TeV Dark Matter Searches in the Extragalactic Gamma-ray Sky
Abstract
:1. Introduction
2. Gamma-ray Signals from WIMP Dark Matter
3. Dwarf Spheroidal Galaxies
4. Dark Subhalos
5. Irregular and Spiral Local Galaxies
6. Galaxy Clusters
7. Multi-Wavelength, Multi-Messenger, and Multi-Instrument Combined Analyses
8. Primordial Black Hole Evaporation
9. Future Searches and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ALP | axion-like particle |
ANTARES | Astronomy with a Neutrino Telescope and Abyss environmental RESearch project |
CTA | Cherenkov Telescope Array |
CMB | cosmic microwave background |
DM | dark matter |
DOF | degree of freedom |
dIrr | dwarf irregular galaxy |
dSph | dwarf spheroidal galaxy |
GC | Galactic center |
HAWC | High-Altitude Water Cherenkov Gamma-Ray Observatory |
HEGRA | High Energy Gamma Ray Astronomy (experiment) |
H.E.S.S. | High Energy Stereoscopic System |
IACT | imaging atmospheric Cherenkov telescope |
LAT | Large Area Telescope |
LHAASO | Large High Altitude Air Shower Observatory |
LMC | Large Magellanic Cloud |
LSST | Legacy Survey of Space and Time |
MAGIC | Major Atmospheric Gamma Imaging Cherenkov telescopes |
NFW | Navarro-Frenk-White (DM profile) |
PBH | primordial black hole |
SMC | Small Magellanic Cloud |
SWGO | Southern Wide-field Gamma-ray Observatory |
VERITAS | Very Energetic Radiation Imaging Telescope Array System |
WIMP | weakly interacting massive particle |
WLM | Wolf-Lundmark-Melotte (dIrr galaxy) |
Appendix A
Index in Figure 2 | Source Name | Reference |
---|---|---|
Dwarf spheroidal galaxies | ||
1 | Aquarius II | [76,250] |
2 | Boötes I | [71,72,73,74,75,76,77,83,84,183,185,250,251,252,253,254,255,256,257,258,259,260,261] |
3 | Boötes II | [71,73,74,75,250,253,257,259,260,262,263] |
4 | Boötes III | [73,74,75,250,253,259,260,262,263] |
5 | Canes Venatici I | [73,74,75,76,77,84,250,253,256,258,259,260] |
6 | Canes Venatici II | [73,74,75,76,77,83,84,250,253,254,255,256,257,258,259,260,250] |
7 | Carina | [72,73,74,75,76,83,84,250,252,253,254,255,256,257,259,260,264,265,250] |
8 | Carina II | [76,250] |
9 | Coma Berenices | [71,72,73,74,75,76,77,83,84,183,250,252,253,254,255,256,257,258,259,260,262,263,266,250] |
10 | Draco | [71,72,73,74,75,76,77,83,84,183,185,250,251,252,253,254,255,256,257,259,260,261,264,265,266] |
11 | Draco II | [75,76,250,259,262,263] |
12 | Fornax | [71,72,73,74,75,76,83,84,183,185,250,251,252,253,254,255,256,257,259,260,261,264,265,250] |
13 | Hercules | [71,73,74,75,76,77,83,84,250,253,254,255,256,257,258,259,260,250] |
14 | Horologium | [75,76,250,256,259,260,267] |
15 | Hydra II | [75,250,256,259] |
16 | Leo I | [73,74,75,76,77,84,250,253,256,258,259,260,264,265] |
17 | Leo II | [73,74,75,76,77,83,84,250,253,254,255,256,257,258,259,260,264,265,250] |
18 | Leo IV | [71,73,74,75,76,77,83,84,250,253,254,255,256,257,258,259,260,250] |
19 | Leo V | [73,74,75,76,84,250,253,256,259,260] |
20 | Leo T | [250,259] |
21 | Pisces II | [73,74,75,76,250,253,256,259,260] |
22 | Reticulum II | [75,76,84,250,256,259,260,262,263,267,268,269] |
23 | Sagittarius I | [73,74,250,259,260] |
24 | Sculptor | [71,72,73,74,75,76,83,84,183,185,250,251,252,253,254,255,256,257,259,260,261,264,265,250] |
25 | Segue 1 | [72,73,74,75,76,77,83,84,185,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,266,270,271,250] |
