E.; Steidel, C.C.; Cuby, J.G.; Dickinson, M.; Moorwood, A.F.M.; Adelberger, K.L.; Giavalisco, M. The Rest-Frame Optical Spectra of Lyman Break Galaxies: Star Formation, Extinction, Abundances, and Kinematics. Astrophys. J. 2001, 554, 981–1000. [Google Scholar] [CrossRef]
- Steidel, C.C.; Erb, D.K.; Shapley, A.E.; Pettini, M.; Reddy, N.; Bogosavljević, M.; Rudie, G.C.; Rakic, O. The Structure and Kinematics of the Circumgalactic Medium from Far- ultraviolet Spectra of z ~= 2–3 Galaxies. Astrophys. J. 2010, 717, 289–322. [Google Scholar] [CrossRef]
- Genzel, R.; Newman, S.; Jones, T.; Förster Schreiber, N.M.; Shapiro, K.; Genel, S.; Lilly, S.J.; Renzini, A.; Tacconi, L.J.; Bouché, N.; et al. The Sins Survey of z ~2 Galaxy Kinematics: Properties of the Giant Star-forming Clumps. Astrophys. J. 2011, 733, 101. [Google Scholar] [CrossRef]
- Le Tiran, L.; Lehnert, M.D.; van Driel, W.; Nesvadba, N.P.H.; Di Matteo, P. The average optical spectra of intense starbursts at z ~2: Outflows and the pressurization of the ISM. Astron. Astrophys. 2011, 534, L4. [Google Scholar] [CrossRef]
- Newman, S.F.; Shapiro Griffin, K.; Genzel, R.; Davies, R.; Förster-Schreiber, N.M.; Tacconi, L.J.; Kurk, J.; Wuyts, S.; Genel, S.; Lilly, S.J.; et al. Shocked Superwinds from the z ~2 Clumpy Star-forming Galaxy, ZC406690. Astrophys. J. 2012, 752, 111. [Google Scholar] [CrossRef]
- Newman, S.F.; Genzel, R.; Förster-Schreiber, N.M.; Shapiro Griffin, K.; Mancini, C.; Lilly, S.J.; Renzini, A.; Bouché, N.; Burkert, A.; Buschkamp, P.; et al. The SINS/zC-SINF Survey of z ~2 Galaxy Kinematics: Outflow Properties. Astrophys. J. 2012, 761, 43. [Google Scholar] [CrossRef]
- Wisnioski, E.; Mendel, J.T.; Förster Schreiber, N.M.; Genzel, R.; Wilman, D.; Wuyts, S.; Belli, S.; Beifiori, A.; Bender, R.; Brammer, G.; et al. The KMOS3D Survey: Rotating Compact Star-forming Galaxies and the Decomposition of Integrated Line Widths. Astrophys. J. 2018, 855, 97. [Google Scholar] [CrossRef]
- Weiner, B.J.; Coil, A.L.; Prochaska, J.X.; Newman, J.A.; Cooper, M.C.; Bundy, K.; Conselice, C.J.; Dutton, A.A.; Faber, S.M.; Koo, D.C.; et al. Ubiquitous Outflows in DEEP2 Spectra of Star-Forming Galaxies at z = 1.4. Astrophys. J. 2009, 692, 187–211. [Google Scholar] [CrossRef]
- Rubin, K.H.R.; Weiner, B.J.; Koo, D.C.; Martin, C.L.; Prochaska, J.X.; Coil, A.L.; Newman, J.A. The Persistence of Cool Galactic Winds in High Stellar Mass Galaxies between z ~1.4 and ~1. Astrophys. J. 2010, 719, 1503–1525. [Google Scholar] [CrossRef]
- Banerji, M.; Chapman, S.C.; Smail, I.; Alaghband- Zadeh, S.; Swinbank, A.M.; Dunlop, J.S.; Ivison, R.J.; Blain, A.W. Luminous starbursts in the redshift desert at z ~1–2: Star formation rates, masses and evidence for outflows. Mon. Not. R. Astron. Soc. 2011, 418, 1071–1088. [Google Scholar] [CrossRef]
