Energy of Photons in Expanding Spacetime: Comparing FLRW and Conformal Cosmology Metrics
Abstract
1. Introduction
2. Conformal Cosmology Metric
3. Velocity of Photons
3.1. Contravariant (Comoving) Velocity
3.2. Physical (Coordinate-Invariant) Velocity
4. Energy of Photons
4.1. High-Frequency Electromagnetic Waves
4.2. Light as an Ensemble of Photons
4.3. Conservation of Photon Energy
4.4. Cosmological Redshift
5. Discussion
5.1. Tensions in the CDM Model
- The need to introduce dark matter to explain flat galaxy rotation curves,
- The requirement for dark energy to account for the dimming of Type Ia supernovae luminosity,
- The failure to describe the expansion of galaxies and other local gravitationally bound systems.
- The unresolved question of what happens to the energy of photons lost due to cosmological redshift during their propagation through expanding space.
5.2. The Conformal Cosmology Metric
5.3. Cosmological Redshift and Cosmic Time Dilation
5.4. Energy Conservation of Photons
5.5. Observational Support for the CC Metric
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Cosmological Redshift Inconsistency in the FLRW Metric
Appendix A.2. Velocity and Energy of Photons in the FLRW Metric
References
- Lemaître, G. Un Univers homogène de masse constante et de rayon croissant rendant compte de la vitesse radiale des nébuleuses extra-galactiques. Ann. Soc. Sci. Brux. 1927, 47, 49–59. [Google Scholar]
- Hubble, E. A Relation between Distance and Radial Velocity among Extra-Galactic Nebulae. Proc. Natl. Acad. Sci. USA 1929, 15, 168–173. [Google Scholar] [CrossRef] [PubMed]
- Weinberg, S. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity; John Wiley & Sons: New York, NY, USA, 1972. [Google Scholar]
- Peacock, J.A. Cosmological Physics; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Carroll, S.M. Spacetime and Geometry. An Introduction to General Relativity; Addison Wesley: San Francisco, CA, USA, 2004. [Google Scholar]
- Misner, C.W.; Thorne, K.S.; Wheeler, J.A. Gravitation; Princeton University Press: Princeton, NJ, USA; San Francisco, CA, USA, 1973. [Google Scholar]
- Vavryčuk, V. Cosmological redshift and cosmic time dilation in the FLRW metric. Front. Phys. 2022, 10, 826188. [Google Scholar] [CrossRef]
- Vavryčuk, V. Time dilation observed in Type Ia supernova light curves and its cosmological consequences. Galaxies 2025, 13, 55. [Google Scholar] [CrossRef]
- Leibundgut, B.; Schommer, R.; Phillips, M.; Riess, A.; Schmidt, B.; Spyromilio, J.; Walsh, J.; Suntzeff, N.; Hamuy, M.; Maza, J.; et al. Time Dilation in the Light Curve of the Distant Type IA Supernova SN 1995K. Astrophys. J. 1996, 466, L21. [Google Scholar] [CrossRef]
- Leibundgut, B. Cosmological Implications from Observations of Type Ia Supernovae. Annu. Rev. Astron. Astrophys. 2001, 39, 67–98. [Google Scholar] [CrossRef]
- White, R.M.T.; Davis, T.M.; Lewis, G.F.; Brout, D.; Galbany, L.; Glazebrook, K.; Hinton, S.R.; Lee, J.; Lidman, C.; Möller, A.; et al. The Dark Energy Survey Supernova Program: Slow supernovae show cosmological time dilation out to z 1. Mon. Not. R. Astron. Soc. 2024, 533, 3365–3378. [Google Scholar] [CrossRef]
- Goldhaber, G.; Deustua, S.; Gabi, S.; Groom, D.; Hook, I.; Kim, A.; Kim, M.; Lee, J.; Pain, R.; Pennypacker, C.; et al. Observation of cosmological time dilation using Type Ia supernovae as clocks. In Proceedings of the Thermonuclear Supernovae; Ruiz-Lapuente, P., Canal, R., Isern, J., Eds.; NATO Advanced Study Institute (ASI) Series C; Springer: Dordrecht, The Netherlands, 1997; Volume 486, p. 777. [Google Scholar] [CrossRef]
- Phillips, M.M.; Lira, P.; Suntzeff, N.B.; Schommer, R.A.; Hamuy, M.; Maza, J. The Reddening-Free Decline Rate Versus Luminosity Relationship for Type IA Supernovae. Astron. J. 1999, 118, 1766–1776. [Google Scholar] [CrossRef]