26 | Segue II | [71,73,74,84,250,253,259,260] |
27 | Sextans | [71,72,73,74,75,76,77,83,84,183,185,250,251,252,253,254,255,256,257,258,259,260,261,264,265,250] |
28 | Tucana II | [75,76,250,256,259,260,267,272] |
29 | Ursa Major I | [71,73,74,75,76,77,84,250,253,256,259,260] |
30 | Ursa Major II | [71,72,73,74,75,76,77,83,84,183,250,252,253,254,255,256,257,259,260,262,263,266,250] |
31 | Ursa Minor | [71,72,73,74,75,76,77,83,84,183,185,250,251,252,253,254,255,256,257,259,260,261,264,265,266,250] |
32 | Willman 1 | [71,73,74,75,83,250,253,254,255,256,257,259,260,262,263,266,250] |
Dwarf spheroidal galaxy candidates | ||
33 | Canis Major | [73,74,250,253,259,260] |
34 | Cetus II | [75,250,259,262,263,273] |
35 | Columba I | [75,250,259,273] |
36 | Eridanus II | [75,250,259,260,267] |
37 | Eridanus III | [75,250,259,260,267] |
38 | Grus I | [75,76,250,256,259,260] |
39 | Grus II | [75,250,259,273] |
40 | Horologium II | [75,250,259] |
41 | Indus I/Kim 2 | [75,250,260,267] |
42 | Indus II | [75,250,259,273] |
43 | Pegasus III | [75,76,250,259] |
44 | Phoenix II | [75,250,259,260,267] |
45 | Pictor I | [75,250,259,260,267] |
46 | Reticulum III | [75,250,259,273] |
47 | Sagittarius II | [75,250,259] |
48 | Triangulum II | [68,75,77,250,258,259,260,262,263,274] |
49 | Tucana III | [75,250,259,262,263,273] |
50 | Tucana IV | [75,250,259,262,263,273] |
51 | Tucana V | [75,250,259,273] |
dwarf Irregular galaxies/irregular & low surface-brightness objects | ||
52 | Andromeda IV | [45] |
53 | DDO 43 | [45] |
54 | DDO 52 | [45] |
55 | DDO 101 | [45] |
56 | DDO 125 | [45] |
57 | DDO 133 | [45] |
58 | DDO 154 | [45] |
59 | DDO 168 | [45] |
60 | DDO 210/Aquarius | [38] |
61 | DDO 216/Pegasus dIrr | [38] |
62 | Haro 29 | [45] |
63 | Haro 36 | [45] |
64 | IC 10 | [38,45] |
65 | IC 1613 | [38,45,191] |
66 | Large Magellanic Cloud | [145] |
67 | NGC 3741 | [45] |
68 | NGC 6822 | [38] |
69 | Phoenix | [38] |
70 | Small Magellanic Cloud | [146] |
71 | Smith High-Velocity Cloud | [147] |
72 | UGC 11583 | [45] |
73 | UGC 1281 | [45] |
74 | UGC 1501 | [45] |
75 | UGC 2455 | [45] |
76 | UGC 3371 | [164] |
77 | UGC 5272 | [45] |
78 | UGC 5427 | [45] |
79 | UGC 5918 | [45] |
80 | UGC 7047 | [45] |
81 | UGC 7232 | [45] |
82 | UGC 7559 | [45] |
83 | UGC 7603 | [45] |
84 | UGC 7861 | [45] |
85 | UGC 7866 | [45] |
86 | UGC 7916 | [45] |
87 | UGC 8508 | [45] |
88 | UGC 8837 | [45] |
89 | WLM | [38,45] |
Spiral galaxies | ||
90 | M 31 | [42,153,154,155,183] |
91 | M 33 | [154] |
92 | UGC 11707 | [164] |
93 | UGC 12632 | [164] |
94 | UGC 12732 | [164] |
Galaxy clusters (see caption) | ||
95 | 3C 129 | [188,189,190] |
96 | A 1060/Hydra I | [46,188,189,190,191] |
97 | A 1367 | [46,186,188,189,190] |
98 | A 2877 | [188,189,190] |
99 | A 3627/Norma | [188,189,190,191] |
100 | ACO S 636 | [46,188,189,190] |
101 | AWM 7 | [46,182,183,185,188,189,190] |
102 | Centaurus (A 3526) | [182,183,185,186,188,189,191,192] |
103 | Coma cluster | [46,182,183,184,185,186,188,189,190,192] |
104 | Fornax cluster | [46,182,183,184,185,186,188,189,190,191,192] |
105 | M 49 | [182,183,185,186,188,189,190] |
106 | NGC 4636 | [46,182,183,185,186,188,189,190] |
107 | NGC 5044 | [186,188] |
108 | NGC 5813 | [46,186,188,189,190] |
109 | NGC 5846 | [186,188] |
110 | Ophiuchus | [188,189,190] |
111 | Perseus | [188,189,190,192] |
