A Review of the Theory of Galactic Winds Driven by Stellar Feedback
Abstract
:1. Introduction
1.1. Impact of Galactic Winds Driven by Stellar Feedback
1.2. Multiphase Structure
2. Galactic Winds Driven by Supernova Explosions
2.1. Impact of Supernovae and Supernova Remnants on the ISM
2.2. The CC85 Model
2.3. The CC85 Model with Radiative Cooling
2.4. Acceleration of Warm, Cool and Cold Clouds in Hot Winds
3. Galactic Winds Driven by Radiation Pressure
3.1. Radiation Feedback, and Radiation Pressure on Dust
3.2. Analytical Models for Dusty Shell Acceleration by Radiation Pressure
3.3. Self-gravitating Luminous Disks
3.4. Coupling between Radiation Field and Dusty Gas
3.5. Radiation Feedback in Star Clusters
4. Galactic Winds Driven by Cosmic Rays
4.1. Some Early Work and Analytic Work
4.2. Recent Numerical Simulations
- (1)
- Other Sources. The mass, momentum and energy injection rates by other sources depend on the models of galaxies. Here is the combination of the mass injection rate by sources including jets, stellar and SN-driven winds subtracting the mass used for star formation e.g., [400]. The momentum injection rate can be provided by SNe or radiation in the absence of AGNs. The energy rate is also given by SNe, and radiative cooling needs to be subtracted from this term.
- (2)
- Alfvén Wave Damping. As discussed by early theoretical work e.g., [371,373,374,378,379], the energy source term is caused by Alfvén wave damping, which is still not completely understood [366,382,401]. The damping mechanisms include the ion-neutral damping, which is caused by the friction between ions and neutrals [404,405,406,407], linear and nonlinear Landau damping [408,409,410,411,412,413], and turbulent damping [365,366,413,414,415,416]. Everett & Zweibel [417] considered both ion-neutral and nonlinear Landau damping, and found that these damping mechanisms are only important if the magnetic fields are above ≳G, or high CR pressure (∼). The CR diffusion also depends on the wave damping.
- (3)
- CR Diffusion. The scattering term in Equation (72) includes CR diffusion and streaming. The diffusion term is usually written as , where is the diffusion coefficient. For isotropic CR diffusion, the diffusion term can be rewritten as [418]
- (4)
- CR Streaming. A widely used CR streaming model for galactic wind simulations calculates the streaming velocity as with being the Alfvén velocity, and the energy term contributed by streaming is . The CR energy flux due to streaming is given by , and the total CR energy flux including the diffusive flux along the direction of local magnetic field is . In the self-confinement scenario, in which CRs scatter on waves excited by the stream instability [365,376,377,382], an effective draft speed is used to replace , and the factor f can be calculated by balancing the wave growth rate with the wave damping rate [394,427,428].
5. Conclusions and Discussion
Funding
Acknowledgments
Conflicts of Interest
References
- Lynds, C.R.; Sandage, A.R. Evidence for an Explosion in the Center of the Galaxy M82. Astrophys. J. 1963, 137, 1005–1021. [Google Scholar] [CrossRef]
- Burbidge, E.M.; Burbidge, G.R.; Rubin, V.C. A Study of the Velocity Field in M82 and its Bearing on Explosive Phenomena in that Galaxy. Astrophys. J. 1964, 140, 942–968. [Google Scholar] [CrossRef]
- Schmidt, M. 3C 273: A Star-Like Object with Large Red-Shift. Nature 1963, 197, 1040. [Google Scholar] [CrossRef]
- Hoyle, F.; Fowler, W.A. Nature of Strong Radio Sources. Nature 1963, 197, 533–535. [Google Scholar] [CrossRef]
- Hoyle, F.; Fowler, W.A. On the nature of strong radio sources. Mon. Not. R. Astron. Soc. 1963, 125, 169–176. [Google Scholar] [CrossRef]
- Salpeter, E.E. Accretion of Interstellar Matter by Massive Objects. Astrophys. J. 1964, 140, 796–800. [Google Scholar] [CrossRef]
- Zel’dovich, Y.B. The Fate of a Star and the Evolution of Gravitational Energy Upon Accretion. Dokl. Phys. 1964, 9, 195. [Google Scholar]
- Lynden-Bell, D. Galactic Nuclei as Collapsed Old Quasars. Nature 1969, 223, 690–694. [Google Scholar] [CrossRef]
- Lynden-Bell, D.; Rees, M.J. On quasars, dust and the galactic centre. Mon. Not. R. Astron. Soc. 1971, 152, 461–475. [Google Scholar] [CrossRef]
- Veilleux, S.; Cecil, G.; Bland-Hawthorn, J. Galactic Wind. Annu. Rev. Astron. Astrophys. 2005, 43, 769–826. [Google Scholar] [CrossRef]
- Heckman, T.M.; Thompson, T.A. A Brief Review of Galactic Winds. arxiv, 2017; arXiv:1701.09062. [Google Scholar]
- Naab, T.; Ostriker, J.P. Theoretical Challenges in Galaxy Formation. Annu. Rev. Astron. Astrophys. 2017, 55, 59–109. [Google Scholar] [CrossRef] [Green Version]
- Dekel, A.; Silk, J. The origin of dwarf galaxies, cold dark matter, and biased galaxy formation. Astrophys. J. 1986, 303, 39–55. [Google Scholar] [CrossRef]
- Leitherer, C.; Robert, C.; Drissen, L. Deposition of mass, momentum, and energy by massive stars into the interstellar medium. Astrophys. J. 1992, 401, 596–617. [Google Scholar] [CrossRef]
- Heckman, T.M.; Lehnert, M.D.; Armus, L. Galactic Superwinds; Shull, J.M., Thronson, H.A., Jr., Eds.; The Environment and Evolution of GalaxiesL Kluwer: Dordrecht, The Netherlands, 2017; Volume 188, p. 455. [Google Scholar]
- Tomisaka, K.; Bregman, J.N. Extended hot-gas halos around starburst galaxies. Publ. Astron. Soc. Jpn. 1993, 45, 513–528. [Google Scholar]
- Suchkov, A.A.; Balsara, D.S.; Heckman, T.M.; Leitherer, C. Dynamics and X-ray emission of a galactic superwind interacting with disk and halo gas. Astrophys. J. 1994, 430, 511–532. [Google Scholar] [CrossRef]
- Leitherer, C.; Heckman, T.M. Synthetic properties of starburst galaxies. Astrophys. J. Suppl. Ser. 1995, 96, 9–38. [Google Scholar] [CrossRef]
- Heckman, T.M.; Lehnert, M.D.; Strickland, D.K.; Armus, L. Absorption-Line Probes of Gas and Dust in Galactic Superwinds. Astrophys. J. Suppl. Ser. 2000, 129, 493–516. [Google Scholar] [CrossRef]
- Magorrian, J.; Tremaine, S.; Richstone, D. The Demography of Massive Dark Objects in Galaxy Centers. Astron. J. 1998, 115, 2285–2305. [Google Scholar] [CrossRef] [Green Version]
- Silk, J.; Rees, M.J. Quasars and galaxy formation. Astron. Astrophys. 1998, 331, L1–L4. [Google Scholar]
- Haehnelt, M.G.; Natarajan, P.; Rees, M.J. High-redshift galaxies, their active nuclei and central black holes. Mon. Not. R. Astron. Soc. 1998, 300, 817–827. [Google Scholar] [CrossRef] [Green Version]
- Ferrarese, L.; Merritt, D. A Fundamental Relation between Supermassive Black Holes and Their Host Galaxies. Astrophys. J. Lett. 2000, 539, L9–L12. [Google Scholar] [CrossRef]
- Gebhardt, K.; Bender, R.; Bower, G. A Relationship between Nuclear Black Hole Mass and Galaxy Velocity Dispersion. Astrophys. J. Lett. 2000, 539, L13–L16. [Google Scholar] [CrossRef] [Green Version]
- Fabian, A.C. Observational Evidence of Active Galactic Nuclei Feedback. Annu. Rev. Astron. Astrophys. 2012, 50, 455–489. [Google Scholar] [CrossRef] [Green Version]
- Kormendy, J.; Ho, L.C. Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies. Annu. Rev. Astron. Astrophys. 2013, 51, 511–653. [Google Scholar] [CrossRef] [Green Version]
- Heckman, T.M.; Best, P.N. The Coevolution of Galaxies and Supermassive Black Holes: Insights from Surveys of the Contemporary Universe. Annu. Rev. Astron. Astrophys. 2014, 52, 589–660. [Google Scholar] [CrossRef] [Green Version]
- King, A.; Pounds, K. Powerful Outflows and Feedback from Active Galactic Nuclei. Annu. Rev. Astron. Astrophys. 2015, 53, 115–154. [Google Scholar] [CrossRef]
- Di Matteo, T.; Springel, V.; Hernquist, L. Energy input from quasars regulates the growth and activity of black holes and their host galaxies. Nature 2005, 433, 604–607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zubovas, K.; Nayakshin, S.; King, A.; Wilkinson, M. AGN outflows trigger starbursts in gas-rich galaxies. Mon. Not. R. Astron. Soc. 2013, 433, 3079–3090. [Google Scholar] [CrossRef] [Green Version]
- Bieri, R.; Dubois, Y.; Rosdahl, J.; Wagner, A.; Silk, J.; Mamon, G.A. Outflows driven by quasars in high-redshift galaxies with radiation hydrodynamics. Mon. Not. R. Astron. Soc. 2017, 464, 1854–1873. [Google Scholar] [CrossRef]
- Croton, D.J.; Springel, V.; White, S.D.M. The many lives of active galactic nuclei: Cooling flows, black holes and the luminosities and colours of galaxies. Mon. Not. R. Astron. Soc. 2006, 365, 11–28. [Google Scholar] [CrossRef]
- Bower, R.G.; Benson, A.J.; Malbon, R. Breaking the hierarchy of galaxy formation. Mon. Not. R. Astron. Soc. 2006, 370, 645–655. [Google Scholar] [CrossRef] [Green Version]
- McNamara, B.R.; Nulsen, P.E.J. Heating Hot Atmospheres with Active Galactic Nuclei. Annu. Rev. Astron. Astrophys. 2007, 45, 117–175. [Google Scholar] [CrossRef] [Green Version]
- Okamoto, T.; Nemmen, R.S.; Bower, R.G. The impact of radio feedback from active galactic nuclei in cosmological simulations: Formation of disc galaxies. Mon. Not. R. Astron. Soc. 2008, 385, 161–180. [Google Scholar] [CrossRef]
- Gaibler, V.; Khochfar, S.; Krause, M. Asymmetries in extragalactic double radio sources: Clues from 3D simulations of jet-disc interaction. Mon. Not. R. Astron. Soc. 2011, 411, 155–161. [Google Scholar] [CrossRef]
- Guo, F.; Mathews, W.G. The Fermi Bubbles. I. Possible Evidence for Recent AGN Jet Activity in the Galaxy. Astrophys. J. 2012, 756, 181. [Google Scholar] [CrossRef]
- Guo, F. On the Importance of Very Light Internally Subsonic AGN Jets in Radio-mode AGN Feedback. Astrophys. J. 2016, 826, 17. [Google Scholar] [CrossRef]
- Guo, F.; Duan, X.; Yuan, Y.-F. Reversing cooling flows with AGN jets: Shock waves, rarefaction waves and trailing outflows. Mon. Not. R. Astron. Soc. 2018, 473, 1332–1345. [Google Scholar] [CrossRef]
- Duan, X.; Guo, F. Metal-rich Trailing Outflows Uplifted by AGN Bubbles in Galaxy Clusters. Astrophys. J. 2018, 861, 106. [Google Scholar] [CrossRef]
- Salomé, P.; Combes, F.; Edge, A.C. Cold molecular gas in the Perseus cluster core. Association with X-ray cavity, Hα filaments and cooling flow. Astron. Astrophys. 2006, 454, 437–445. [Google Scholar] [CrossRef]
- Guo, F.; Oh, S.P. Could AGN outbursts transform cool core clusters? Mon. Not. R. Astron. Soc. 2009, 400, 1992–1999. [Google Scholar] [CrossRef] [Green Version]
- McNamara, B.R.; Nulsen, P.E.J. Mechanical feedback from active galactic nuclei in galaxies, groups and clusters. New J. Phys. 2012, 14, 055023. [Google Scholar] [CrossRef] [Green Version]
- Gaspari, M.; Ruszkowski, M.; Sharma, P. Cause and Effect of Feedback: Multiphase Gas in Cluster Cores Heated by AGN Jets. Astrophys. J. 2012, 746, 94. [Google Scholar] [CrossRef]