- Goldhaber, G.; Groom, D.E.; Kim, A.; Aldering, G.; Astier, P.; Conley, A.; Deustua, S.E.; Ellis, R.; Fabbro, S.; Fruchter, A.S.; et al. Timescale Stretch Parameterization of Type Ia Supernova B-Band Light Curves. Astrophys. J. 2001, 558, 359–368. [Google Scholar] [CrossRef]
- Vavryčuk, V. Gravitational orbits in the expanding Universe revisited. Front. Astron. Space Sci. 2023, 10, 1071743. [Google Scholar] [CrossRef]
- Vavryčuk, V. Considering light-matter interactions in Friedmann equations based on the conformal FLRW metric. J. Adv. Res. 2023, 46, 49–59. [Google Scholar] [CrossRef]
- Ibison, M. On the conformal forms of the Robertson-Walker metric. J. Math. Phys. 2007, 48, 122501. [Google Scholar] [CrossRef]
- Grøn, Ø.; Johannesen, S. FRW universe models in conformally flat-spacetime coordinates I: General formalism. Eur. Phys. J. Plus 2011, 126, 28. [Google Scholar] [CrossRef]
- Harada, T.; Carr, B.J.; Igata, T. Complete conformal classification of the Friedmann-Lemaître-Robertson-Walker solutions with a linear equation of state. Class. Quantum Gravity 2018, 35, 105011. [Google Scholar] [CrossRef]
- Vavryčuk, V. Cosmological consequences of the Lorentz and Doppler transformations. Mod. Phys. Lett. A 2024, 39, 2450098. [Google Scholar] [CrossRef]
- Mannheim, P.D. Alternatives to dark matter and dark energy. Prog. Part. Nucl. Phys. 2006, 56, 340–445. [Google Scholar] [CrossRef]
- Capozziello, S.; de Laurentis, M. Extended Theories of Gravity. Phys. Rep. 2011, 509, 167–321. [Google Scholar] [CrossRef]
- Penrose, R. Republication of: Conformal treatment of infinity. Gen. Relativ. Gravit. 2011, 43, 901–922. [Google Scholar] [CrossRef]
- Infeld, L.; Schild, A. A New Approach to Kinematic Cosmology. Phys. Rev. 1945, 68, 250–272. [Google Scholar] [CrossRef]
- Infeld, L.; Schild, A.E. A New Approach to Kinematic Cosmology-(B). Phys. Rev. 1946, 70, 410–425. [Google Scholar] [CrossRef]
- Hartle, J.B. Gravity: An Introduction to Einstein’s General Relativity; Addison Wesley: San Francisco, CA, USA, 2003. [Google Scholar]
- Cook, R.J. Physical time and physical space in general relativity. Am. J. Phys. 2004, 72, 214–219. [Google Scholar] [CrossRef]
- Vavryčuk, V. Generalized Planck-Einstein relation in curved spacetimes: Implications for light propagation near black holes. Symmetry 2025, 17, 1419. [Google Scholar] [CrossRef]
- Kroupa, P. The Dark Matter Crisis: Falsification of the Current Standard Model of Cosmology. Publ. Astron. Soc. Aust. 2012, 29, 395–433. [Google Scholar] [CrossRef]
- Kroupa, P. Galaxies as simple dynamical systems: Observational data disfavor dark matter and stochastic star formation. Can. J. Physics 2015, 93, 169–202. [Google Scholar] [CrossRef]
- Buchert, T.; Coley, A.A.; Kleinert, H.; Roukema, B.F.; Wiltshire, D.L. Observational challenges for the standard FLRW model. Int. J. Mod. Phys. D 2016, 25, 1630007. [Google Scholar] [CrossRef]
- Bullock, J.S.; Boylan-Kolchin, M. Small-Scale Challenges to the ΛCDM Paradigm. Annu. Rev. Astron. Astrophys. 2017, 55, 343–387. [Google Scholar] [CrossRef]
- Barrow, J.D. Cosmologies with varying light speed. Phys. Rev. D 1999, 59, 043515. [Google Scholar] [CrossRef]
- Magueijo, J. New varying speed of light theories. Rep. Prog. Phys. 2003, 66, 2025–2068. [Google Scholar] [CrossRef]
- Moffat, J.W. Variable speed of light cosmology, primordial fluctuations and gravitational waves. Eur. Phys. J. C 2016, 76, 130. [Google Scholar] [CrossRef]
- Lee, S. Constraining the minimally extended varying speed of light model using time dilations. Front. Astron. Space Sci. 2024, 11, 1453806. [Google Scholar] [CrossRef]
- Lee, S. Constraints on the Minimally Extended Varying Speed of Light Model Using Pantheon+ Dataset. Universe 2024, 10, 268. [Google Scholar] [CrossRef]
- Vavryčuk, V. The physical nature of the event horizon in the Schwarzschild black hole solution. Eur. Phys. J. Plus 2025, 140, 26. [Google Scholar] [CrossRef]