112 | Virgo cluster | [169,184,185,187,188,189,190,191,192,193] |
1 | In this review, we consider all targets outside the Galactic plane. However, we omit DM searches in high-latitude globular clusters. A recent review including DM searches in the inner Galaxy, Galactic globular clusters, and intermediate black holes, as well as their particular challenges, can be found in [18]. |
2 | |
3 | This factor is usually neglected due to the large uncertainties in the density distribution entering the J-factor. |
4 | |
5 | Note, however, that these compared analyses do not use consistent J-factor values for the same targets. |
6 | Additionally, a reverse approach was undertaken to search for faint dwarf galaxies with optical telescopes towards the sky directions of Fermi-LAT unidentified gamma-ray sources [102]. |
7 | |
8 | This corresponds to the densities within the so-called characteristic scale radius, . Usually, the total extension of a DM halo is given by , defined as the radius within which the mean density is 200 times higher than the critical density, or about 600 times higher than the mean DM density, . For common clusters, the value of is several megaparsecs. For comparison, the average DM density in the inner kpc of the Milky Way is about [167,168]. |
9 | While VERITAS [173] published a joint analysis of Coma together with Fermi-LAT data, their DM limits are only given for the VERITAS observations alone. |
10 | Note that in these cases of very large samples, sky regions of cluster structures and other closely located objects overlap, as e.g., individual local dIrr galaxies in [191]. |
11 | See [228] for a complete list of differences between cosmological and PBH gamma-ray bursts. |
References
- Bergström, L. Dark matter evidence, particle physics candidates and detection methods. Ann. Phys. 2012, 524, 479–496. [Google Scholar] [CrossRef]
- Roszkowski, L.; Sessolo, E.M.; Trojanowski, S. WIMP dark matter candidates and searches—Current status and future prospects. Rep. Prog. Phys. 2018, 81, 066201. [Google Scholar] [CrossRef] [PubMed]
- Group, P.D.; Workman, R.L.; Burkert, V.D.; Crede, V.; Klempt, E.; Thoma, U.; Tiator, L.; Agashe, K.; Aielli, G.; Allanach, B.C.; et al. Review of Particle Physics. Prog. Theor. Exp. Phys. 2022, 2022, 083C01. [Google Scholar] [CrossRef]
- Gunn, J.E.; Lee, B.W.; Lerche, I.; Schramm, D.N.; Steigman, G. Some astrophysical consequences of the existence of a heavy stable neutral lepton. Astrophys. J. 1978, 223, 1015–1031. [Google Scholar] [CrossRef]
- Stecker, F.W. The cosmic gamma-ray background from the annihilation of primordial stable neutral heavy leptons. Astrophys. J. 1978, 223, 1032–1036. [Google Scholar] [CrossRef]
- Bloom, E.D. The Search for Dark Matter via Gamma Rays from Astronomical Sources Using EGRET and GLAST. Nuclear Phys. B Proc. Suppl. 2004, 134, 103–111. [Google Scholar] [CrossRef]
- Charles, E.; Sánchez-Conde, M.; Anderson, B.; Caputo, R.; Cuoco, A.; Di Mauro, M.; Drlica-Wagner, A.; Gomez-Vargas, G.A.; Meyer, M.; Tibaldo, L.; et al. Sensitivity projections for dark matter searches with the Fermi large area telescope. Phys. Rep. 2016, 636, 1–46. [Google Scholar] [CrossRef]
- Pagels, H.; Primack, J.R. Supersymmetry, cosmology, and new physics at teraelectronvolt energies. Phys. Rev. Lett. 1982, 48, 223–226. [Google Scholar] [CrossRef]