- Ciotti, L.; Pellegrini, S.; Negri, A.; Ostriker, J.P. The Effect of the AGN Feedback on the Interstellar Medium of Early-Type Galaxies:2D Hydrodynamical Simulations of the Low-Rotation Case. Astrophys. J. 2017, 835, 15. [Google Scholar] [CrossRef]
- Reeves, J.N.; O’Brien, P.T.; Braito, V. A Compton-thick Wind in the High-luminosity Quasar, PDS 456. Astrophys. J. 2009, 701, 493–507. [Google Scholar] [CrossRef]
- Tombesi, F.; Cappi, M.; Reeves, J.N.; Palumbo, G.G.C.; Braito, V.; Dadina, M. Evidence for Ultra-fast Outflows in Radio-quiet Active Galactic Nuclei. II. Detailed Photoionization Modeling of Fe K-shell Absorption Lines. Mon. Not. R. Astron. Soc. 2011, 742, 44. [Google Scholar] [CrossRef]
- Tombesi, F.; Cappi, M.; Reeves, J.N.; Braito, V. Evidence for ultrafast outflows in radio-quiet AGNs—III. Location and energetics. Mon. Not. R. Astron. Soc. Lett. 2012, 422, L1–L5. [Google Scholar] [CrossRef]
- Mullaney, J.R.; Alexander, D.M.; Fine, S.; Goulding, A.D.; Harrison, C.M.; Hickox, R.C. Narrow-line region gas kinematics of 24,264 optically selected AGN: The radio connection. Mon. Not. R. Astron. Soc. 2013, 433, 622–638. [Google Scholar] [CrossRef]
- Cicone, C.; Maiolino, R.; Sturm, E. Massive molecular outflows and evidence for AGN feedback from CO observations. Astron. Astrophys. 2014, 562, A21. [Google Scholar] [CrossRef] [Green Version]
- Zakamska, N.L.; Greene, J.E. Quasar feedback and the origin of radio emission in radio-quiet quasars. Mon. Not. R. Astron. Soc. 2014, 442, 784–804. [Google Scholar] [CrossRef] [Green Version]
- Morganti, R. The many routes to AGN feedback. arxiv, 2018; arXiv:1712.05301. [Google Scholar] [CrossRef]
- Rupke, D.S.N.; Veilleux, S. Integral Field Spectroscopy of Massive, Kiloparsec-scale Outflows in the Infrared-luminous QSO Mrk 231. Astrophys. J. Lett. 2011, 729, L27. [Google Scholar] [CrossRef]
- Feruglio, C.; Fiore, F.; Carniani, S. The multi-phase winds of Markarian 231: From the hot, nuclear, ultra-fast wind to the galaxy-scale, molecular outflow. Astron. Astrophys. 2015, 583, A99. [Google Scholar] [CrossRef]
- Morganti, R.; Veilleux, S.; Oosterloo, T.; Teng, S.H.; Rupke, D. Another piece of the puzzle: The fast H I outflow in Mrk 231. Astron. Astrophys. 2016, 593, A30. [Google Scholar] [CrossRef] [Green Version]
- Morganti, R.; Oosterloo, T.; Tsvetanov, Z. A Radio Study of the Seyfert Galaxy IC 5063: Evidence for Fast Gas Outflow. Astron. J. 1998, 115, 915–927. [Google Scholar] [CrossRef] [Green Version]
- Dasyra, K.M.; Combes, F.; Oosterloo, T.; Oonk, J.B.R.; Morganti, R.; Salomé, P.; Vlahakis, N. ALMA reveals optically thin, highly excited CO gas in the jet-driven winds of the galaxy IC 5063. Astron. Astrophys. 2016, 595, L7. [Google Scholar] [CrossRef] [Green Version]
- Oosterloo, T.; Raymond, O.J.B.; Morganti, R. Properties of the molecular gas in the fast outflow in the Seyfert galaxy IC 5063. Astron. Astrophys. 2017, 608, A38. [Google Scholar] [CrossRef] [Green Version]
- Benson, A.J.; Bower, R.G.; Frenk, C.S.; Lacey, C.G.; Baugh, C.M.; Cole, S. What Shapes the Luminosity Function of Galaxies? Astrophys. J. 2003, 599, 38–49. [Google Scholar] [CrossRef] [Green Version]
- Baldry, I.K.; Glazebrook, K.; Driver, S.P. On the galaxy stellar mass function, the mass-metallicity relation, and the implied baryonic mass function. Mon. Not. R. Astron. Soc. 2008, 388, 945–959. [Google Scholar] [CrossRef]
- Li, C.; White, S.D.M. The distribution of stellar mass in the low-redshift Universe. Mon. Not. R. Astron. Soc. 2009, 398, 2177–2187. [Google Scholar] [CrossRef] [Green Version]
- Somerville, R.S.; Hopkins, P.F.; Cox, T.J.; Robertson, B.E.; Hernquist, L. A semi-analytic model for the co-evolution of galaxies, black holes and active galactic nuclei. Mon. Not. R. Astron. Soc. 2008, 391, 481–506. [Google Scholar] [CrossRef] [Green Version]
- Vogelsberger, M.; Genel, S.; Springel, V. Properties of galaxies reproduced by a hydrodynamic simulation. Nature 2014, 509, 177–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mo, H.J.; Yang, X.; van den Bosch, F.C.; Jing, Y.P. The dependence of the galaxy luminosity function on large-scale environment. Mon. Not. R. Astron. Soc. 2004, 349, 205–212. [Google Scholar] [CrossRef] [Green Version]
- Puchwein, E.; Springel, V. Shaping the galaxy stellar mass function with supernova- and AGN-driven winds. Mon. Not. R. Astron. Soc. 2013, 428, 2966–2979. [Google Scholar] [CrossRef]
- Schaye, J.; Crain, R.A.; Bower, R.G. The EAGLE project: Simulating the evolution and assembly of galaxies and their environments. Mon. Not. R. Astron. Soc. 2015, 446, 521–554. [Google Scholar] [CrossRef]
- Davé, R.; Rafieferantsoa, M.H.; Thompson, R.J.; Hopkins, P.F. MUFASA: Galaxy star formation, gas, and metal properties across cosmic time. Mon. Not. R. Astron. Soc. 2017, 467, 115–132. [Google Scholar] [CrossRef]
- Tremonti, C.A.; Heckman, T.M.; Kauffmann, G. The Origin of the Mass-Metallicity Relation: Insights from 53,000 Star-forming Galaxies in the Sloan Digital Sky Survey. Astrophys. J. 2004, 613, 898–913. [Google Scholar] [CrossRef]
- Finlator, K.; Davé, R. The Origin of the Galaxy Mass-Metallicity Relation and Implications for Galactic Outflows. Mon. Not. R. Astron. Soc. 2008, 385, 2181–2204. [Google Scholar] [CrossRef]
- Peeples, M.S.; Shankar, F. Constraints on Star-Formation Driven Galaxy Winds from the Mass-Metallicity Relation at z = 0. Mon. Not. R. Astron. Soc. 2011, 417, 2962–2981. [Google Scholar] [CrossRef]
- Andrews, B.H.; Martini, P. The Mass-Metallicity Relation with the Direct Method on Stacked Spectra of SDSS Galaxies. Astrophys. J. 2013, 765, 140. [Google Scholar] [CrossRef]
- Sanders, R.L.; Shapley, A.E.; Kriek, M. The MOSDEF Survey: Mass, Metallicity, and Star-formation Rate at z ∼ 2.3. Astrophys. J. 2015, 799, 138. [Google Scholar] [CrossRef]
- Sánchez, S.F.; Barrera-Ballesteros, J.K.; Sánchez-Menguiano, L. The mass-metallicity relation revisited with CALIFA. Mon. Not. R. Astron. Soc. 2017, 469, 2121–2140. [Google Scholar] [CrossRef]
- Aguirre, A.; Hernquist, L.; Katz, N.; Gardner, J.; Weinberg, D.H. Enrichment of the Intergalactic Medium by Radiation Pressure-driven Dust Efflux. Astrophys. J. Lett. 2001, 556, 11–15. [Google Scholar] [CrossRef]
- Aguirre, A.; Hernquist, L.; Schaye, J.; Weinberg, D.H.; Katz, N.; Gardner, J. Metal Enrichment of the Intergalactic Medium at z = 3 by Galactic Winds. Astrophys. J. 2001, 560, 599–605. [Google Scholar] [CrossRef]
- Aguirre, A.; Dow-Hygelund, C.; Schaye, J.; Theuns, T. Metallicity of the Intergalactic Medium Using Pixel Statistics. IV. Oxygen. Astrophys. J. 2008, 689, 851–864. [Google Scholar] [CrossRef] [Green Version]
- Prochaska, J.X.; Werk, J.K.; Worseck, G. The COS-Halos Survey: Metallicities in the Low-redshift Circumgalactic Medium. Astrophys. J. 2017, 837, 169. [Google Scholar] [CrossRef] [Green Version]
- Springel, V.; Hernquist, L. Cosmological smoothed particle hydrodynamics simulations: A hybrid multiphase model for star formation. Mon. Not. R. Astron. Soc. 2003, 339, 289–311. [Google Scholar] [CrossRef]
- Springel, V.; Hernquist, L. The history of star formation in a Λ cold dark matter universe. Mon. Not. R. Astron. Soc. 2003, 339, 312–334. [Google Scholar] [CrossRef]
- Schaye, J.; Dalla Vecchia, C.; Booth, C.M. The physics driving the cosmic star formation history. Mon. Not. R. Astron. Soc. 2010, 402, 1536–1560. [Google Scholar] [CrossRef] [Green Version]
- Muratov, A.L.; Kereš, D.; Faucher-Giguère, C.-A.; Hopkins, P.F.; Quataert, E.; Murray, N. Gusty, gaseous flows of FIRE: Galactic winds in cosmological simulations with explicit stellar feedback. Mon. Not. R. Astron. Soc. 2015, 454, 2691–2713. [Google Scholar] [CrossRef]
- Bertone, S.; De Lucia, G.; Thomas, P.A. The recycling of gas and metals in galaxy formation: Predictions of a dynamical feedback model. Mon. Not. R. Astron. Soc. 2007, 379, 1143–1154. [Google Scholar] [CrossRef]
- Chisholm, J.; Matsushita, S. The Molecular Baryon Cycle of M82. Astrophys. J. 2016, 830, 72. [Google Scholar] [CrossRef]
- Van de Voort, F. The Effect of Galactic Feedback on Gas Accretion and Wind Recycling. In Gas Accretion onto Galaxies; Fox, A.J., Davé, R., Eds.; Astrophysics and Space Science Library, Springer International Publishing AG: New York, NY, USA, 2017; pp. 301–321. ISBN 978-3-319-52511-2. [Google Scholar]
- Tumlinson, J.; Peeples, M.S.; Werk, J.K. The Circumgalactic Medium. Annu. Rev. Astron. Astrophys. 2017, 55, 389–432. [Google Scholar] [CrossRef] [Green Version]
- Krumholz, M.R.; Kruijssen, J.M.D.; Crocker, R.M. A dynamical model for gas flows, star formation and nuclear winds in galactic centres. Mon. Not. R. Astron. Soc. 2017, 466, 1213–1233. [Google Scholar] [CrossRef]
- Übler, H.; Naab, T.; Oser, L.; Aumer, M.; Sales, L.V.; White, S.D.M. Why stellar feedback promotes disc formation in simulated galaxies. Mon. Not. R. Astron. Soc. 2014, 443, 2092–2111. [Google Scholar] [CrossRef] [Green Version]
- DeFelippis, D.; Genel, S.; Bryan, G.L.; Fall, S.M. The Impact of Galactic Winds on the Angular Momentum of Disk Galaxies in the Illustris Simulation. Astrophys. J. 2017, 841, 16. [Google Scholar] [CrossRef] [Green Version]
- Strickland, D.K.; Stevens, I.R. Starburst-driven galactic winds—I. Energetics and intrinsic X-ray emission. Mon. Not. R. Astron. Soc. 2000, 314, 511–545. [Google Scholar] [CrossRef]
- McDowell, J.C.; Clements, D.L.; Lamb, S.A. Chandra Observations of Extended X-Ray Emission in Arp 220. Astrophys. J. 2003, 591, 154–166. [Google Scholar] [CrossRef]
- Strickland, D.K.; Heckman, T.M. Iron Line and Diffuse Hard X-Ray Emission from the Starburst Galaxy M82. Astrophys. J. 2007, 658, 258–281. [Google Scholar] [CrossRef]
- Strickland, D.K.; Heckman, T.M. Supernova Feedback Efficiency and Mass Loading in the Starburst and Galactic Superwind Exemplar M82. Astrophys. J. 2009, 697, 2030–2056. [Google Scholar] [CrossRef]
- Bravo-Guerrero, J.; Stevens, I.R. Superwind evolution: The young starburst-driven wind galaxy NGC 2782. Mon. Not. R. Astron. Soc. 2017, 467, 3788–3800. [Google Scholar] [CrossRef]
- Shopbell, P.L.; Bland-Hawthorn, J. The Asymmetric Wind in M82. Astrophys. J. 1998, 493, 129–153. [Google Scholar] [CrossRef] [Green Version]
- Cecil, G.; Bland-Hawthorn, J.; Veilleux, S. Tightly Correlated X-ray/Hα-emitting Filaments in the Superbubble and Large-Scale Superwind of NGC 3079. Astrophys. J. 2002, 576, 745–752. [Google Scholar] [CrossRef]
- Weiner, B.J.; Coil, A.L.; Prochaska, J.X. Ubiquitous Outflows in DEEP2 Spectra of Star-Forming Galaxies at z = 1.4. Astrophys. J. 2009, 692, 187–211. [Google Scholar] [CrossRef]