- Kornei, K.A.; Shapley, A.E.; Martin, C.L.; Coil, A.L.; Lotz, J.M.; Schiminovich, D.; Bundy, K.; Noeske, K.G. The Properties and Prevalence of Galactic Outflows at z ~1 in the Extended Groth Strip. Astrophys. J. 2012, 758, 135. [Google Scholar] [CrossRef]
- Erb, D.K.; Quider, A.M.; Henry, A.L.; Martin, C.L. Galactic Outflows in Absorption and Emission: Near-ultraviolet Spectroscopy of Galaxies at 1 < z < 2. Astrophys. J. 2012, 759, 26. [Google Scholar]
- Martin, C.L.; Shapley, A.E.; Coil, A.L.; Kornei, K.A.; Bundy, K.; Weiner, B.J.; Noeske, K.G.; Schiminovich, D. Demographics and Physical Properties of Gas Outflows/Inflows at 0.4 < z < 1.4. Astrophys. J. 2012, 760, 127. [Google Scholar]
- Bradshaw, E.J.; Almaini, O.; Hartley, W.G.; Smith, K.T.; Conselice, C.J.; Dunlop, J.S.; Simpson, C.; Chuter, R.W.; Cirasuolo, M.; Foucaud, S.; et al. High-velocity outflows from young star-forming galaxies in the UKIDSS Ultra-Deep Survey. Mon. Not. R. Astron. Soc. 2013, 433, 194–208. [Google Scholar] [CrossRef] [Green Version]
- Bordoloi, R.; Lilly, S.J.; Hardmeier, E.; Contini, T.; Kneib, J.P.; Le Fevre, O.; Mainieri, V.; Renzini, A.; Scodeggio, M.; Zamorani, G.; et al. The Dependence of Galactic Outflows on the Properties and Orientation of zCOSMOS Galaxies at z ~1. Astrophys. J. 2014, 794, 130. [Google Scholar] [CrossRef]
- Rubin, K.H.R.; Prochaska, J.X.; Koo, D.C.; Phillips, A.C.; Martin, C.L.; Winstrom, L.O. Evidence for Ubiquitous Collimated Galactic-scale Outflows along the Star-forming Sequence at z ~0.5. Astrophys. J. 2014, 794, 156. [Google Scholar] [CrossRef]
- Finley, H.; Bouché, N.; Contini, T.; Paalvast, M.; Boogaard, L.; Maseda, M.; Bacon, R.; Blaizot, J.; Brinchmann, J.; Epinat, B.; et al. The MUSE Hubble Ultra Deep Field Survey. VII. Fe II* emission in star- forming galaxies. Astron. Astrophys. 2017, 608, A7. [Google Scholar] [CrossRef]
- Prochaska, J.X.; Kasen, D.; Rubin, K. Simple Models of Metal-line Absorption and Emission from Cool Gas Outflows. Astrophys. J. 2011, 734, 24. [Google Scholar] [CrossRef]
- Williams, C.C.; Giavalisco, M.; Lee, B.; Tundo, E.; Mobasher, B.; Nayyeri, H.; Ferguson, H.C.; Koekemoer, A.; Trump, J.R.; Cassata, P.; et al. The Interstellar Medium and Feedback in the Progenitors of the Compact Passive Galaxies at z ~2. Astrophys. J. 2015, 800, 21. [Google Scholar] [CrossRef]
- Sugahara, Y.; Ouchi, M.; Lin, L.; Martin, C.L.; Ono, Y.; Harikane, Y.; Shibuya, T.; Yan, R. Evolution of Galactic Outflows at z∼0–2 Revealed with SDSS, DEEP2, and Keck Spectra. Astrophys. J. 2017, 850, 51. [Google Scholar] [CrossRef]
- Du, X.; Shapley, A.E.; Reddy, N.A.; Jones, T.; Stark, D.P.; Steidel, C.C.; Strom, A.L.; Rudie, G.C.; Erb, D.K.; Ellis, R.S.; et al. The Redshift Evolution of Rest-UV Spectroscopic Properties in Lyman- break Galaxies at z ~2–4. Astrophys. J. 2018, 860, 75. [Google Scholar] [CrossRef]