- Urban, M.; Bouquet, A.; Degrange, B.; Fleury, P.; Kaplan, J.; Melchior, A.L.; Paré, E. Searching for TeV dark matter by atmospheric Čerenkov techniques. Phys. Lett. B 1992, 293, 149–156. [Google Scholar] [CrossRef]
- Punch, M.; Akerlof, C.W.; Cawley, M.F.; Chantell, M.; Fegan, D.J.; Fennell, S.; Gaidos, J.A.; Hagan, J.; Hillas, A.M.; Jiang, Y.; et al. Detection of TeV photons from the active galaxy Markarian 421. Nature 1992, 358, 477–478. [Google Scholar] [CrossRef] [Green Version]
- Wood, M.; Blaylock, G.; Bradbury, S.M.; Buckley, J.H.; Byrum, K.L.; Chow, Y.C.K.; Cui, W.; de la Calle Perez, I.; Falcone, A.D.; Fegan, S.J.; et al. A Search for Dark Matter Annihilation with the Whipple 10 m Telescope. Astrophys. J. 2008, 678, 594–605. [Google Scholar] [CrossRef]
- Aharonian, F.A.; Akhperjanian, A.G.; Beilicke, M.; Bernlöhr, K.; Bojahr, H.; Bolz, O.; Börst, H.; Coarasa, T.; Contreras, J.L.; Cortina, J.; et al. Search for TeV gamma ray emission from the Andromeda galaxy. Astron. Astrophys. 2003, 400, 153–159. [Google Scholar] [CrossRef]
- Perkins, J.S.; Badran, H.M.; Blaylock, G.; Bradbury, S.M.; Cogan, P.; Chow, Y.C.K.; Cui, W.; Daniel, M.K.; Falcone, A.D.; Fegan, S.J.; et al. TeV Gamma-Ray Observations of the Perseus and Abell 2029 Galaxy Clusters. Astrophys. J. 2006, 644, 148–154. [Google Scholar] [CrossRef]
- Bergström, L.; Ullio, P.; Buckley, J.H. Observability of γ rays from dark matter neutralino annihilations in the Milky Way halo. Astropart. Phys. 1998, 9, 137–162. [Google Scholar] [CrossRef]
- Baltz, E.A.; Briot, C.; Salati, P.; Taillet, R.; Silk, J. Detection of neutralino annihilation photons from external galaxies. Phys. Rev. D 1999, 61, 023514. [Google Scholar] [CrossRef]
- Kosack, K.; Badran, H.M.; Bond, I.H.; Boyle, P.J.; Bradbury, S.M.; Buckley, J.H.; Carter-Lewis, D.A.; Celik, O.; Connaughton, V.; Cui, W.; et al. TeV Gamma-Ray Observations of the Galactic Center. Astrophys. J. Lett. 2004, 608, L97–L100. [Google Scholar] [CrossRef]
- Evans, N.W.; Ferrer, F.; Sarkar, S. A travel guide to the dark matter annihilation signal. Phys. Rev. D 2004, 69, 123501. [Google Scholar] [CrossRef]
- Doro, M.; Sánchez-Conde, M.A.; Hütten, M. Fundamental Physics Searches with IACTs. arXiv 2021, arXiv:2111.01198. [Google Scholar]
- Biteau, J.; Meyer, M. Gamma-Ray Cosmology and Tests of Fundamental Physics. Galaxies 2022, 10, 39. [Google Scholar] [CrossRef]
- Bergström, L. Non-baryonic dark matter: Observational evidence and detection methods. Rep. Prog. Phys. 2000, 63, 793–841. [Google Scholar] [CrossRef]
- Marrodán Undagoitia, T.; Rodejohann, W.; Wolf, T.; Yaguna, C.E. Laboratory limits on the annihilation or decay of dark matter particles. Prog. Theor. Exp. Phys. 2022, 2022, 013F01. [Google Scholar] [CrossRef]
- Funk, S. Indirect detection of dark matter with γ rays. Proc. Natl. Acad. Sci. USA 2015, 112, 12264–12271. [Google Scholar] [CrossRef] [PubMed]
- Billard, J.; Boulay, M.; Cebrián, S.; Covi, L.; Fiorillo, G.; Green, A.; Kopp, J.; Majorovits, B.; Palladino, K.; Petricca, F.; et al. Direct detection of dark matter-APPEC committee report. Rep. Prog. Phys. 2022, 85, 056201. [Google Scholar] [CrossRef]
- Boveia, A.; Doglioni, C. Dark Matter Searches at Colliders. Annu. Rev. Nuclear Part. Sci. 2018, 68, 429–459. [Google Scholar] [CrossRef]