- Martin, C.L.; Shapley, A.E.; Coil, A.L.; Kornei, K.A.; Murray, N.; Pancoast, A. Scattered Emission from z ∼ 1 Galactic Outflows. Astrophys. J. 2013, 770, 41. [Google Scholar] [CrossRef]
- Tang, Y.; Giavalisco, M.; Guo, Y.; Kurk, J. Probing Outflows in z = 1 ∼ 2 Galaxies through Fe II/Fe II* Multiplets. Astrophys. J. 2014, 793, 92. [Google Scholar] [CrossRef]
- Rubin, K.H.R.; Prochaska, J.X.; Koo, D.C.; Phillips, A.C.; Martin, C.L.; Winstrom, L.O. Evidence for Ubiquitous Collimated Galactic-scale Outflows along the Star-forming Sequence at z ∼ 0.5. Astrophys. J. 2014, 794, 156. [Google Scholar] [CrossRef]
- Heckman, T.M.; Alexandroff, R.M.; Borthakur, S.; Overzier, R.; Leitherer, C. The Systematic Properties of the Warm Phase of Starburst-Driven Galactic Winds. Astrophys. J. 2015, 809, 147. [Google Scholar] [CrossRef]
- Du, X.; Shapley, A.E.; Martin, C.L.; Coil, A.L. The Kinematics of C IV in Star-forming Galaxies at z ≈ 1.2. Astrophys. J. 2016, 829, 64. [Google Scholar] [CrossRef]
- Chisholm, J.; Tremonti, C.A.; Leitherer, C.; Chen, Y. The mass and momentum outflow rates of photoionized galactic outflows. Mon. Not. R. Astron. Soc. 2017, 469, 4831–4849. [Google Scholar] [CrossRef] [Green Version]
- Rupke, D.S.; Veilleux, S.; Sanders, D.B. Keck Absorption-Line Spectroscopy of Galactic Winds in Ultraluminous Infrared Galaxies. Astrophys. J. 2002, 570, 588–609. [Google Scholar] [CrossRef]
- Martin, C.L. Mapping Large-Scale Gaseous Outflows in Ultraluminous Galaxies with Keck II ESI Spectra: Variations in Outflow Velocity with Galactic Mas. Astrophys. J. 2005, 621, 227–245. [Google Scholar] [CrossRef]
- Rupke, D.S.; Veilleux, S.; Sanders, D.B. Outflows in Infrared-Luminous Starbursts at z < 0.5. I. Sample, Na I D Spectra, and Profile Fitting. Astrophys. J. Suppl. Ser. 2005, 160, 87–114. [Google Scholar] [CrossRef]
- Rupke, D.S.; Veilleux, S.; Sanders, D.B. Outflows in Infrared-Luminous Starbursts at z < 0.5. II. Analysis and Discussion. Astrophys. J. Suppl. Ser. 2005, 160, 115–148. [Google Scholar] [CrossRef]
- Rupke, D.S.; Veilleux, S.; Sanders, D.B. Outflows in Active Galactic Nucleus/Starburst-Composite Ultraluminous Infrared Galaxies. Astrophys. J. 2005, 632, 751–780. [Google Scholar] [CrossRef]
- Chen, Y.-M.; Tremonti, C.A.; Heckman, T.M. Absorption-line Probes of the Prevalence and Properties of Outflows in Present-day Star-forming Galaxies. Astrophys. J. 2010, 140, 445–461. [Google Scholar] [CrossRef]
- Kornei, K.A.; Shapley, A.E.; Martin, C.L.; Coil, A.L.; Lotz, J.M.; Weiner, B.J. Fine-structure Fe II* Emission and Resonant Mg II Emission in z ∼ 1 Star-forming Galaxies. Astrophys. J. 2013, 774, 50–74. [Google Scholar] [CrossRef]
- Rupke, D.S.N.; Veilleux, S. Spatially Extended Na I D Resonant Emission and Absorption in the Galactic Wind of the Nearby Infrared-Luminous Quasar F05189-2524. Astrophys. J. 2015, 801, 126. [Google Scholar] [CrossRef]
- Sakamoto, K.; Okumura, S.K.; Ishizuki, S.; Scoville, N.Z. Bar-driven Transport of Molecular Gas to Galactic Centers and Its Consequences. Astrophys. J. 1999, 525, 691–701. [Google Scholar] [CrossRef]
- Veilleux, S.; Rupke, D.S.N.; Swaters, R. Warm Molecular Hydrogen in the Galactic Wind of M82. Astrophys. J. Lett. 2009, 700, 149–153. [Google Scholar] [CrossRef]
- Westmoquette, M. Astrophysics: How to catch a galactic wind. Nature 2013, 499, 416–417. [Google Scholar] [CrossRef] [PubMed]
- Bolatto, A.D.; Warren, S.R.; Leroy, A.K. The Starburst-Driven Molecular Wind in NGC 253 and the Suppression of Star Formation. Nature 2013, 499, 450–453. [Google Scholar] [CrossRef] [PubMed]
- Salak, D.; Nakai, N.; Miyamoto, Y.; Yamauchi, A.; Tsuru, T.G. Large-Field CO(J = 1→0) Observations of the Starburst Galaxy M82. Publ. Astron. Soc. Jpn. 2013, 65, 66. [Google Scholar] [CrossRef]
- Meier, D.S.; Walter, F.; Bolatto, A.D. ALMA Multi-line Imaging of the Nearby Starburst NGC 253. Astrophys. J. 2015, 801, 63. [Google Scholar] [CrossRef]
- Leroy, A.K.; Walter, F.; Martini, P. The Multi-phase Cold Fountain in M82 Revealed by a Wide, Sensitive Map of the Molecular Interstellar Medium. Astrophys. J. 2015, 814, 83. [Google Scholar] [CrossRef]
- Walter, F.; Bolatto, A.D.; Leroy, A.K. Dense Molecular Gas Tracers in the Outflow of the Starburst Galaxy NGC 253. Astrophys. J. 2017, 835, 265. [Google Scholar] [CrossRef] [Green Version]
- Roussel, H.; Wilson, C.D.; Vigroux, L. SPIRE imaging of M 82: Cool dust in the wind and tidal streams. Astron. Astrophys. Lett. 2010, 518, L66. [Google Scholar] [CrossRef] [Green Version]
- Hutton, S.; Ferreras, I.; Wu, K. A panchromatic analysis of starburst galaxy M82: Probing the dust properties. Mon. Not. R. Astron. Soc. 2014, 440, 150–160. [Google Scholar] [CrossRef]
- Meléndez, M.; Veilleux, S.; Martin, C. Exploring the Dust Content of Galactic Winds with Herschel. I. NGC 4631. Astrophys. J. 2015, 804, 46. [Google Scholar] [CrossRef]
- Hodges-Kluck, E.; Cafmeyer, J.; Bregman, J.N. Ultraviolet Halos around Spiral Galaxies. I. Morphology. Astrophys. J. 2016, 833, 58. [Google Scholar] [CrossRef]
- McCormick, A.; Veilleux, S.; Meléndez, M. Exploring the dust content of galactic winds with Herschel—II. Nearby dwarf galaxies. Mon. Not. R. Astron. Soc. 2018, 477, 699–726. [Google Scholar] [CrossRef]
- Jones, T.; Stark, D.P.; Ellis, R.S. Dust in the Wind: Composition and Kinematics of Galaxy Outflows at the Peak Epoch of Star Formation. arxiv, 2018; arXiv:1805.01484. [Google Scholar] [CrossRef]
- McKeith, C.D.; Greve, A.; Downes, D.; Prada, F. The outflow in the halo of M 82. Atron. Astrophys. 1995, 293, 703–709. [Google Scholar]
- Walter, F.; Weiss, A.; Scoville, N. Molecular Gas in M82: Resolving the Outflow and Streamers. Astrophys. J. Lett. 2002, 580, L21–L25. [Google Scholar] [CrossRef] [Green Version]
- Scannapieco, E.; Brüggen, M. The Launching of Cold Clouds by Galaxy Outflows. I. Hydrodynamic Interactions with Radiative Cooling. Astrophys. J. 2015, 805, 158. [Google Scholar] [CrossRef]
- Brüggen, M.; Scannapieco, E. The Launching of Cold Clouds by Galaxy Outflows. II. The Role of Thermal Conduction. Astrophys. J. 2016, 822, 31. [Google Scholar] [CrossRef]
- Zhang, D.; Thompson, T.A.; Quataert, E.; Murray, N. Entrainment in trouble: Cool cloud acceleration and destruction in hot supernova-driven galactic winds. Mon. Not. R. Astron. Soc. 2017, 468, 4801–4814. [Google Scholar] [CrossRef]
- Schneider, E.E.; Robertson, B.E. Hydrodynamical Coupling of Mass and Momentum in Multiphase Galactic Winds. Astrophys. J. 2017, 834, 144. [Google Scholar] [CrossRef]
- McCourt, M.; Oh, S.P.; O’Leary, R.; Madigan, A.-M. A characteristic scale for cold gas. Mon. Not. R. Astron. Soc. 2018, 473, 5407–5431. [Google Scholar] [CrossRef]
- Ostriker, J.P.; McKee, C.F. Astrophysical Blastwaves. Rev. Mod. Phys. 1988, 60, 1–68. [Google Scholar] [CrossRef]
- Sedov, L.I. Similarity and Dimensional Methods in Mechanics; Academic Press: New York, NY, USA, 1959. [Google Scholar]
- Taylor, G. The Formation of a Blast Wave by a Very Intense Explosion. I. Theoretical Discussion. Proc. R. Soc. A. 1950, 201, 175–186. [Google Scholar] [CrossRef]
- Draine, B.T. Physics of the Interstellar and Intergalactic Medium; Princeton University Press: Princeton, NJ, USA, 2011; ISBN 978-0-691-12214-4. [Google Scholar]
- Kim, C.-G.; Ostriker, E.C. Momentum Injection by Supernovae in the Interstellar Medium. Astrophys. J. 2015, 802, 99. [Google Scholar] [CrossRef]
- Zhang, D.; Chevalier, R. Numerical simulations of supernova remnants in turbulent molecular clouds. arxiv, 2018; arXiv:1807.06603. [Google Scholar] [CrossRef]
- Chevalier, R.A.; Gardner, J. The Evolution of Supernova Remnants. II. Models of an Explosion in a Plane-Stratified Medium. Astrophys. J. 1974, 192, 457–463. [Google Scholar] [CrossRef]
- Cioffi, D.F.; McKee, C.F.; Bertschinger, E. Dynamics of Radiative Supernova Remnants. Astrophys. J. 1988, 334, 252–265. [Google Scholar] [CrossRef]
- Thornton, K.; Gaudlitz, M.; Janka, H.-Th.; Steinmetz, M. Energy Input and Mass Redistribution by Supernovae in the Interstellar Medium. Astrophys. J. 1998, 500, 95–119. [Google Scholar] [CrossRef] [Green Version]
- Blondin, J.M.; Wright, E.B.; Borkowski, K.J.; Reynolds, S.P. Transition to the Radiative Phase in Supernova Remnants. Astrophys. J. 1998, 500, 342–354. [Google Scholar] [CrossRef] [Green Version]
- Martizzi, D.; Faucher-Giguère, C.-A.; Quataert, E. Supernova feedback in an inhomogeneous interstellar medium. Mon. Not. R. Astron. Soc. 2015, 450, 504–522. [Google Scholar] [CrossRef] [Green Version]
- Walch, S.; Naab, T. The energy and momentum input of supernova explosions in structured and ionized molecular clouds. Mon. Not. R. Astron. Soc. 2015, 451, 2757–2771. [Google Scholar] [CrossRef] [Green Version]
- Elmegreen, B.G.; Scalo, J. Interstellar Turbulence I: Observations and Processes. Annu. Rev. Astron. Astrophys. 2004, 42, 211–273. [Google Scholar] [CrossRef] [Green Version]
- Iffrig, O.; Hennebelle, P. Mutual influence of supernovae and molecular clouds. Astron. Astrophs. 2015, 576, A95. [Google Scholar] [CrossRef] [Green Version]
- Lemaster, M.N.; Stone, J.M. Dissipation and Heating in Supersonic Hydrodynamic and MHD Turbulence. Astrophys. J. 2009, 691, 1092–1108. [Google Scholar] [CrossRef]
- Ostriker, E.C.; Stone, J.M.; Gammie, C.F. Density, Velocity, and Magnetic Field Structure in Turbulent Molecular Cloud Models. Astrophys. J. 2001, 546, 980–1005. [Google Scholar] [CrossRef] [Green Version]
- Field, G.B. Thermal Instability. Astrophys. J. 1965, 142, 531–567. [Google Scholar] [CrossRef]
- Pikel’Ner, S.B. Structure and Dynamics of the Interstellar Medium. Annu. Rev. Astron. Astrophys. 1968, 6, 165–194. [Google Scholar] [CrossRef]
- Field, G.B.; Goldsmith, D.W.; Habing, H.J. Cosmic-Ray Heating of the Interstellar Gas. Astrophys. J. Lett. 1969, 155, 149–154. [Google Scholar] [CrossRef]
- Reynolds, R.J.; Roesler, F.L.; Scherb, F. The Intensity Distribution of Diffuse Galactic Hα Emission. Astrophys. J. Lett. 1974, 192, 53–56. [Google Scholar] [CrossRef]
- Haffner, L.M.; Dettmar, R.-J.; Beckman, J.E. The warm ionized medium in spiral galaxies. Rev. Mod. Phys. 2009, 81, 969–997. [Google Scholar] [CrossRef] [Green Version]
- Cox, D.P.; Smith, B.W. Large-Scale Effects of Supernova Remnants on the Galaxy: Generation and Maintenance of a Hot Network of Tunnels. Astrophys. J. Lett. 1974, 189, 105–108. [Google Scholar] [CrossRef]
- McKee, C.F.; Ostriker, J.P. A theory of the interstellar medium–Three components regulated by supernova explosions in an inhomogeneous substrate. Astrophys. J. 1977, 218, 148–169. [Google Scholar] [CrossRef]