- Du, X.; Shapley, A.E.; Martin, C.L.; Coil, A.L. The Kinematics of C IV in Star-forming Galaxies at z ≈ 1.2. Astrophys. J. 2016, 829, 64. [Google Scholar]
- Chisholm, J.; Bordoloi, R.; Rigby, J.R.; Bayliss, M. Feeding the fire: Tracing the mass-loading of 107 K galactic outflows with O VI absorption. Mon. Not. R. Astron. Soc. 2018, 474, 1688–1704. [Google Scholar] [CrossRef]
- Rubin, K.H.R.; Prochaska, J.X.; Ménard, B.; Murray, N.; Kasen, D.; Koo, D.C.; Phillips, A.C. Low-ionization Line Emission from a Starburst Galaxy: A New Probe of a Galactic-scale Outflow. Astrophys. J. 2011, 728, 55. [Google Scholar] [CrossRef]
- Kornei, K.A.; Shapley, A.E.; Martin, C.L.; Coil, A.L.; Lotz, J.M.; Weiner, B.J. Fine-structure Fe II* Emission and Resonant Mg II Emission in z ~1 Star-forming Galaxies. Astrophys. J. 2013, 774, 50. [Google Scholar] [CrossRef]
- Bordoloi, R.; Rigby, J.R.; Tumlinson, J.; Bayliss, M.B.; Sharon, K.; Gladders, M.G.; Wuyts, E. Spatially resolved galactic wind in lensed galaxy RCSGA 032727-132609. Mon. Not. R. Astron. Soc. 2016, 458, 1891–1908. [Google Scholar] [CrossRef] [Green Version]
- Finley, H.; Bouché, N.; Contini, T.; Epinat, B.; Bacon, R.; Brinchmann, J.; Cantalupo, S.; Erroz-Ferrer, S.; Marino, R.A.; Maseda, M.; et al. Galactic winds with MUSE: A direct detection of Fe II* emission from a z = 1.29 galaxy. Astron. Astrophys. 2017, 605, A118. [Google Scholar] [CrossRef]
- Coil, A.L.; Weiner, B.J.; Holz, D.E.; Cooper, M.C.; Yan, R.; Aird, J. Outflowing Galactic Winds in Post-starburst and Active Galactic Nucleus Host Galaxies at 0.2 < z < 0.8. Astrophys. J. 2011, 743, 46. [Google Scholar]
- Martin, C.L.; Shapley, A.E.; Coil, A.L.; Kornei, K.A.; Murray, N.; Pancoast, A. Scattered Emission from z ~1 Galactic Outflows. Astrophys. J. 2013, 770, 41. [Google Scholar] [CrossRef]
- Pettini, M.; Rix, S.A.; Steidel, C.C.; Adelberger, K.L.; Hunt, M.P.; Shapley, A.E. New Observations of the Interstellar Medium in the Lyman Break Galaxy MS 1512-cB58. Astrophys. J. 2002, 569, 742–757. [Google Scholar] [CrossRef]
- Jones, T.; Stark, D.P.; Ellis, R.S. Dust in the Wind: Composition and Kinematics of Galaxy Outflows at the Peak Epoch of Star Formation. Astrophys. J. 2018, 863, 191. [Google Scholar] [CrossRef]
- Tremonti, C.A.; Moustakas, J.; Diamond-Stanic, A.M. The Discovery of 1000 km s−1 Outflows in Massive Poststarburst Galaxies at z = 0.6. Astrophys. J. 2007, 663, L77–L80. [Google Scholar] [CrossRef]
- Diamond-Stanic, A.M.; Moustakas, J.; Tremonti, C.A.; Coil, A.L.; Hickox, R.C.; Robaina, A.R.; Rudnick, G.H.; Sell, P.H. High-velocity Outflows without AGN Feedback: Eddington-limited Star Formation in Compact Massive Galaxies. Astrophys. J. 2012, 755, L26. [Google Scholar] [CrossRef]