- Cirelli, M.; Panci, P. Inverse Compton constraints on the Dark Matter e± excesses. Nuclear Phys. B 2009, 821, 399–416. [Google Scholar] [CrossRef]
- Profumo, S.; Jeltema, T.E. Extragalactic Inverse Compton Light from Dark Matter annihilation and the Pamela positron excess. J. Cosmol. Astropart. Phys. 2009, 2009, 020. [Google Scholar] [CrossRef]
- Zavala, J.; Frenk, C.S. Dark Matter Haloes and Subhaloes. Galaxies 2019, 7, 81. [Google Scholar] [CrossRef]
- Smirnov, J.; Beacom, J.F. Tev-scale thermal WIMPs: Unitarity and its consequences. Phys. Rev. D 2019, 100, 043029. [Google Scholar] [CrossRef]
- Blanco, C.; Harding, J.P.; Hooper, D. Novel gamma-ray signatures of PeV-scale dark matter. J. Cosmol. Astropart. Phys. 2018, 2018, 060. [Google Scholar] [CrossRef]
- Ando, S.; Ishiyama, T.; Hiroshima, N. Halo Substructure Boosts to the Signatures of Dark Matter Annihilation. Galaxies 2019, 7, 68. [Google Scholar] [CrossRef]
- Bruel, P.; Burnett, T.H.; Digel, S.W.; Johannesson, G.; Omodei, N.; Wood, M. Fermi-LAT improved Pass~8 event selection. arXiv 2018, arXiv:1810.11394. [Google Scholar]
- Aleksić, J.; Ansoldi, S.; Antonelli, L.A.; Antoranz, P.; Babic, A.; Bangale, P.; Barceló, M.; Barrio, J.A.; Becerra González, J.; Bednarek, W.; et al. The major upgrade of the MAGIC telescopes, Part II: A performance study using observations of the Crab Nebula. Astropart. Phys. 2016, 72, 76–94. [Google Scholar] [CrossRef] [Green Version]
- Abeysekara, A.U.; Albert, A.; Alfaro, R.; Alvarez, C.; Álvarez, J.D.; Arceo, R.; Arteaga-Velázquez, J.C.; Ayala Solares, H.A.; Barber, A.S.; Bautista-Elivar, N.; et al. Observation of the Crab Nebula with the HAWC Gamma-Ray Observatory. Astrophys. J. 2017, 843, 39. [Google Scholar] [CrossRef]
- Bergström, L.; Ullio, P. Full one-loop calculation of neutralino annihilation into two photons. Nuclear Phys. B 1997, 504, 27–44. [Google Scholar] [CrossRef]
- Hisano, J.; Matsumot, S.; Nagai, M.; Saito, O.; Senami, M. Non-perturbative effect on thermal relic abundance of dark matter. Phys. Lett. B 2007, 646, 34–38. [Google Scholar] [CrossRef]
- Beneke, M.; Hasner, C.; Urban, K.; Vollmann, M. Precise yield of high-energy photons from Higgsino dark matter annihilation. J. High Energy Phys. 2020, 2020, 30. [Google Scholar] [CrossRef]
- Geringer-Sameth, A.; Koushiappas, S.M.; Walker, M. Dwarf Galaxy Annihilation and Decay Emission Profiles for Dark Matter Experiments. Astrophys. J. 2015, 801, 74. [Google Scholar] [CrossRef]
- Gammaldi, V.; Pérez-Romero, J.; Coronado-Blázquez, J.; Di Mauro, M.; Karukes, E.V.; Sánchez-Conde, M.A.; Salucci, P. Dark matter search in dwarf irregular galaxies with the Fermi Large Area Telescope. Phys. Rev. D 2021, 104, 083026. [Google Scholar] [CrossRef]
- Gammaldi, V.; Karukes, E.; Salucci, P. Theoretical predictions for dark matter detection in dwarf irregular galaxies with gamma rays. Phys. Rev. D 2018, 98, 083008. [Google Scholar] [CrossRef]
- van de Rydt, F.; Demers, S.; Kunkel, W.E. Pheonix: An Intermediate Dwarf Galaxy in the Local Group. Astron. J. 1991, 102, 130. [Google Scholar] [CrossRef]
- McConnachie, A.W. The Observed Properties of Dwarf Galaxies in and around the Local Group. Astron. J. 2012, 144, 4. [Google Scholar] [CrossRef]