- Bowyer, S.; Lieu, R.; Sidher, S.D.; Lampton, M.; Knude, J. Evidence for a large thermal pressure imbalance in the local interstellar medium. Nature 1995, 375, 212–214. [Google Scholar] [CrossRef]
- Cox, D.P. The Three-Phase Interstellar Medium Revisited. Annu. Rev. Astron. Astrophys. 2005, 43, 337–385. [Google Scholar] [CrossRef]
- Hennebelle, P.; Iffrig, O. Simulations of magnetized multiphase galactic disc regulated by supernovae explosions. Astron. Astrophys. 2014, 570, 81. [Google Scholar] [CrossRef] [Green Version]
- Gatto, A.; Walch, S.; Mac Low, M.-M. Modelling the supernova-driven ISM in different environments. Mon. Not. R. Astron. Soc. 2015, 449, 1057–1075. [Google Scholar] [CrossRef] [Green Version]
- Kim, C.-G.; Ostriker, E.C. Three-phase Interstellar Medium in Galaxies Resolving Evolution with Star Formation and Supernova Feedback (TIGRESS): Algorithms, Fiducial Model, and Convergence. Astrophys. J. 2017, 846, 133. [Google Scholar] [CrossRef] [Green Version]
- Hill, A.S.; Mac Low, M.-M.; Gatto, A.; Ibáñez-Mejía, J.C. Effect of the Heating Rate on the Stability of the Three-phase Interstellar Medium. Astrophys. J. 2018, 862, 55. [Google Scholar] [CrossRef]
- Chevalier, R.A.; Clegg, A.W. Wind from a starburst galaxy nucleus. Nature 1985, 317, 44–45. [Google Scholar] [CrossRef]
- Parker, E.N. Dynamical Theory of the Solar Wind. Space Sci. Rev. 1965, 4, 666–708. [Google Scholar] [CrossRef]
- Leitherer, C.; Schaerer, D.; Goldader, J.D. Starburst99: Synthesis Models for Galaxies with Active Star Formation. Astrophys. J. Suppl. Ser. 1999, 123, 3–40. [Google Scholar] [CrossRef] [Green Version]
- Cantó, J.; Raga, A.C.; Rodríguez, L.F. The Hot, Diffuse Gas in a Dense Cluster of Massive Stars. Astrophys. J. 2000, 536, 896–901. [Google Scholar] [CrossRef] [Green Version]
- Fielding, D.; Quataert, E.; Martizzi, D.; Faucher-Giguère, C.-A. How supernovae launch galactic winds? Mon. Not. R. Astron. Soc. Lett. 2017, 470, 39–43. [Google Scholar] [CrossRef]
- Schneider, E.E.; Robertson, B.E.; Thompson, T.A. Production of Cool Gas in Thermally-Driven Outflows. Astrophys. J. 2018, 862, 56. [Google Scholar] [CrossRef]
- Zhang, D.; Thompson, T.A.; Murray, N.; Quataert, E. Hot Galactic Winds Constrained by the X-Ray Luminosities of Galaxies. Astrophys. J. 2014, 784, 93–101. [Google Scholar] [CrossRef]
- Grimm, H.-J.; Gilfanov, M.; Sunyaev, R. High-mass X-ray binaries as a star formation rate indicator in distant galaxies. Mon. Not. R. Astron. Soc. 2003, 339, 793–809. [Google Scholar] [CrossRef] [Green Version]
- Ranalli, P.; Comastri, A.; Setti, G. The 2-10 keV luminosity as a Star Formation Rate indicator. Astron. Astrophys. 2003, 399, 39–50. [Google Scholar] [CrossRef]
- Gilfanov, M.; Grimm, H.-J.; Sunyaev, R. LX–SFR relation in star-forming galaxies. Mon. Not. R. Astron. Soc. 2004, 347, L57–L60. [Google Scholar] [CrossRef]
- Dijkstra, M.; Gilfanov, M.; Loeb, A.; Sunyaev, R. Constraints on the redshift evolution of the LX–SFR relation from the cosmic X-ray backgrounds. Mon. Not. R. Astron. Soc. 2012, 421, 213–223. [Google Scholar] [CrossRef]
- Mineo, S.; Gilfanov, M.; Sunyaev, R. X-ray emission from star-forming galaxies—I. High-mass X-ray binaries. Mon. Not. R. Astron. Soc. 2012, 419, 2095–2115. [Google Scholar] [CrossRef]
- Mineo, S.; Gilfanov, M.; Sunyaev, R. X-ray emission from star-forming galaxies—II. Hot interstellarmedium. Mon. Not. R. Astron. Soc. 2012, 426, 1870–1883. [Google Scholar] [CrossRef]
- Mineo, S.; Gilfanov, M.; Lehmer, B.D.; Morrison, G.E.; Sunyaev, R. X-ray emission from star-forming galaxies—III. Calibration of the LX-SFR relation up to redshift z ≈ 1.3. Mon. Not. R. Astron. Soc. 2014, 437, 1698–1707. [Google Scholar] [CrossRef]
- Oppenheimer, B.D.; Davé, R. Cosmological simulations of intergalactic medium enrichment from galactic outflows. Mon. Not. R. Astron. Soc. 2006, 373, 1265–1292. [Google Scholar] [CrossRef] [Green Version]
- Oppenheimer, B.D.; Davé, R. Mass, metal, and energy feedback in cosmological simulations. Mon. Not. R. Astron. Soc. 2008, 387, 577–600. [Google Scholar] [CrossRef] [Green Version]
- Bower, R.G.; Benson, A.J.; Crain, R.A. What shapes the galaxy mass function? Exploring the roles of supernova-driven winds and active galactic nuclei. Mon. Not. R. Astron. Soc. 2012, 422, 2816–2840. [Google Scholar] [CrossRef] [Green Version]
- Bustard, C.; Zweibel, E.G.; D’Onghia, E.A. Versatile Family of Galactic Wind Models. Astrophys. J. 2016, 819, 29. [Google Scholar] [CrossRef]
- Creasey, P.; Theuns, T.; Bower, R.G. How supernova explosions power galactic winds. Mon. Not. R. Astron. Soc. 2013, 429, 1922–1948. [Google Scholar] [CrossRef] [Green Version]
- Girichidis, P.; Walch, S.; Naab, T. The SILCC (SImulating the LifeCycle of molecular Clouds) project—II. Dynamical evolution of the supernova-driven ISM and the launching of outflows. Mon. Not. R. Astron. Soc. 2016, 456, 3432–3455. [Google Scholar] [CrossRef]
- Martizzi, D.; Fielding, D.; Faucher-Giguère, C.-A.; Quataert, E. Supernova feedback in a local vertically stratified medium: Interstellar turbulence and galactic winds. Mon. Not. R. Astron. Soc. 2016, 459, 2311–2326. [Google Scholar] [CrossRef]
- Gatto, A.; Walch, S.; Naab, T. The SILCC project—III. Regulation of star formation and outflows by stellar winds and supernovae. Mon. Not. R. Astron. Soc. 2017, 466, 1903–1924. [Google Scholar] [CrossRef]
- Kim, C.-G.; Ostriker, E.C.; Raileanu, R. Superbubbles in the Multiphase ISM and the Loading of Galactic Winds. Astrophys. J. 2017, 834, 25. [Google Scholar] [CrossRef]
- Li, M.; Bryan, G.L.; Ostriker, J.P. Quantifying Supernovae-driven Multiphase Galactic Outflows. Astrophys. J. 2017, 841, 101. [Google Scholar] [CrossRef] [Green Version]
- Kim, C.-G.; Ostriker, E.C. Numerical Simulations of Multiphase Winds and Fountains from Star-forming Galactic Disks. I. Solar Neighborhood TIGRESS Model. Astrophys. J. 2018, 853, 173. [Google Scholar] [CrossRef] [Green Version]
- Thompson, T.A.; Quataert, E.; Zhang, D.; Weinberg, D.H. An origin for multiphase gas in galactic winds and haloes. Mon. Not. R. Astron. Soc. 2016, 455, 1830–1844. [Google Scholar] [CrossRef]
- Wang, B. Ly-alpha Forests and Cooling Outflow from Dwarf Galaxies. Astrophys. J. Lett. 1995, 444, 17–20. [Google Scholar] [CrossRef]
- Wang, B. Cooling Gas Outflows from Galaxies. Astrophys. J. 1995, 444, 590–609. [Google Scholar] [CrossRef]
- Efstathiou, G. A model of supernova feedback in galaxy formation. Mon. Not. R. Astron. Soc. 2000, 317, 697–719. [Google Scholar] [CrossRef] [Green Version]
- Silich, S.; Tenorio-Tagle, G.; Muñoz-Tuñón, C. On the Rapidly Cooling Interior of Supergalactic Winds. Astrophys. J. 2003, 590, 791–796. [Google Scholar] [CrossRef] [Green Version]
- Silich, S.; Tenorio-Tagle, G.; Rodríguez-González, A. Winds Driven by Super Star Clusters: The Self-Consistent Radiative Solution. Astrophys. J. 2004, 610, 226–232. [Google Scholar] [CrossRef]
- Tenorio-Tagle, G.; Wünsch, R.; Silich, S.; Palouš, J. Hydrodynamics of the Matter Reinserted within Super Stellar Clusters. Astrophys. J. 2007, 658, 1196–1202. [Google Scholar] [CrossRef] [Green Version]
- Wünsch, R.; Silich, S.; Palouš, J. Evolution of Super Star Cluster Winds with Strong Cooling. Astrophys. J. 2011, 740, 75. [Google Scholar] [CrossRef]
- Scannapieco, E. The Production of Cold Gas Within Galaxy Outflows. Astrophys. J. 2017, 837, 28. [Google Scholar] [CrossRef] [Green Version]
- Heckman, T.M.; Armus, L.; Miley, G.K. On the nature and implications of starburst-driven galactic superwinds. Astrophys. J. Suppl. 1990, 74, 833–868. [Google Scholar] [CrossRef]
- Cooper, J.L.; Bicknell, G.V.; Sutherland, R.S.; Bland-Hawthorn, J. Three-Dimensional Simulations of a Starburst-driven Galactic Wind. Astrophys. J. 2008, 674, 157–171. [Google Scholar] [CrossRef]
- Fujita, A.; Martin, C.L.; Mac Low, M.-M.; New, K.C.B.; Weaver, R. The Origin and Kinematics of Cold Gas in Galactic Winds: Insight from Numerical Simulations. Astrophys. J. 2009, 698, 693–714. [Google Scholar] [CrossRef]
- Cowie, L.L.; McKee, C.F. The evaporation of spherical clouds in a hot gas. I—Classical and saturated mass loss rates. Astrophys. J. 1977, 211, 135–146. [Google Scholar] [CrossRef]
- McKee, C.F.; Cowie, L.L.; Ostriker, J.P. The acceleration of high-velocity clouds in supernova remnants. Astrophys. J. Lett. 1978, 219, L23–L28. [Google Scholar] [CrossRef]
- Klein, R.I.; McKee, C.F.; Colella, P. On the hydrodynamic interaction of shock waves with interstellar clouds. I: Nonradiative shocks in small clouds. Astrophys. J. 1994, 420, 213–236. [Google Scholar] [CrossRef]
- Stone, J.M.; Norman, M.L. The three-dimensional interaction of a supernova remnant with an interstellar cloud. Astrophys. J. Lett. 1992, 390, L17–L19. [Google Scholar] [CrossRef]
- Mac Low, M.-M.; McKee, C.F.; Klein, R.I.; Stone, J.M.; Norman, M.L. Shock interactions with magnetized interstellar clouds. I: Steady shocks hitting nonradiative clouds. Astrophys. J. 1994, 433, 757–777. [Google Scholar] [CrossRef]
- Schiano, A.V.R.; Christiansen, W.A.; Knerr, J.M. Interstellar clouds in high-speed, supersonic flows: Two-dimensional simulations. Astrophys. J. 1995, 439, 237–255. [Google Scholar] [CrossRef]
- Vietri, M.; Ferrara, A.; Miniati, F. The Survival of Interstellar Clouds against Kelvin-Helmholtz Instabilities. Astrophys. J. 1997, 483, 262–273. [Google Scholar] [CrossRef]
- Marcolini, A.; Strickland, D.K.; D’Ercole, A.; Heckman, T.M.; Hoopes, C.G. The dynamics and high-energy emission of conductive gas clouds in supernova-driven galactic superwinds. Mon. Not. R. Astron. Soc. 2005, 362, 626–648. [Google Scholar] [CrossRef] [Green Version]
- Orlando, S.; Peres, G.; Reale, F.; Bocchino, F.; Rosner, R.; Plewa, T.; Siegel, A. Crushing of interstellar gas clouds in supernova remnants. I. The role of thermal conduction and radiative losses. Astron. Astrophys. 2005, 444, 505–519. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, F.; McKee, C.F.; Klein, R.I.; Fisher, R.T. On the Hydrodynamic Interaction of Shock Waves with Interstellar Clouds. II. The Effect of Smooth Cloud Boundaries on Cloud Destruction and Cloud Turbulence. Astrophys. J. Suppl. Ser. 2006, 164, 477–505. [Google Scholar] [CrossRef] [Green Version]
- Orlando, S.; Bocchino, F.; Peres, G.; Reale, F.; Plewa, T.; Rosner, R. Crushing of interstellar gas clouds in supernova remnants. II. X-ray emission. Astron. Astrophys. 2006, 457, 545–552. [Google Scholar] [CrossRef]