- Kacprzak, G.G.; Churchill, C.W.; Nielsen, N.M. Tracing Outflows and Accretion: A Bimodal Azimuthal Dependence of Mg II Absorption. Astrophys. J. 2012, 760, L7. [Google Scholar] [CrossRef]
- Kacprzak, G.G.; Muzahid, S.; Churchill, C.W.; Nielsen, N.M.; Charlton, J.C. The Azimuthal Dependence of Outflows and Accretion Detected Using O VI Absorption. Astrophys. J. 2015, 815, 22. [Google Scholar] [CrossRef]
- Bouché, N.; Hohensee, W.; Vargas, R.; Kacprzak, G.G.; Martin, C.L.; Cooke, J.; Churchill, C.W. Physical properties of galactic winds using background quasars. Mon. Not. R. Astron. Soc. 2012, 426, 801–815. [Google Scholar] [CrossRef] [Green Version]
- Schroetter, I.; Bouché, N.; Péroux, C.; Murphy, M.T.; Contini, T.; Finley, H. The VLT SINFONI Mg II Program for Line Emitters (SIMPLE). II. Background Quasars Probing Z ~1 Galactic Winds. Astrophys. J. 2015, 804, 83. [Google Scholar] [CrossRef]
- Muzahid, S.; Kacprzak, G.G.; Churchill, C.W.; Charlton, J.C.; Nielsen, N.M.; Mathes, N.L.; Trujillo-Gomez, S. An Extreme Metallicity, Large-scale Outflow from a Star-forming Galaxy at z ~0.4. Astrophys. J. 2015, 811, 132. [Google Scholar] [CrossRef]
- Erb, D.K. Feedback in low-mass galaxies in the early Universe. Nature 2015, 523, 169–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hashimoto, T.; Ouchi, M.; Shimasaku, K.; Ono, Y.; Nakajima, K.; Rauch, M.; Lee, J.; Okamura, S. Gas Motion Study of Lyα Emitters at z ~2 Using FUV and Optical Spectral Lines. Astrophys. J. 2013, 765, 70. [Google Scholar] [CrossRef]
- Shibuya, T.; Ouchi, M.; Nakajima, K.; Hashimoto, T.; Ono, Y.; Rauch, M.; Gauthier, J.R.; Shimasaku, K.; Goto, R.; Mori, M.; et al. What is the Physical Origin of Strong Lyα Emission? II. Gas Kinematics and Distribution of Lyα Emitters. Astrophys. J. 2014, 788, 74. [Google Scholar] [CrossRef]
- Erb, D.K.; Steidel, C.C.; Trainor, R.F.; Bogosavljević, M.; Shapley, A.E.; Nestor, D.B.; Kulas, K.R.; Law, D.R.; Strom, A.L.; Rudie, G.C.; et al. The Lyα Properties of Faint Galaxies at z ~2–3 with Systemic Redshifts and Velocity Dispersions from Keck-MOSFIRE. Astrophys. J. 2014, 795, 33. [Google Scholar] [CrossRef]
- Geach, J.E.; Tremonti, C.; Diamond-Stanic, A.M.; Sell, P.H.; Kepley, A.A.; Coil, A.L.; Rudnick, G.; Hickox, R.C.; Moustakas, J.; Yang, Y. Violent Quenching: Molecular Gas Blown to 1000 km s−1 during a Major Merger. Astrophys. J. 2018, 864, L1. [Google Scholar] [CrossRef]
- George, R.D.; Ivison, R.J.; Smail, I.; Swinbank, A.M.; Hopwood, R.; Stanley, F.; Swinyard, B.M.; Valtchanov, I.; Werf, P.V. Herschel reveals a molecular outflow in a z = 2.3 ULIRG. Mon. Not. R. Astron. Soc. 2014, 442, 1877–1883. [Google Scholar] [CrossRef] [Green Version]