- Mukhanov, V. Physical Foundations of Cosmology; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar] [CrossRef]
- Weinberg, S. Cosmology; Oxford University Press: Oxford, UK, 2008. [Google Scholar]
- Ryden, B. Introduction to Cosmology; Cambridge University Press: Cambridge, UK, 2016. [Google Scholar]
- Foley, R.J.; Filippenko, A.V.; Leonard, D.C.; Riess, A.G.; Nugent, P.; Perlmutter, S. A Definitive Measurement of Time Dilation in the Spectral Evolution of the Moderate-Redshift Type Ia Supernova 1997ex. Astrophys. J. 2005, 626, L11–L14. [Google Scholar] [CrossRef]
- Noerdlinger, P.D.; Petrosian, V. The Effect of Cosmological Expansion on Self-Gravitating Ensembles of Particles. Astrophys. J. 1971, 168, 1. [Google Scholar] [CrossRef]
- Carrera, M.; Giulini, D. Influence of global cosmological expansion on local dynamics and kinematics. Rev. Mod. Phys. 2010, 82, 169–208. [Google Scholar] [CrossRef]
- Trujillo, I.; Förster Schreiber, N.M.; Rudnick, G.; Barden, M.; Franx, M.; Rix, H.W.; Caldwell, J.A.R.; McIntosh, D.H.; Toft, S.; Häussler, B.; et al. The Size Evolution of Galaxies since z~3: Combining SDSS, GEMS, and FIRES. Astrophys. J. 2006, 650, 18–41. [Google Scholar] [CrossRef]
- Dahlen, T.; Mobasher, B.; Dickinson, M.; Ferguson, H.C.; Giavalisco, M.; Kretchmer, C.; Ravindranath, S. Evolution of the Luminosity Function, Star Formation Rate, Morphology, and Size of Star-forming Galaxies Selected at Rest-Frame 1500 and 2800 Å. Astrophys. J. 2007, 654, 172–185. [Google Scholar] [CrossRef]
- McLure, R.J.; Pearce, H.J.; Dunlop, J.S.; Cirasuolo, M.; Curtis-Lake, E.; Bruce, V.A.; Caputi, K.I.; Almaini, O.; Bonfield, D.G.; Bradshaw, E.J.; et al. The sizes, masses and specific star formation rates of massive galaxies at 1.3 < z < 1.5: Strong evidence in favour of evolution via minor mergers. Mon. Not. R. Astron. Soc. 2013, 428, 1088–1106. [Google Scholar] [CrossRef]
- van der Wel, A.; Franx, M.; van Dokkum, P.G.; Skelton, R.E.; Momcheva, I.G.; Whitaker, K.E.; Brammer, G.B.; Bell, E.F.; Rix, H.W.; Wuyts, S.; et al. 3D-HST+CANDELS: The Evolution of the Galaxy Size-Mass Distribution since z = 3. Astrophys. J. 2014, 788, 28. [Google Scholar] [CrossRef]
- Shibuya, T.; Ouchi, M.; Harikane, Y. Morphologies of ∼190,000 Galaxies at z = 0-10 Revealed with HST Legacy Data. I. Size Evolution. Astrophys. J. Suppl. Ser. 2015, 219, 15. [Google Scholar] [CrossRef]
- Riess, A.G.; Filippenko, A.V.; Challis, P.; Clocchiatti, A.; Diercks, A.; Garnavich, P.M.; Gilliland, R.L.; Hogan, C.J.; Jha, S.; Kirshner, R.P.; et al. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. Astron. J. 1998, 116, 1009–1038. [Google Scholar] [CrossRef]
- Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.E.; et al. Measurements of Ω and Λ from 42 High-Redshift Supernovae. Astrophys. J. 1999, 517, 565–586. [Google Scholar] [CrossRef]
- Tian, S. The Relation between Cosmological Redshift and Scale Factor for Photons. Astrophys. J. 2017, 846, 90. [Google Scholar] [CrossRef]
- Benedetto, E.; D’Errico, L.; Feoli, A. An evolution of the universe based on a modified time-redshift relation can avoid the introduction of a cosmological constant. Astrophys. Space Sci. 2024, 369, 37. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vavryčuk, V. Energy of Photons in Expanding Spacetime: Comparing FLRW and Conformal Cosmology Metrics. Galaxies 2025, 13, 100. https://doi.org/10.3390/galaxies13050100
Vavryčuk V. Energy of Photons in Expanding Spacetime: Comparing FLRW and Conformal Cosmology Metrics. Galaxies. 2025; 13(5):100. https://doi.org/10.3390/galaxies13050100
Chicago/Turabian StyleVavryčuk, Václav. 2025. "Energy of Photons in Expanding Spacetime: Comparing FLRW and Conformal Cosmology Metrics" Galaxies 13, no. 5: 100. https://doi.org/10.3390/galaxies13050100
APA StyleVavryčuk, V. (2025). Energy of Photons in Expanding Spacetime: Comparing FLRW and Conformal Cosmology Metrics. Galaxies, 13(5), 100. https://doi.org/10.3390/galaxies13050100