- Orlando, S.; Bocchino, F.; Reale, F.; Peres, G.; Pagano, P. The Importance of Magnetic-Field-Oriented Thermal Conduction in the Interaction of SNR Shocks with Interstellar Clouds. Astrophys. J. 2008, 678, 274–286. [Google Scholar] [CrossRef]
- Shin, M.-S.; Stone, J.M.; Snyder, G.F. The Magnetohydrodynamics of Shock-Cloud Interaction in Three Dimensions. Astrophys. J. 2008, 680, 336–348. [Google Scholar] [CrossRef]
- Cooper, J.L.; Bicknell, G.V.; Sutherland, R.S.; Bland-Hawthorn, J. Starburst-Driven Galactic Winds: Filament Formation and Emission Processes. Astrophys. J. 2009, 703, 330–347. [Google Scholar] [CrossRef]
- Pittard, J.M.; Falle, S.A.E.G.; Hartquist, T.W.; Dyson, J.E. The turbulent destruction of clouds—I. A k − ϵ treatment of turbulence in 2D models of adiabatic shock-cloud interactions. Mon. Not. R. Astron. Soc. 2009, 394, 1351–1378. [Google Scholar] [CrossRef]
- Pittard, J.M.; Hartquist, T.W.; Falle, S.A.E.G. The turbulent destruction of clouds—II. Mach number dependence, mass-loss rates and tail formation. Mon. Not. R. Astron. Soc. 2010, 405, 821–838. [Google Scholar] [CrossRef]
- Alūzas, R.; Pittard, J.M.; Falle, S.A.E.G.; Hartquist, T.W. Numerical simulations of a shock interacting with multiple magnetized clouds. Mon. Not. R. Astron. Soc. 2014, 444, 971–993. [Google Scholar] [CrossRef] [Green Version]
- McCourt, M.; O’Leary, R.M.; Madigan, A.-M.; Quataert, E. Magnetized gas clouds can survive acceleration by a hot wind. Mon. Not. R. Astron. Soc. 2015, 449, 2–7. [Google Scholar] [CrossRef] [Green Version]
- Banda-Barragán, W.E.; Parkin, E.R.; Federrath, C.; Crocker, R.M.; Bicknell, G.V. Filament formation in wind-cloud interactions—I. Spherical clouds in uniform magnetic fields. Mon. Not. R. Astron. Soc. 2016, 455, 1309–1333. [Google Scholar] [CrossRef]
- Pittard, J.M.; Parkin, E.R. The turbulent destruction of clouds—III. Three-dimensional adiabatic shock-cloud simulations. Mon. Not. R. Astron. Soc. 2016, 457, 4470–4498. [Google Scholar] [CrossRef]
- Banda-Barragán, W.E.; Federrath, C.; Crocker, R.M.; Bicknell, G.V. Filament formation in wind-cloud interactions—II. Clouds with turbulent density, velocity, and magnetic fields. Mon. Not. R. Astron. Soc. 2018, 473, 3454–3489. [Google Scholar] [CrossRef]
- Goldsmith, K.J.A.; Pittard, J.M. A comparison of shock-cloud and wind-cloud interactions: Effect of increased cloud density contrast on cloud evolution. Mon. Not. R. Astron. Soc. 2018, 476, 2209–2219. [Google Scholar] [CrossRef]
- Faucher-Giguère, C.-A.; Quataert, E.; Murray, N. A physical model of FeLoBALs: Implications for quasar feedback. Mon. Not. R. Astron. Soc. 2012, 420, 1347–1354. [Google Scholar] [CrossRef]
- Krolik, J.H.; McKee, C.F.; Tarter, C.B. Two-phase models of quasar emission line regions. Astrophys. J. 1981, 249, 422–442. [Google Scholar] [CrossRef]
- Adebahr, B.; Krause, M.; Klein, U.; Heald, G.; Dettmar, R.-J. M 82–A radio continuum and polarisation study. II. Polarisation and rotation measures. Astron. Astrophys. 2017, 608, 29. [Google Scholar] [CrossRef]
- Steidel, C.C.; Erb, D.K.; Shapley, A.E. The Structure and Kinematics of the Circumgalactic Medium from Far-ultraviolet Spectra of zapprox2 − 3 Galaxies. Astrophys. J. 2010, 717, 289–322. [Google Scholar] [CrossRef]
- Prochaska, J.X.; Weiner, B.; Chen, H.-W.; Mulchaey, J.; Cooksey, K. Probing the Intergalactic Medium/Galaxy Connection. V. On the Origin of Lyα and O VI Absorption at z < 0.2. Astrophys. J. 2011, 740, 91. [Google Scholar] [CrossRef]
- Tumlinson, J.; Thom, C.; Werk, J.K. The COS-Halos Survey: Rationale, Design, and a Census of Circumgalactic Neutral Hydrogen. Astrophys. J. 2013, 777, 59. [Google Scholar] [CrossRef]
- Werk, J.K.; Prochaska, J.X.; Tumlinson, J. The COS-Halos Survey: Physical Conditions and Baryonic Mass in the Low-redshift Circumgalactic Medium. Astrophys. J. 2014, 792, 8. [Google Scholar] [CrossRef]
- Werk, J.K.; Prochaska, J.X.; Cantalupo, S. The COS-Halos Survey: Origins of the Highly Ionized Circumgalactic Medium of Star-Forming Galaxies. Astrophys. J. 2016, 833, 54. [Google Scholar] [CrossRef]
- Borthakur, S.; Heckman, T.; Tumlinson, J. The Properties of the Circumgalactic Medium in Red and Blue Galaxies: Results from the COS-GASS+COS-Halos Surveys. Astrophys. J. 2016, 833, 259. [Google Scholar] [CrossRef]
- Whitworth, A. The erosion and dispersal of massive molecular clouds by young stars. Mon. Not. R. Astron. Soc. 1979, 186, 59–67. [Google Scholar] [CrossRef] [Green Version]
- McKee, C.F.; van Buren, D.; Lazareff, B. Photoionized Stellar Wind Bubbles in a Cloudy Medium. Astrophys. J. Lett. 1984, 278, L115–L118. [Google Scholar] [CrossRef]
- McKee, C.F. Photoionization-Regulated Star Formation and the Structure of Molecular Clouds. Astrophys. J. 1989, 345, 782–801. [Google Scholar] [CrossRef]
- Matzner, C.D. On the Role of Massive Stars in the Support and Destruction of Giant Molecular Clouds. Astrophys. J. 2002, 566, 302–314. [Google Scholar] [CrossRef] [Green Version]
- Dale, J.E.; Ercolano, B.; Bonnell, I.A. Ionizing feedback from massive stars in massive clusters—II. Disruption of bound clusters by photoionization. Mon. Not. R. Astron. Soc. 2012, 424, 377–392. [Google Scholar] [CrossRef]
- Walch, S.K.; Whitworth, A.P.; Bisbas, T.; Wünsch, R.; Hubber, D. Dispersal of molecular clouds by ionizing radiation. Mon. Not. R. Astron. Soc. 2012, 427, 625–636. [Google Scholar] [CrossRef] [Green Version]
- Emerick, A.; Bryan, G.L.; Mac Low, M.-M. Stellar Radiation is Critical for Regulating Star Formation and Driving Outflows in Low Mass Dwarf Galaxies. Astrophys. J. Lett. 2018, 865, L22. [Google Scholar] [CrossRef]
- Krumholz, M.R.; Matzner, C.D. The Dynamics of Radiation-pressure-dominated H II Regions. Astrophys. J. 2009, 703, 1352–1362. [Google Scholar] [CrossRef]
- Kuiper, R.; Klahr, H.; Beuther, H.; Henning, T. Three-dimensional Simulation of Massive Star Formation in the Disk Accretion Scenario. Astrophys. J. 2011, 732, 20. [Google Scholar] [CrossRef]
- Kuiper, R.; Klahr, H.; Beuther, H.; Henning, T.H. On the stability of radiation-pressure-dominated cavities. Astron. Astrophys. 2012, 537, 122. [Google Scholar] [CrossRef]
- Klassen, M.; Pudritz, R.E.; Kuiper, R.; Peters, T.; Banerjee, R. Simulating the Formation of Massive Protostars. I. Radiative Feedback and Accretion Disks. Astrophys. J. 2016, 823, 28. [Google Scholar] [CrossRef]
- Kuiper, R.; Turner, N.J.; Yorke, H.W. Protostellar Outflows and Radiative Feedback from Massive Stars. II. Feedback, Star-formation Efficiency, and Outflow Broadening. Astrophys. J. 2016, 832, 40. [Google Scholar] [CrossRef]
- Rosen, A.L.; Krumholz, M.R.; McKee, C.F.; Klein, R.I. An unstable truth: How massive stars get their mass. Mon. Not. R. Astron. Soc. 2016, 463, 2553–2573. [Google Scholar] [CrossRef]
- Crocker, R.M.; Krumholz, M.R.; Thompson, T.A.; Baumgardt, H.; Mackey, D. Radiation Pressure Limits on the Star Formation Efficiency and Surface Density of Compact Stellar Systems. Mon. Not. R. Astron. Soc. 2018, 481, 4895–4906. [Google Scholar] [CrossRef]
- Sales, L.V.; Marinacci, F.; Springel, V.; Petkova, M. Stellar feedback by radiation pressure and photoionization. Mon. Not. R. Astron. Soc. 2014, 439, 2990–3006. [Google Scholar] [CrossRef] [Green Version]
- Ishiki, S.; Okamoto, T. Radiation feedback in dusty clouds. Mon. Not. R. Astron. Soc. Lett. 2017, 466, L123–L127. [Google Scholar] [CrossRef]
- Ishiki, S.; Okamoto, T.; Inoue, A.K. The effect of radiation pressure on spatial distribution of dust inside H II regions. Mon. Not. R. Astron. Soc. 2018, 474, 1935–1943. [Google Scholar] [CrossRef]
- Haid, S.; Walch, S.; Seifried, D.; Wünsch, R.; Dinnbier, F.; Naab, T. The relative impact of photoionizing radiation and stellar winds on different environments. Mon. Not. R. Astron. Soc. 2018, 478, 4799–4815. [Google Scholar] [CrossRef] [Green Version]
- Harwit, M. Dust, Radiation Pressure, and Star Formation. Astrophys. J. 1962, 136, 832–843. [Google Scholar] [CrossRef]
- Chiao, R.Y.; Wickramasinghe, N.C. Radiation-driven efflux and circula-tion of dust in spiral galaxies. Mon. Not. R. Astron. Soc. 1972, 159, 361–373. [Google Scholar] [CrossRef]
- Chiao, R.Y.; Wickramasinghe, N.C. The Expulsion of Dust from Galaxies. Astrophys. J. Lett. 1973, 14, L19–L23. [Google Scholar]
- Ferrara, A.; Ferrini, F.; Barsella, B.; Aiello, S. Removal of dust from spiral galaxies. Astron. Astrophys. 1990, 240, 259–261. [Google Scholar]
- Murray, N.; Quataert, E.; Thompson, T.A. On the Maximum Luminosity of Galaxies and Their Central Black Holes: Feedback from Momentum-driven Winds. Astrophys. J. 2005, 618, 569–585. [Google Scholar] [CrossRef]
- Thompson, T.A.; Quataert, E.; Murray, N. Radiation Pressure-supported Starburst Disks and Active Galactic Nucleus Fueling. Astrophys. J. 2005, 630, 167–185. [Google Scholar] [CrossRef]
- Murray, N.; Ménard, B.; Thompson, T.A. Radiation Pressure from Massive Star Clusters as a Launching Mechanism for Super-galactic Winds. Astrophys. J. 2011, 735, 66–77. [Google Scholar] [CrossRef]
- Hopkins, P.F.; Quataert, E.; Murray, N. Stellar feedback in galaxies and the origin of galaxy-scale winds. Mon. Not. R. Astron. Soc. 2012, 421, 3522–3537. [Google Scholar] [CrossRef] [Green Version]
- O’dell, C.R.; York, D.G.; Henize, K.G. Structure of the Barnard Loop Nebula as Determined from Gemini 11 Photographs. Astrophys. J. 1967, 150, 835–844. [Google Scholar] [CrossRef]
- Scoville, N.Z.; Polletta, M.; Ewald, S.; Stolovy, S.R.; Thompson, R.; Rieke, M. High-Mass, OB Star Formation in M51: Hubble Space Telescope Hα and Paα Imaging. Astron. J. 2001, 122, 3017–3045. [Google Scholar] [CrossRef]
- Murray, N.; Quataert, E.; Thompson, T.A. The Disruption of Giant Molecular Clouds by Radiation Pressure & the Efficiency of Star Formation in Galaxies. Astrophys. J. 2010, 709, 191–209. [Google Scholar] [CrossRef]
- Skinner, M.A.; Ostriker, E.C. Numerical Simulations of Turbulent Molecular Clouds Regulated by Reprocessed Radiation Feedback from Nascent Super Star Clusters. Astrophys. J. 2015, 809, 187. [Google Scholar] [CrossRef]
- Raskutti, S.; Ostriker, E.C.; Skinner, M.A. Numerical Simulations of Turbulent Molecular Clouds Regulated by Radiation Feedback Forces. I. Star Formation Rate and Efficiency. Astrophys. J. 2016, 829, 130. [Google Scholar] [CrossRef]
- Gupta, S.; Nath, B.B.; Sharma, P.; Shchekinov, Y. How radiation affects superbubbles: Through momentum injection in early phase and photo-heating thereafter. Mon. Not. R. Astron. Soc. 2016, 462, 4532–4548. [Google Scholar] [CrossRef]
- Raskutti, S.; Ostriker, E.C.; Skinner, M.A. Numerical Simulations of Turbulent Molecular Clouds Regulated by Radiation Feedback Forces. II. Radiation-Gas Interactions and Outflows. Astrophys. J. 2017, 850, 112. [Google Scholar] [CrossRef]