- Falgarone, E.; Zwaan, M.A.; Godard, B.; Bergin, E.; Ivison, R.J.; Andreani, P.M.; Bournaud, F.; Bussmann, R.S.; Elbaz, D.; Omont, A.; et al. Large turbulent reservoirs of cold molecular gas around high-redshift starburst galaxies. Nature 2017, 548, 430–433. [Google Scholar] [CrossRef] [Green Version]
- Gallerani, S.; Pallottini, A.; Feruglio, C.; Ferrara, A.; Maiolino, R.; Vallini, L.; Riechers, D.A.; Pavesi, R. ALMA suggests outflows in z ~5.5 galaxies. Mon. Not. R. Astron. Soc. 2018, 473, 1909–1917. [Google Scholar] [CrossRef]
- Spilker, J.S.; Aravena, M.; Béthermin, M.; Chapman, S.C.; Chen, C.C.; Cunningham, D.J.M.; De Breuck, C.; Dong, C.; Gonzalez, A.H.; Hayward, C.C.; et al. Fast molecular outflow from a dusty star-forming galaxy in the early Universe. Science 2018, 361, 1016–1019. [Google Scholar] [CrossRef] [PubMed]
- Bryant, J.J.; Bland-Hawthorn, J.; Lawrence, J.; Croom, S.; Brown, D.; Venkatesan, S.; Gillingham, P.R.; Zhelem, R.; Content, R.; Saunders, W.; et al. Hector: A new massively multiplexed IFU instrument for the Anglo-Australian Telescope. In Proceedings of the Ground-based and Airborne Instrumentation for Astronomy VI, Edinburgh, UK, 26 June–1 July 2016; Volume 9908, p. 99081F. [Google Scholar]
- Kepley, A.A.; Mühle, S.; Everett, J.; Zweibel, E.G.; Wilcots, E.M.; Klein, U. The Role of the Magnetic Field in the Interstellar Medium of the Post- Starburst Dwarf Irregular Galaxy NGC 1569. Astrophys. J. 2010, 712, 536–557. [Google Scholar] [CrossRef]
- Leslie, S.K.; Bryant, J.J.; Ho, I.T.; Sadler, E.M.; Medling, A.M.; Groves, B.; Kewley, L.J.; Bland-Hawthorn, J.; Croom, S.M.; Wong, O.I.; et al. The SAMI Galaxy Survey: Disc-halo interactions in radio-selected star- forming galaxies. Mon. Not. R. Astron. Soc. 2017, 471, 2438–2452. [Google Scholar] [CrossRef]
- Ramírez-Olivencia, N.; Varenius, E.; Pérez-Torres, M.; Alberdi, A.; Pérez, E.; Alonso-Herrero, A.; Deller, A.; Herrero-Illana, R.; Moldón, J.; Barcos-Muñoz, L.; et al. Sub-arcsecond imaging of Arp 299-A at 150 MHz with LOFAR: Evidence for a starburst-driven outflow. Astron. Astrophys. 2018, 610, L18. [Google Scholar] [CrossRef] [Green Version]
- O’Sullivan, E.; Zezas, A.; Vrtilek, J.M.; Giacintucci, S.; Trevisan, M.; David, L.P.; Ponman, T.J.; Mamon, G.A.; Raychaudhury, S. Deep Chandra Observations of HCG 16. I. Active Nuclei, Star Formation, and Galactic Winds. Astrophys. J. 2014, 793, 73. [Google Scholar] [CrossRef]
- McQuinn, K.B.W.; Skillman, E.D.; Heilman, T.N.; Mitchell, N.P.; Kelley, T. Galactic outflows, star formation histories, and time-scales in starburst dwarf galaxies from STARBIRDS. Mon. Not. R. Astron. Soc. 2018, 477, 3164–3177. [Google Scholar] [CrossRef]