- Albert, A.; Alfaro, R.; Alvarez, C.; Álvarez, J.D.; Arceo, R.; Arteaga-Velázquez, J.C.; Avila Rojas, D.; Ayala Solares, H.A.; Becerril, A.; Belmont-Moreno, E.; et al. Search for dark matter gamma-ray emission from the Andromeda Galaxy with the High-Altitude Water Cherenkov Observatory. J. Cosmol. Astropart. Phys. 2018, 2018, 043. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Conde, M.A.; Cannoni, M.; Zandanel, F.; Gómez, M.E.; Prada, F. Dark matter searches with Cherenkov telescopes: Nearby dwarf galaxies or local galaxy clusters? J. Cosmol. Astropart. Phys. 2011, 2011, 011. [Google Scholar] [CrossRef]
- D’Onofrio, M.; Capaccioli, M.; Zaggia, S.R.; Caon, N. The relative distances to the Virgo, Fornax and Coma clusters of galaxies through the D_n-sigma and the Fundamental Plane relations. Mon. Not. R. Astron. Soc. 1997, 289, 847–862. [Google Scholar] [CrossRef]
- Hernández Cadena, S.; Gammaldi, V.; Serna Franco, J.; Alfaro Molina, R.; Karukes, E.; Salucci, P. Constraints on cross section and lifetime of dark matter with HAWC Observations of dwarf Irregular galaxies. In Proceedings of the 36th International Cosmic Ray Conference (ICRC2019), Madison, Wisconsin, USA, 24 July–01 August 2019. Proceedings of Science 2019; Volume 358, p. 520. [CrossRef]
- Huang, X.; Vertongen, G.; Weniger, C. Probing dark matter decay and annihilation with Fermi LAT observations of nearby galaxy clusters. J. Cosmol. Astropart. Phys. 2012, 2012, 042. [Google Scholar] [CrossRef]
- Karachentsev, I.D.; Makarov, D.I.; Kaisina, E.I. Updated Nearby Galaxy Catalog. Astron. J. 2013, 145, 101. [Google Scholar] [CrossRef]
- Strigari, L.E. Dark matter in dwarf spheroidal galaxies and indirect detection: A review. Rep. Prog. Phys. 2018, 81, 056901. [Google Scholar] [CrossRef] [PubMed]
- Bonnivard, V.; Combet, C.; Daniel, M.; Funk, S.; Geringer-Sameth, A.; Hinton, J.A.; Maurin, D.; Read, J.I.; Sarkar, S.; Walker, M.G.; et al. Dark matter annihilation and decay in dwarf spheroidal galaxies: The classical and ultrafaint dSphs. Mon. Not. R. Astron. Soc. 2015, 453, 849–867. [Google Scholar] [CrossRef]
- Springel, V.; Wang, J.; Vogelsberger, M.; Ludlow, A.; Jenkins, A.; Helmi, A.; Navarro, J.F.; Frenk, C.S.; White, S.D.M. The Aquarius Project: The subhaloes of galactic haloes. Mon. Not. R. Astron. Soc. 2008, 391, 1685–1711. [Google Scholar] [CrossRef]
- Diemand, J.; Kuhlen, M.; Madau, P.; Zemp, M.; Moore, B.; Potter, D.; Stadel, J. Clumps and streams in the local dark matter distribution. Nature 2008, 454, 735–738. [Google Scholar] [CrossRef]
- Genina, A.; Benítez-Llambay, A.; Frenk, C.S.; Cole, S.; Fattahi, A.; Navarro, J.F.; Oman, K.A.; Sawala, T.; Theuns, T. The core-cusp problem: A matter of perspective. Mon. Not. R. Astron. Soc. 2018, 474, 1398–1411. [Google Scholar] [CrossRef] [Green Version]
- Klypin, A.; Kravtsov, A.V.; Valenzuela, O.; Prada, F. Where Are the Missing Galactic Satellites? Astrophys. J. 1999, 522, 82–92. [Google Scholar] [CrossRef]
- Strigari, L.E.; Bullock, J.S.; Kaplinghat, M.; Diemand, J.; Kuhlen, M.; Madau, P. Redefining the Missing Satellites Problem. Astrophys. J. 2007, 669, 676–683. [Google Scholar] [CrossRef]
- Simon, J.D.; Geha, M. The Kinematics of the Ultra-faint Milky Way Satellites: Solving the Missing Satellite Problem. Astrophys. J. 2007, 670, 313–331. [Google Scholar] [CrossRef]