- Tsang, B.T.-H.; Milosavljević, M. Radiation pressure in super star cluster formation. Mon. Not. R. Astron. Soc. 2018, 478, 4142–4161. [Google Scholar] [CrossRef] [Green Version]
- Renaud, F.; Bournaud, F.; Emsellem, E. A sub-parsec resolution simulation of the Milky Way: Global structure of the interstellar medium and properties of molecular clouds. Mon. Not. R. Astron. Soc. 2013, 436, 1836–1851. [Google Scholar] [CrossRef]
- Kannan, R.; Stinson, G.S.; Macciò, A.V. Galaxy formation with local photoionization feedback—I. Methods. Mon. Not. R. Astron. Soc. 2014, 437, 2882–2893. [Google Scholar] [CrossRef]
- Tremblin, P.; Anderson, L.D.; Didelon, P. Age, size, and position of H II regions in the Galaxy. Expansion of ionized gas in turbulent molecular clouds. Astron. Astrophys. 2014, 568, 4. [Google Scholar] [CrossRef]
- Bruzual, G.; Charlot, S. Stellar population synthesis at the resolution of 2003. Mon. Not. R. Astron. Soc. 2003, 344, 1000–1028. [Google Scholar] [CrossRef] [Green Version]
- Proga, D.; Stone, J.M.; Drew, J.E. Radiation-driven winds from luminous accretion discs. Mon. Not. R. Astron. Soc. 1998, 295, 595–617. [Google Scholar] [CrossRef] [Green Version]
- Proga, D. Comparison of theoretical radiation-driven winds from stars and discs. Mon. Not. R. Astron. Soc. 1999, 304, 938–946. [Google Scholar] [CrossRef] [Green Version]
- Proga, D.; Stone, J.M.; Drew, J.E. Line-driven disc wind models with an improved line force. Mon. Not. R. Astron. Soc. 1999, 310, 476–482. [Google Scholar] [CrossRef] [Green Version]
- Proga, D.; Kallman, T.R. On the Role of the Ultraviolet and X-Ray Radiation in Driving a Disk Wind in X-Ray Binaries. Astrophys. J. 2002, 565, 455–470. [Google Scholar] [CrossRef]
- Proga, D.; Kallman, T.R. Dynamics of Line-driven Disk Winds in Active Galactic Nuclei. II. Effects of Disk Radiation. Astrophys. J. 2004, 616, 688–695. [Google Scholar] [CrossRef]
- Risaliti, G.; Elvis, M. A non-hydrodynamical model for acceleration of line-driven winds in active galactic nuclei. Astron. Astrophys. 2010, 516, 89. [Google Scholar] [CrossRef]
- Dyda, S.; Proga, D. Non-axisymmetric line-driven disc winds—I. Disc perturbations. Mon. Not. R. Astron. Soc. 2018, 475, 3786–3796. [Google Scholar] [CrossRef]
- Dyda, S.; Proga, D. Non-axisymmetric line-driven disc winds II—Full velocity gradient. Mon. Not. R. Astron. Soc. 2018, 478, 5006–5016. [Google Scholar] [CrossRef]
- Springel, V. The cosmological simulation code GADGET-2. Mon. Not. R. Astron. Soc. 2005, 364, 1105–1134. [Google Scholar] [CrossRef]
- Gilman, R.C. On the Coupling of Grains to the Gas in Circumstellar Envelopes. Astrophys. J. 1972, 423, 423–426. [Google Scholar] [CrossRef]
- Salpeter, E.E. Formation and flow of dust grains in cool stellar atmospheres. Astrophys. J. 1974, 193, 585–592. [Google Scholar] [CrossRef]
- Kwok, S. Radiation pressure on grains as a mechanism for mass loss in red giants. Astrophys. J. 1975, 198, 583–591. [Google Scholar] [CrossRef]
- Deguchi, S. Grain formation in cool stellar envelopes. Astrophys. J. 1980, 236, 567–576. [Google Scholar] [CrossRef]
- Kozasa, T.; Hasegawa, H.; Seki, J. Grain formation in the expanding gas flow around cool luminous stars. Astrophys. Space Sci. 1984, 98, 61–79. [Google Scholar] [CrossRef]
- Gail, H.-P.; Sedlmayr, E. Dust formation in stellar winds. II—Carbon condensation in stationary, spherically expanding winds. Astron. Astrophys. 1985, 148, 183–190. [Google Scholar]
- Bowen, G.H. Dynamical Modeling of Long-Period Variable Star Atmospheres. Astrophys. J. 1988, 329, 299–317. [Google Scholar] [CrossRef]
- Fleischer, A.J.; Gauger, A.; Sedlmayr, E. Circumstellar dust shells around long-period variables. I—Dynamical models of C-stars including dust formation, growth and evaporation. Astron. Astrophys. 1992, 266, 321–339. [Google Scholar]
- Sedlmayr, E.; Dominik, C. Dust Driven Winds. Space Sci. Rev. 1995, 73, 211–272. [Google Scholar] [CrossRef]
- Krueger, D.; Sedlmayr, E. Two-fluid models for stationary dust driven winds. II. The grain size distribution in consideration of drift. Astron. Astrophys. 1997, 321, 557–567. [Google Scholar]
- Ferrarotti, A.S.; Gail, H.-P. Composition and quantities of dust produced by AGB-stars and returned to the interstellar medium. Astron. Astrophys. 2006, 447, 553–576. [Google Scholar] [CrossRef] [Green Version]
- Takigawa, A.; Kamizuka, T.; Tachibana, S.; Yamamura, I. Dust formation and wind acceleration around the aluminum oxide-rich AGB star W Hydrae. Sci. Adv. 2017, 3, 2149–2153. [Google Scholar] [CrossRef] [PubMed]
- Lamers, H.J.G.L.M.; Cassinelli, J.P. Introduction to Stellar Winds; Cambridge University Press: Cambridge, UK, 1999; ISBN 0-521-59565-7. [Google Scholar]
- Kobayashi, H.; Watanabe, S.-I.; Kimura, H.; Yamamoto, T. Dust ring formation due to sublimation of dust grains drifting radially inward by the Poynting-Robertson drag: An analytical model. Icarus 2009, 201, 395–405. [Google Scholar] [CrossRef]
- Kobayashi, H.; Kimura, H.; Watanabe, S.-I.; Yamamoto, T.; Müller, S. Sublimation temperature of circumstellar dust particles and its importance for dust ring formation. Earth Planets Space 2011, 63, 1067–1075. [Google Scholar] [CrossRef] [Green Version]
- Baskin, A.; Laor, A. Dust inflated accretion disc as the origin of the broad line region in active galactic nuclei. Mon. Not. R. Astron. Soc. 2018, 474, 1970–1994. [Google Scholar] [CrossRef]
- Draine, B.T.; Salpeter, E.E. On the physics of dust grains in hot gas. Astrophys. J. 1979, 231, 77–94. [Google Scholar] [CrossRef]
- Draine, B.T.; Salpeter, E.E. Destruction mechanisms for interstellar dust. Astrophys. J. 1979, 231, 438–455. [Google Scholar] [CrossRef]
- Covatto, C.; Aannestad, P.A. Sputtering in the outflows of cool stars. Mon. Not. R. Astron. Soc. 2000, 318, 67–72. [Google Scholar] [CrossRef] [Green Version]
- Gray, M.D.; Edmunds, M.G. Modification of dust-grain structure by sputtering. Mon. Not. R. Astron. Soc. 2004, 349, 491–502. [Google Scholar] [CrossRef] [Green Version]
- Nath, B.B.; Laskar, T.; Shull, J.M. Dust Sputtering by Reverse Shocks in Supernova Remnants. Astrophys. J. 2008, 682, 1055–1064. [Google Scholar] [CrossRef] [Green Version]
- Everett, J.E.; Churchwell, E. Dusty Wind-blown Bubbles. Astrophys. J. 2010, 713, 592–602. [Google Scholar] [CrossRef]
- Jones, A.P.; Nuth, J.A. Dust destruction in the ISM: A re-evaluation of dust lifetimes. Astron. Astrophys. 2011, 530, 44. [Google Scholar] [CrossRef]
- Draine, B.T. On Radiation Pressure in Static, Dusty H II Regions. Astrophys. J. 2011, 732, 100. [Google Scholar] [CrossRef]
- Berruyer, N.; Frisch, H. Dust-driven winds. I—A two-fluid model and its numerical solution. Astron. Astrophys. 1983, 126, 269–277. [Google Scholar]
- Mastrodemos, N.; Morris, M.; Castor, J. On the Stability of the Dust-Gas Coupling in Winds from Late-Type Stars. Astrophys. J. 1996, 468, 851–860. [Google Scholar] [CrossRef]
- Goldsmith, P.F. Molecular Depletion and Thermal Balance in Dark Cloud Cores. Astrophys. J. 2001, 557, 736–746. [Google Scholar] [CrossRef] [Green Version]
- Narayanan, D.; Krumholz, M.R.; Ostriker, E.C.; Hernquist, L. The CO-H2 conversion factor in disc galaxies and mergers. Mon. Not. R. Astron. Soc. 2011, 418, 664–679. [Google Scholar] [CrossRef]
- Narayanan, D.; Krumholz, M.R.; Ostriker, E.C.; Hernquist, L. A general model for the CO-H2 conversion factor in galaxies with applications to the star formation law. Mon. Not. R. Astron. Soc. 2012, 421, 3127–3146. [Google Scholar] [CrossRef]
- Semenov, D.; Henning, TH.; Helling, CH.; Ilgner, M.; Sedlmayr, E. Rosseland and Planck mean opacities for protoplanetary discs. Astron. Astrophys. 2003, 410, 611–621. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, J.W.; Alexander, D.R.; Allard, F. Low-Temperature Opacities. Astrophys. J. 2005, 623, 585–596. [Google Scholar] [CrossRef]
- Sharp, C.M. Molecular opacities for solar and enhanced CNO abundances—Relevance for accretion disks. Astron. Astrophys. Suppl. Ser. 1992, 94, 1–12. [Google Scholar]
- Seaton, M.J.; Yan, Y.; Mihalas, D.; Pradhan, A.K. Opacities for Stellar Envelopes. Mon. Not. R. Astron. Soc. 1994, 266, 805–828. [Google Scholar] [CrossRef]
- Iglesias, C.A.; Rogers, F.J. Updated Opal Opacities. Astrophys. J. 1996, 464, 943–953. [Google Scholar] [CrossRef]
- Bell, K.R.; Lin, D.N.C. Using FU Orionis outbursts to constrain self-regulated protostellar disk models. Astrophys. J. 1994, 427, 987–1004. [Google Scholar] [CrossRef]
- Pollack, J.B.; Hollenbach, D.; Beckwith, S.; Simonelli, D.P.; Roush, T.; Fong, W. Composition and radiative properties of grains in molecular clouds and accretion disks. Astrophys. J. 1994, 421, 615–639. [Google Scholar] [CrossRef]
- Alexander, D.R. Low-Temperature Rosseland Opacity Tables. Astrophys. J. Suppl. Ser. 1975, 29, 363–374. [Google Scholar] [CrossRef]
- Alexander, D.R.; Ferguson, J.W. Low-temperature Rosseland Opacities. Astrophys. J. 1994, 437, 879–891. [Google Scholar] [CrossRef]
- Andrews, B.H.; Thompson, T.A. Assessing Radiation Pressure as a Feedback Mechanism in Star-forming Galaxies. Astrophys. J. 2011, 727, 97. [Google Scholar] [CrossRef]
- Coker, C.T.; Thompson, T.A.; Martini, P. Dust Scattering and the Radiation Pressure Force in the M82 Superwind. Astrophys. J. 2013, 778, 79. [Google Scholar] [CrossRef]
- Wilson, C.D.; Rangwala, N.; Glenn, J.; Maloney, P.R.; Spinoglio, L.; Pereira-Santaella, M. Extreme Dust Disks in Arp 220 as Revealed by ALMA. Astrophys. J. Lett. 2014, 789, 36. [Google Scholar] [CrossRef]
- Barcos-Muñoz, L.; Aalto, S.; Thompson, T.A. Fast, Collimated Outflow in the Western Nucleus of Arp 220. Astrophys. J. Lett. 2018, 853, 28. [Google Scholar] [CrossRef]
- Barcos-Muñoz, L.; Leroy, A.K.; Evans, A.S. A 33 GHz Survey of Local Major Mergers: Estimating the Sizes of the Energetically Dominant Regions from High-resolution Measurements of the Radio Continuum. Astrophys. J. 2017, 843, 117. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Davis, S.W. Radiation Hydrodynamic Simulations of Dust-driven Winds. Astrophys. J. 2017, 839, 54. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Davis, S.W.; Jiang, Y.-F.; Stone, J.M. Dusty Cloud Acceleration by Radiation Pressure in Rapidly Star-forming Galaxies. Astrophys. J. 2018, 854, 110. [Google Scholar] [CrossRef] [Green Version]
- Thompson, T.A.; Krumholz, M.R. Sub-Eddington star-forming regions are super-Eddington: Momentum-driven outflows from supersonic turbulence. Mon. Not. R. Astron. Soc. 2016, 455, 334–342. [Google Scholar] [CrossRef]