1. | This quantity has an uncertain physical interpretation, though at face value it might quantify the capability of a wind to act as negative feedback on star formation. The logic is: if , then more gas is leaving the region than is forming stars. Thus, the outflow is going to deplete gas more quickly than star formation (maybe leading to fewer stars in the end). It is sometimes referred to as the mass-loading efficiency or factor, perhaps suggesting that it measures the amount of gas that is “loaded” into the wind as it moves through the galaxy. That is, it is the ratio of the mass of gas that eventually emerges from star-forming regions to the mass of outflowing gas that is initially produced by star formation through, e.g., stellar winds and supernovae. However, it is not a direct measure of this. The term mass-loading originated with studies of how much cool, ambient gas is mixed into a hot wind phase in the model of a wind driven by a hot fluid. |
Axes | Tracer | IP (eV) | N | Range | Slope | p | Reference |
---|---|---|---|---|---|---|---|
vs. SFR | SiII | 16.3 | 48 | M year | 0.22 ± 0.04 | <0.001 | [28] |
vs. SFR | NaI | 5.1 | 41 | M year | 0.35 ± 0.06 | ⋯ | [33] |
vs. SFR | NaI | 5.1 | 13 | M year | 0.15 ± 0.06 | ⋯ | [34] |
vs. SFR | NaI | 5.1 | 13 | M year | 0.30 ± 0.05 | ⋯ | [34] |
vs. SFR | SiII | 16.3 | 48 | M year | 0.08 ± 0.02 | 0.002 | [28] |
vs. SFR | NaI | 5.1 | 59 | M year | 0.21 ± 0.04 | <0.001 | [23] |
vs. SFR | HI, NII | 13.6–29.6 | 48 | M year | 0.24 ± 0.05 | <0.001 | [35] |
vs. SFR | SiII, CII, MgII | 15.0–24.4 | 48 | M year | 0.32 ± 0.02 | <0.0001 | [29] |
vs. | SiII | 16.3 | 48 | 0.20 ± 0.05 | 0.002 | [28] | |
vs. | SiII | 16.3 | 48 | 0.12 ± 0.03 | 0.003 | [28] | |
vs. | NaI | 5.1 | 52 | ⋯ | 0.28 ± 0.08 | <0.001 | [23] |
vs. | SiII | 16.3 | 48 | km s | 0.87 ± 0.17 | 0.002 | [28] |
vs. | NaI | 5.1 | 20 | km s | 0.85 ± 0.15 | <0.001 | [23] |
vs. | SiII | 16.3 | 48 | km s | 0.44 ± 0.09 | 0.003 | [28] |
vs. | SiII, CII, MgII | 15.0–24.4 | 48 | km s | 1.16 ± 0.37 | <0.0001 | [29] |
vs. | OI, SiII–SiIV | 13.6–45.1 | 7 | −0.43 ± 0.07 | <0.001 | [36] | |
vs. | HI, NII | 13.6–29.6 | 33 | −0.43 | ⋯ | [35] | |
vs. | NaI | 5.1 | 42 | −0.95 ± 0.20 | 0.006 | [23] | |
vs. | OI, SiII–SiIV | 13.6–45.1 | 7 | ⋯ | −1.56 ± 0.25 | <0.001 | [36] |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rupke, D.S.N. A Review of Recent Observations of Galactic Winds Driven by Star Formation. Galaxies 2018, 6, 138. https://doi.org/10.3390/galaxies6040138
Rupke DSN. A Review of Recent Observations of Galactic Winds Driven by Star Formation. Galaxies. 2018; 6(4):138. https://doi.org/10.3390/galaxies6040138
Chicago/Turabian StyleRupke, David S. N. 2018. "A Review of Recent Observations of Galactic Winds Driven by Star Formation" Galaxies 6, no. 4: 138. https://doi.org/10.3390/galaxies6040138
APA StyleRupke, D. S. N. (2018). A Review of Recent Observations of Galactic Winds Driven by Star Formation. Galaxies, 6(4), 138. https://doi.org/10.3390/galaxies6040138