- Kim, S.Y.; Peter, A.H.G.; Hargis, J.R. Missing Satellites Problem: Completeness Corrections to the Number of Satellite Galaxies in the Milky Way are Consistent with Cold Dark Matter Predictions. Phys. Rev. Lett. 2018, 121, 211302. [Google Scholar] [CrossRef] [PubMed]
- Read, J.I.; Erkal, D. Abundance matching with the mean star formation rate: There is no missing satellites problem in the Milky Way above M200 ∼ 109 M⊙. Mon. Not. R. Astron. Soc. 2019, 487, 5799–5812. [Google Scholar] [CrossRef]
- Kaplinghat, M.; Valli, M.; Yu, H.B. Too big to fail in light of Gaia. Mon. Not. R. Astron. Soc. 2019, 490, 231–242. [Google Scholar] [CrossRef]
- Aharonian, F.; Akhperjanian, A.G.; Bazer-Bachi, A.R.; Beilicke, M.; Benbow, W.; Berge, D.; Bernlöhr, K.; Boisson, C.; Bolz, O.; Borrel, V.; et al. Observations of the Sagittarius dwarf galaxy by the HESS experiment and search for a dark matter signal. Astropart. Phys. 2008, 29, 55–62. [Google Scholar] [CrossRef]
- Abramowski, A.; et al.; H. E. S. S. Collaboration H.E.S.S. constraints on dark matter annihilations towards the sculptor and carina dwarf galaxies. Astropart. Phys. 2011, 34, 608–616. [Google Scholar] [CrossRef]
- Carballo-Bello, J.A.; Martínez-Delgado, D.; Corral-Santana, J.M.; Alfaro, E.J.; Navarrete, C.; Vivas, A.K.; Catelan, M. A revised view of the Canis Major stellar overdensity with DECam and Gaia: New evidence of a stellar warp of blue stars. Mon. Not. R. Astron. Soc. 2021, 501, 1690–1700. [Google Scholar] [CrossRef]
- Aharonian, F.; Akhperjanian, A.G.; de Almeida, U.B.; Bazer-Bachi, A.R.; Behera, B.; Benbow, W.; Bernlöhr, K.; Boisson, C.; Bochow, V.; Borrel, V.; et al. A Search for a Dark Matter Annihilation Signal Toward the Canis Major Overdensity with H.E.S.S. Astrophys. J. 2009, 691, 175–181. [Google Scholar] [CrossRef]
- Albert, J.; Aliu, E.; Anderhub, H.; Antoranz, P.; Backes, M.; Baixeras, C.; Barrio, J.A.; Bartko, H.; Bastieri, D.; Becker, J.K.; et al. Upper Limit for γ-Ray Emission above 140 GeV from the Dwarf Spheroidal Galaxy Draco. Astrophys. J. 2008, 679, 428–431. [Google Scholar] [CrossRef]
- Aliu, E.; Anderhub, H.; Antonelli, L.A.; Antoranz, P.; Backes, M.; Baixeras, C.; Balestra, S.; Barrio, J.A.; Bartko, H.; Bastieri, D.; et al. Upper Limits on the VHE Gamma-Ray Emission from the Willman 1 Satellite Galaxy with the Magic Telescope. Astrophys. J. 2009, 697, 1299–1304. [Google Scholar] [CrossRef]
- Aleksić, J.; Alvarez, E.A.; Antonelli, L.A.; Antoranz, P.; Asensio, M.; Backes, M.; Barrio, J.A.; Bastieri, D.; Becerra González, J.; Bednarek, W.; et al. Searches for dark matter annihilation signatures in the Segue 1 satellite galaxy with the MAGIC-I telescope. J. Cosmol. Astropart. Phys. 2011, 2011, 035. [Google Scholar] [CrossRef]
- Aleksić, J.; Ansoldi, S.; Antonelli, L.A.; Antoranz, P.; Babic, A.; Bangale, P.; Barres de Almeida, U.; Barrio, J.A.; Becerra González, J.; Bednarek, W.; et al. Optimized dark matter searches in deep observations of Segue 1 with MAGIC. J. Cosmol. Astropart. Phys. 2014, 2014, 008. [Google Scholar] [CrossRef]
- Ahnen, M.L.; Ansoldi, S.; Antonelli, L.A.; Arcaro, C.; Baack, D.; Babić, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J.A.; et al. Indirect dark matter searches in the dwarf satellite galaxy Ursa Major II with the MAGIC telescopes. J. Cosmol. Astropart. Phys. 2018, 2018, 009. [Google Scholar] [CrossRef]