- Faber, S.M.; Jackson, R.E. Velocity dispersions and mass-to-light ratios for elliptical galaxies. Astrophys. J. 1976, 204, 668–683. [Google Scholar] [CrossRef]
- Thompson, T.A.; Fabian, A.C.; Quataert, E.; Murray, N. Dynamics of dusty radiation-pressure-driven shells and clouds: Fast outflows from galaxies, star clusters, massive stars, and AGN. Mon. Not. R. Astron. Soc. 2015, 449, 147–161. [Google Scholar] [CrossRef]
- Lochhaas, C.; Thompson, T.A.; Quataert, E.; Weinberg, D.H. Fast Winds Drive Slow Shells: A Model for the Circumgalactic Medium as Galactic Wind-Driven Bubbles. Mon. Not. R. Astron. Soc. 2018, 481, 1873–1896. [Google Scholar] [CrossRef]
- Zhang, D.; Thompson, T.A. Radiation pressure-driven galactic winds from self-gravitating discs. Mon. Not. R. Astron. Soc. 2012, 424, 1170–1178. [Google Scholar] [CrossRef] [Green Version]
- Kennicutt, R.C., Jr. The Global Schmidt Law in Star-forming Galaxies. Astrophys. J. 1998, 498, 541–552. [Google Scholar] [CrossRef]
- Kennicutt, R.C., Jr. Star Formation in Galaxies Along the Hubble Sequence. Annu. Rev. Astron. Astrophys. 1998, 36, 189–232. [Google Scholar] [CrossRef]
- Roth, N.; Kasen, D.; Hopkins, P.F.; Quataert, E. Three-dimensional Radiative Transfer Calculations of Radiation Feedback from Massive Black Holes: Outflow of Mass from the Dusty “Torus”. Astrophys. J. 2012, 759, 36. [Google Scholar] [CrossRef]
- Jacquet, E.; Krumholz, M.R. Radiative Rayleigh-Taylor Instabilities. Astrophys. J. 2011, 730, 116. [Google Scholar] [CrossRef]
- Jiang, Y.-F.; Davis, S.W.; Stone, J.M. Nonlinear Evolution of Rayleigh-Taylor Instability in a Radiation-supported Atmosphere. Astrophys. J. 2013, 763, 102. [Google Scholar] [CrossRef]
- Krumholz, M.R.; Klein, R.I.; McKee, C.F.; Offner, S.S.R.; Cunningham, A.J. The Formation of Massive Star Systems by Accretion. Science 2009, 323, 754–757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lowrie, R.B.; Morel, J.E.; Hittinger, J.A. The Coupling of Radiation and Hydrodynamics. Astrophys. J. 1999, 521, 432–450. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.-F.; Stone, J.M.; Davis, S.W. A Godunov Method for Multidimensional Radiation Magnetohydrodynamics Based on a Variable Eddington Tensor. Astrophys. J. 2012, 199, 14. [Google Scholar] [CrossRef]
- Mihalas, D.; Mihalas, B.W. Foundations of Radiation Hydrodynamics; Oxford University Press: Oxford, NY, USA, 1984. [Google Scholar]
- Levermore, C.D.; Pomraning, G.C. A flux-limited diffusion theory. Astrophys. J. 1981, 248, 321–334. [Google Scholar] [CrossRef]
- Levermore, C.D. Relating Eddington factors to flux limiters. J. Quant. Spectrosc. Radiat. Transf. 1984, 31, 149–160. [Google Scholar] [CrossRef]
- Olson, G.L.; Kunasz, P.B. Short characteristic solution of the non-LTE transfer problem by operator perturbation. I. The one-dimensional planar slab. J. Quant. Spectrosc. Radiat. Transf. 1987, 38, 325–336. [Google Scholar] [CrossRef]
- Kunasz, P.; Auer, L.H. Short characteristic integration of radiative transfer problems–Formal solution in two-dimensional slabs. J. Quant. Spectrosc. Radiat. Transf. 1988, 39, 67–79. [Google Scholar] [CrossRef]
- Stone, J.M.; Mihalas, D.; Norman, M.L. ZEUS-2D: A radiation magnetohydrodynamics code for astrophysical flows in two space dimensions. III—The radiation hydrodynamic algorithms and tests. Astrophys. J. Suppl. Ser. 1992, 80, 819–845. [Google Scholar] [CrossRef]
- Sekora, M.D.; Stone, J.M. A hybrid Godunov method for radiation hydrodynamics. J. Comput. Phys. 2010, 229, 6819–6852. [Google Scholar] [CrossRef] [Green Version]
- Davis, S.W.; Stone, J.M.; Jiang, Y.-F. A Radiation Transfer Solver for Athena Using Short Characteristics. Astrophys. J. Suppl. Ser. 2012, 199, 9. [Google Scholar] [CrossRef]
- Jiang, Y.-F.; Stone, J.M.; Davis, S.W. An Algorithm for Radiation Magnetohydrodynamics Based on Solving the Time-dependent Transfer Equation. Astrophys. J. Suppl. Ser. 2014, 213, 7. [Google Scholar] [CrossRef]
- Rosen, A.L.; Krumholz, M.R.; Oishi, J.S.; Lee, A.T.; Klein, R.I. Hybrid Adaptive Ray-Moment Method (HARM2): A highly parallel method for radiation hydrodynamics on adaptive grids. J. Comput. Phys. 2017, 330, 924–942. [Google Scholar] [CrossRef]
- Krumholz, M.R.; Thompson, T.A. Direct Numerical Simulation of Radiation Pressure-driven Turbulence and Winds in Star Clusters and Galactic Disks. Astrophys. J. 2012, 760, 155. [Google Scholar] [CrossRef]
- Krumholz, M.R.; Thompson, T.A. Numerical simulations of radiatively driven dusty winds. Mon. Not. R. Astron. Soc. 2013, 434, 2329–2346. [Google Scholar] [CrossRef] [Green Version]
- Davis, S.W.; Jiang, Y.-F.; Stone, J.M.; Murray, N. Radiation Feedback in ULIRGs: Are Photons Movers and Shakers? Astrophys. J. 2014, 796, 107. [Google Scholar] [CrossRef]
- Rosdahl, J.; Teyssier, R. A scheme for radiation pressure and photon diffusion with the M1 closure in RAMSES-RT. Mon. Not. R. Astron. Soc. 2015, 449, 4380–4403. [Google Scholar] [CrossRef]
- Tsang, B.T.-H.; Milosavljević, M. Radiation pressure driving of a dusty atmosphere. Mon. Not. R. Astron. Soc. 2015, 453, 1108–1120. [Google Scholar] [CrossRef] [Green Version]
- Kannan, R.; Vogelsberger, M.; Marinacci, F.; McKinnon, R.; Pakmor, R.; Springel, V. AREPO-RT: Radiation hydrodynamics on a moving mesh. arxiv, 2018; arXiv:1804.01987. [Google Scholar]
- Krumholz, M.R. Resolution Requirements and Resolution Problems in Simulations of Radiative Feedback in Dusty Gas. Mon. Not. R. Astron. Soc. 2018, 480, 3468–3482. [Google Scholar] [CrossRef]
- Leroy, A.K.; Bolatto, A.D.; Ostriker, E.C. Forming Super Star Clusters Power the Central Starburst in NGC 253. arxiv, 2018; arXiv:1804.02083. [Google Scholar]
- Fermi, E. On the Origin of the Cosmic Radiation. Phys. Rev. Lett. 1949, 75, 1169–1174. [Google Scholar] [CrossRef]
- Axford, W.I.; Leer, E.; Skadron, G. The acceleration of cosmic rays by shock waves. Int. Cosmic Ray Conf. 1977, 11, 132–137. [Google Scholar]
- Krymskii, G.F. A regular mechanism for the acceleration of charged particles on the front of a shock wave. Dokl. Akad. Nauk SSSR 1977, 243, 1306–1308. [Google Scholar]
- Bell, A.R. The acceleration of cosmic rays in shock fronts. I. Mon. Not. R. Astron. Soc. 1978, 182, 147–156. [Google Scholar] [CrossRef]
- Bell, A.R. The acceleration of cosmic rays in shock fronts. II. Mon. Not. R. Astron. Soc. 1978, 182, 443–455. [Google Scholar] [CrossRef]
- Blandford, R.D.; Ostriker, J.P. Particle acceleration by astrophysical shocks. Astrophys. J. Lett. 1978, 221, 29–32. [Google Scholar] [CrossRef]
- Schlickeiser, R. Cosmic-ray transport and acceleration. I—Derivation of the kinetic equation and application to cosmic rays in static cold media. Astrophys. J. 1989, 336, 243–263. [Google Scholar] [CrossRef]
- Schlickeiser, R. Cosmic-Ray Transport and Acceleration. II. Cosmic Rays in Moving Cold Media with Application to Diffusive Shock Wave Acceleration. Astrophys. J. 1989, 336, 264–293. [Google Scholar] [CrossRef]
- Helder, E.A.; Vink, J.; Bykov, A.M.; Ohira, Y.; Raymond, J.C.; Terrier, R. Observational Signatures of Particle Acceleration in Supernova Remnants. Space Sci. Rev. 2012, 173, 369–431. [Google Scholar] [CrossRef] [Green Version]
- Morlino, G.; Caprioli, D. Strong evidence for hadron acceleration in Tycho’s supernova remnant. Astron. Astrophys. 2012, 538, 81. [Google Scholar] [CrossRef]
- Ackermann, M. Detection of the Characteristic Pion-Decay Signature in Supernova Remnants. Science 2013, 339, 807–811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strong, A.W.; Moskalenko, I.V.; Ptuskin, V.S. Cosmic-Ray Propagation and Interactions in the Galaxy. Annu. Rev. Nucl. Part. Sci. 2007, 57, 285–327. [Google Scholar] [CrossRef] [Green Version]
- Grenier, I.A.; Black, J.H.; Strong, A.W. The Nine Lives of Cosmic Rays in Galaxies. Annu. Rev. Astron. Astrophys. 2015, 53, 199–246. [Google Scholar] [CrossRef]
- Zweibel, E.G. The microphysics and macrophysics of cosmic rays. Phys. Plasmas 2013, 20, 055501. [Google Scholar] [CrossRef]
- Zweibel, E.G. The basis for cosmic ray feedback: Written on the wind. Phys. Plasmas 2017, 24, 055402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Webber, W.R. A New Estimate of the Local Interstellar Energy Density and Ionization Rate of Galactic Cosmic Cosmic Rays. Astrophys. J. 1998, 506, 329–334. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Munoz, M.; Mason, G.M.; Simpson, J.A. The age of the galactic cosmic rays derived from the abundance of Be-10. Astrophys. J. 1977, 217, 859–877. [Google Scholar] [CrossRef]
- Yanasak, N.E. Measurement of the Secondary Radionuclides 10Be,26Al, 36Cl, 54Mn, and 14C and Implications for the Galactic Cosmic-Ray Age. Astrophys. J. 2001, 563, 768–792. [Google Scholar] [CrossRef]
- Ipavich, F.M. Galactic Winds Driven by Cosmic Rays. Astrophys. J. 1975, 196, 107–120. [Google Scholar] [CrossRef]
- Breitschwerdt, D.; McKenzie, J.F.; Voelk, H.J. Galactic winds. I—Cosmic ray and wave-driven winds from the Galaxy. Astron. Astrophys. 1991, 245, 79–98. [Google Scholar]
- Breitschwerdt, D.; McKenzie, J.F.; Voelk, H.J. Galactic winds. II—Role of the disk-halo interface in cosmic ray driven galactic winds. Astron. Astrophys. 1993, 269, 54–66. [Google Scholar]
- Zirakashvili, V.N.; Breitschwerdt, D.; Ptuskin, V.S.; Voelk, H.J. Magnetohydrodynamic wind driven by cosmic rays in a rotating galaxy. Astron. Astrophys. 1996, 311, 113–126. [Google Scholar]
- Ptuskin, V.S.; Voelk, H.J.; Zirakashvili, V.N.; Breitschwerdt, D. Transport of relativistic nucleons in a galactic wind driven by cosmic rays. Astron. Astrophys. 1997, 321, 434–443. [Google Scholar]
- Breitschwerdt, D.; Dogiel, V.A.; Völk, H.J. The gradient of diffuse gamma -ray emission in the Galaxy. Astron. Astrophys. 2002, 385, 216–238. [Google Scholar] [CrossRef]
- Kulsrud, R.; Pearce, W.P. The Effect of Wave-Particle Interactions on the Propagation of Cosmic Rays. Astrophys. J. 1969, 156, 445–469. [Google Scholar] [CrossRef]
- Wentzel, D.G. Cosmic-ray propagation in the Galaxy–Collective effects. Annu. Rev. Astron. Astrophys. 1974, 12, 71–96. [Google Scholar] [CrossRef]
- Everett, J.E.; Zweibel, E.G.; Benjamin, R.A.; McCammon, D.; Rocks, L.; Gallagher, J.S., III. The Milky Way’s Kiloparsec-Scale Wind: A Hybrid Cosmic-Ray and Thermally Driven Outflow. Astrophys. J. 2008, 674, 258–270. [Google Scholar] [CrossRef]
- Everett, J.E.; Schiller, Q.G.; Zweibel, E.G. Synchrotron Constraints on a Hybrid Cosmic-ray and Thermally Driven Galactic Wind. Astrophys. J. 2010, 711, 13–24. [Google Scholar] [CrossRef]
- Thompson, T.A.; Quataert, E.; Waxman, E. The Starburst Contribution to the Extragalactic γ-Ray Background. Astrophys. J. 2007, 654, 219–225. [Google Scholar] [CrossRef]
- Socrates, A.; Davis, S.W.; Ramirez-Ruiz, E. The Eddington Limit in Cosmic Rays: An Explanation for the Observed Faintness of Starbursting Galaxies. Astrophys. J. 2008, 687, 202–215. [Google Scholar] [CrossRef] [Green Version]
- Kulsrud, R.M. Plasma Physics for Astrophysics; Princeton University Press: Princeton, NJ, USA, 2005. [Google Scholar]
- Schlickeiser, R. Cosmic Ray Astrophysics; Springer: Berlin, Germany, 2002; ISBN 3-540-66465-3. [Google Scholar]
- Diesing, R.; Caprioli, D. Effect of Cosmic Rays on the Evolution and Momentum Deposition of Supernova Remnants. Phys. Rev. Lett. 2018, 121, 091101. [Google Scholar] [CrossRef] [PubMed]
- Uhlig, M.; Pfrommer, C.; Sharma, M.; Nath, B.B.; Enβlin, T.A.; Springel, V. Galactic winds driven by cosmic ray streaming. Mon. Not. R. Astron. Soc. 2012, 423, 2374–2396. [Google Scholar] [CrossRef] [Green Version]
- Booth, C.M.; Agertz, O.; Kravtsov, A.V.; Gnedin, N.Y. Simulations of Disk Galaxies with Cosmic Ray Driven Galactic Winds. Astrophys. J. Lett. 2013, 777, L16. [Google Scholar] [CrossRef]
- Hanasz, M.; Lesch, H.; Naab, T.; Gawryszczak, A.; Kowalik, K.; Wóltański, D. Cosmic Rays Can Drive Strong Outflows from Gas-rich High-redshift Disk Galaxies. Astrophys. J. Lett. 2013, 777, 38. [Google Scholar] [CrossRef]
- Salem, M.; Bryan, G.L. Cosmic ray driven outflows in global galaxy disc models. Mon. Not. R. Astron. Soc. 2014, 437, 3312–3330. [Google Scholar] [CrossRef]
- Girichidis, P. Launching Cosmic-Ray-driven Outflows from the Magnetized Interstellar Medium. Astrophys. J. Lett. 2016, 816, L19. [Google Scholar] [CrossRef]
- Pakmor, R.; Pfrommer, C.; Simpson, C.M.; Springel, V. Galactic Winds Driven by Isotropic and Anisotropic Cosmic-Ray Diffusion in Disk Galaxies. Astrophys. J. Lett. 2016, 824, L30. [Google Scholar] [CrossRef]
- Pakmor, R.; Pfrommer, C.; Simpson, C.M.; Kannan, R.; Springel, V. Semi-implicit anisotropic cosmic ray transport on an unstructured moving mesh. Mon. Not. R. Astron. Soc. 2016, 462, 2603–2616. [Google Scholar] [CrossRef] [Green Version]
- Simpson, C.M. The Role of Cosmic-Ray Pressure in Accelerating Galactic Outflows. Astrophys. J. Lett. 2016, 827, L29. [Google Scholar] [CrossRef]
- Pfrommer, C.; Pakmor, R.; Schaal, K.; Simpson, C.M.; Springel, V. Simulating cosmic ray physics on a moving mesh. Mon. Not. R. Astron. Soc. 2017, 465, 4500–4529. [Google Scholar] [CrossRef]
- Ruszkowski, M.; Yang, H.-Y.K.; Zweibel, E. Global Simulations of Galactic Winds Including Cosmic-ray Streaming. Astrophys. J. 2017, 834, 208. [Google Scholar] [CrossRef]
- Wiener, J.; Pfrommer, C.; Oh, S.P. Cosmic ray-driven galactic winds: Streaming or diffusion? Mon. Not. R. Astron. Soc. 2017, 467, 906–921. [Google Scholar] [CrossRef]
- Jacob, S.; Pakmor, R.; Simpson, C.M.; Springel, V.; Pfrommer, C. The dependence of cosmic ray-driven galactic winds on halo mass. Mon. Not. R. Astron. Soc. 2018, 475, 570–584. [Google Scholar] [CrossRef]
- Fujita, A.; Mac Low, M.-M. Cosmic ray driven outflows in an ultraluminous galaxy. Mon. Not. R. Astron. Soc. 2018, 477, 531–538. [Google Scholar] [CrossRef] [Green Version]
- Girichidis, P.; Naab, T.; Hanasz, M.; Walch, S. Cooler and smoother–the impact of cosmic rays on the phase structure of galactic outflows. Mon. Not. R. Astron. Soc. 2018, 479, 3042–3067. [Google Scholar] [CrossRef]
- Jiang, Y.-F.; Oh, S.P. A New Numerical Scheme for Cosmic-Ray Transport. Astrophys. J. 2018, 854, 5. [Google Scholar] [CrossRef] [Green Version]
- Farber, R.; Ruszkowski, M.; Yang, H.-Y.K.; Zweibel, E.G. Impact of Cosmic-Ray Transport on Galactic Winds. Astrophys. J. 2018, 856, 112. [Google Scholar] [CrossRef] [Green Version]
- Thomas, T.; Pfrommer, C. Cosmic-ray hydrodynamics: Alfvén-wave regulated transport of cosmic rays. arxiv, 2018; arXiv:1805.11092. [Google Scholar]
- Holguin, F.; Ruszkowski, M.; Lazarian, A.; Farber, R.; Yang, H.-Y.K. Role of Cosmic Ray Streaming and Turbulent Damping in Driving Galactic Winds. arxiv, 2018; arXiv:1807.05494. [Google Scholar]
- Guo, F.; Oh, S.P. Feedback heating by cosmic rays in clusters of galaxies. Mon. Not. R. Astron. Soc. 2008, 384, 251–266. [Google Scholar] [CrossRef] [Green Version]
- De Pontieu, B.; Martens, P.C.H.; Hudson, H.S. Chromospheric Damping of Alfvén Waves. Astrophys. J. 2001, 558, 859–871. [Google Scholar] [CrossRef]
- Khodachenko, M.L.; Arber, T.D.; Rucker, H.O.; Hanslmeier, A. Collisional and viscous damping of MHD waves in partially ionized plasmas of the solar atmosphere. Astron. Astrophys. 2004, 422, 1073–1084. [Google Scholar] [CrossRef] [Green Version]
- Khodachenko, M.L.; Rucker, H.O.; Kislyakov, A.G.; Zaitsev, V.V.; Urpo, S. Microwave Diagnostics of Dynamic Processes and Oscillations in Groups of Solar Coronal Magnetic Loops. Adv. Space Res. 2006, 122, 137–148. [Google Scholar] [CrossRef]
- Soler, R.; Terradas, J.; Oliver, R.; Ballester, J.L. The role of Alfvén wave heating in solar prominences. Astron. Astrophys. 2016, 592, 28. [Google Scholar] [CrossRef]
- Malmberg, J.H.; Wharton, C.B. Collisionless Damping of Large-Amplitude Plasma Waves. Phys. Rev. Lett. 1967, 19, 775–777. [Google Scholar] [CrossRef]
- Hollweg, J.V. Nonlinear Landau Damping of Alfvén Waves. Phys. Rev. Lett. 1971, 27, 1349–1352. [Google Scholar] [CrossRef]
- Lee, M.A.; Völk, H.J. Damping and Non-Linear Wave-Particle Interactions of Alfvén-Waves in the Solar Wind. Astrophys. Space Sci. 1973, 24, 31–49. [Google Scholar] [CrossRef]
- McKenzie, J.F.; Bond, R.A.B. The role of non-linear Landau damping in cosmic ray shock acceleration. Astron. Astrophys. 1983, 123, 111–117. [Google Scholar]
- Miller, J.A. Magnetohydrodynamic turbulence dissipation and stochastic proton acceleration in solar flares. Astrophys. J. 1991, 376, 342–354. [Google Scholar] [CrossRef]
- Mouhot, C.; Villani, C. On Landau Damping. arxiv, 2009; arXiv:0904.2760. [Google Scholar]
- Farmer, A.J.; Goldreich, P. Wave Damping by Magnetohydrodynamic Turbulence and Its Effect on Cosmic-Ray Propagation in the Interstellar Medium. Astrophys. J. 2004, 604, 671–674. [Google Scholar] [CrossRef]
- Yan, H.; Lazarian, A. Cosmic-Ray Scattering and Streaming in Compressible Magnetohydrodynamic Turbulence. Astrophys. J. 2004, 614, 757–769. [Google Scholar] [CrossRef]
- Lazarian, A. Damping of Alfvén Waves by Turbulence and Its Consequences: From Cosmic-ray Streaming to Launching Winds. Astrophys. J. 2016, 833, 131. [Google Scholar] [CrossRef]
- Everett, J.E.; Zweibel, E.G. The Interaction of Cosmic Rays with Diffuse Clouds. Astrophys. J. 2011, 739, 60. [Google Scholar] [CrossRef]
- Yang, H.-Y.K.; Ruszkowski, M.; Ricker, P.M.; Zweibel, E.; Lee, D. The Fermi Bubbles: Supersonic Active Galactic Nucleus Jets with Anisotropic Cosmic-Ray Diffusion. Astrophys. J. 2012, 761, 185. [Google Scholar] [CrossRef]
- Swordy, S.P.; Mueller, D.; Meyer, P.; L’Heureux, J.; Grunsfeld, J.M. Relative Abundances of Secondary and Primary Cosmic Rays at High Energies. Astrophys. J. 1990, 349, 625–633. [Google Scholar] [CrossRef]
- Shalchi, A.; Schlickeiser, R. Evidence for the Nonlinear Transport of Galactic Cosmic Rays. Astrophys. J. Lett. 2005, 626, 97–99. [Google Scholar] [CrossRef]
- Heesen, V.; Beck, R.; Krause, M.; Dettmar, R.-J. Cosmic rays and the magnetic field in the nearby starburst galaxy NGC 253. I. The distribution and transport of cosmic rays. Astron. Astrophys. 2009, 494, 563–577. [Google Scholar] [CrossRef]
- Heesen, V.; Krause, M.; Beck, R.; Dettmar, R.-J. Cosmic rays and the magnetic field in the nearby starburst galaxy NGC 253. II. The magnetic field structure. Astron. Astrophys. 2009, 506, 1123–1135. [Google Scholar] [CrossRef]
- Heesen, V.; Beck, R.; Krause, M.; Dettmar, R.-J. Cosmic rays and the magnetic field in the nearby starburst galaxy NGC 253 III. Helical magnetic fields in the nuclear outflow. Astron. Astrophys. 2011, 535, 79. [Google Scholar] [CrossRef]
- Shalchi, A.; Büsching, I.; Lazarian, A.; Schlickeiser, R. Perpendicular Diffusion of Cosmic Rays for a Goldreich-Sridhar Spectrum. Astrophys. J. 2010, 725, 2117–2127. [Google Scholar] [CrossRef]
- Buffie, K.; Heesen, V.; Shalchi, A. Theoretical Explanation of the Cosmic-Ray Perpendicular Diffusion Coefficient in the Nearby Starburst Galaxy NGC 253. Astrophys. J. 2013, 764, 37. [Google Scholar] [CrossRef]
- Heesen, V.; Dettmar, R.-J.; Krause, M.; Beck, R.; Stein, Y. Advective and diffusive cosmic ray transport in galactic haloes. Mon. Not. R. Astron. Soc. 2016, 458, 332–353. [Google Scholar] [CrossRef] [Green Version]
- Wiener, J.; Oh, S.P.; Guo, F. Cosmic ray streaming in clusters of galaxies. Mon. Not. R. Astron. Soc. 2013, 434, 2209–2228. [Google Scholar] [CrossRef] [Green Version]
- Wiener, J.; Oh, S.P.; Zweibel, E.G. Interaction of cosmic rays with cold clouds in galactic haloes. Mon. Not. R. Astron. Soc. 2017, 467, 646–660. [Google Scholar] [CrossRef]
- Salem, M.; Bryan, G.L.; Corlies, L. Role of cosmic rays in the circumgalactic medium. Mon. Not. R. Astron. Soc. 2016, 456, 582–601. [Google Scholar] [CrossRef]
- Ruszkowski, M.; Yang, H.-Y.K.; Reynolds, C.S. Cosmic-Ray Feedback Heating of the Intracluster Medium. Astrophys. J. 2017, 844, 13. [Google Scholar] [CrossRef] [Green Version]
- Butsky, I.; Quinn, T.R. The Role of Cosmic Ray Transport in Shaping the Simulated Circumgalactic Medium. arxiv, 2018; arXiv:1803.06345. [Google Scholar]
- Skilling, J. Cosmic Rays in the Galaxy: Convection or Diffusion? Astrophys. J. 1971, 170, 256–273. [Google Scholar] [CrossRef]
- Skinner, M.A.; Ostriker, E.C. A Two-moment Radiation Hydrodynamics Module in Athena Using a Time-explicit Godunov Method. Astrophys. J. Suppl. Ser. 2013, 206, 21. [Google Scholar] [CrossRef]
- Mao, S.A.; Ostriker, E.C. Galactic Disk Winds Driven by Cosmic Ray Pressure. Astrophys. J. 2018, 854, 89. [Google Scholar] [CrossRef] [Green Version]
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, D. A Review of the Theory of Galactic Winds Driven by Stellar Feedback. Galaxies 2018, 6, 114. https://doi.org/10.3390/galaxies6040114
Zhang D. A Review of the Theory of Galactic Winds Driven by Stellar Feedback. Galaxies. 2018; 6(4):114. https://doi.org/10.3390/galaxies6040114
Chicago/Turabian StyleZhang, Dong. 2018. "A Review of the Theory of Galactic Winds Driven by Stellar Feedback" Galaxies 6, no. 4: 114. https://doi.org/10.3390/galaxies6040114
APA StyleZhang, D. (2018). A Review of the Theory of Galactic Winds Driven by Stellar Feedback. Galaxies, 6(4), 114. https://doi.org/10.3390/galaxies6040114