- Acciari, V.A.; Ansoldi, S.; Antonelli, L.A.; Arbet Engels, A.; Baack, D.; Babić, A.; Banerjee, B.; Barres de Almeida, U.; Barrio, J.A.; Becerra González, J.; et al. A search for dark matter in Triangulum II with the MAGIC telescopes. Phys. Dark Univ. 2020, 28, 100529. [Google Scholar] [CrossRef]
- Acciari, V.A.; Arlen, T.; Aune, T.; Beilicke, M.; Benbow, W.; Boltuch, D.; Bradbury, S.M.; Buckley, J.H.; Bugaev, V.; Byrum, K.; et al. VERITAS Search for VHE Gamma-ray Emission from Dwarf Spheroidal Galaxies. Astrophys. J. 2010, 720, 1174–1180. [Google Scholar] [CrossRef]
- Aliu, E.; Archambault, S.; Arlen, T.; Aune, T.; Beilicke, M.; Benbow, W.; Bouvier, A.; Bradbury, S.M.; Buckley, J.H.; Bugaev, V.; et al. VERITAS deep observations of the dwarf spheroidal galaxy Segue 1. Phys. Rev. D 2012, 85, 062001. [Google Scholar] [CrossRef]
- Abdo, A.A.; Ackermann, M.; Ajello, M.; Atwood, W.B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; et al. Observations of Milky Way Dwarf Spheroidal Galaxies with the Fermi-Large Area Telescope Detector and Constraints on Dark Matter Models. Astrophys. J. 2010, 712, 147–158. [Google Scholar] [CrossRef]
- Ackermann, M.; Ajello, M.; Albert, A.; Atwood, W.B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; et al. Constraining Dark Matter Models from a Combined Analysis of Milky Way Satellites with the Fermi Large Area Telescope. Phys. Rev. Lett. 2011, 107, 241302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ackermann, M.; Albert, A.; Anderson, B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Bissaldi, E.; et al. Dark matter constraints from observations of 25 Milky Way satellite galaxies with the Fermi Large Area Telescope. Phys. Rev. D 2014, 89, 042001. [Google Scholar] [CrossRef]
- Ackermann, M.; Albert, A.; Anderson, B.; Atwood, W.B.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Bissaldi, E.; et al. Searching for Dark Matter Annihilation from Milky Way Dwarf Spheroidal Galaxies with Six Years of Fermi Large Area Telescope Data. Phys. Rev. Lett. 2015, 115, 231301. [Google Scholar] [CrossRef] [PubMed]
- Albert, A.; Anderson, B.; Bechtol, K.; Drlica-Wagner, A.; Meyer, M.; Sánchez-Conde, M.; Strigari, L.; Wood, M.; Abbott, T.M.C.; Abdalla, F.B.; et al. Searching for Dark Matter Annihilation in Recently Discovered Milky Way Satellites with Fermi-Lat. Astrophys. J. 2017, 834, 110. [Google Scholar] [CrossRef]
- Hoof, S.; Geringer-Sameth, A.; Trotta, R. A global analysis of dark matter signals from 27 dwarf spheroidal galaxies using 11 years of Fermi-LAT observations. J. Cosmol. Astropart. Phys. 2020, 2020, 012. [Google Scholar] [CrossRef]
- Albert, A.; Alfaro, R.; Alvarez, C.; Álvarez, J.D.; Arceo, R.; Arteaga-Velázquez, J.C.; Avila Rojas, D.; Ayala Solares, H.A.; Bautista-Elivar, N.; Becerril, A.; et al. Dark Matter Limits from Dwarf Spheroidal Galaxies with the HAWC Gamma-Ray Observatory. Astrophys. J. 2018, 853, 154. [Google Scholar] [CrossRef]
- Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A.G.; Angüner, E.; Backes, M.; Balenderan, S.; Balzer, A.; Barnacka, A.; Becherini, Y.; et al. Observations of dwarf spheroidal galaxies. Phys. Rev. D 2014, 90, 112012. [Google Scholar] [CrossRef]
- Abdalla, H.; Aharonian, F.; Ait Benkhali, F.; Angüner, E.O.; Arakawa, M.; Arcaro, C.; Armand, C.; Arrieta, M.; Backes, M.; Barnard, M.; et al. Searches for gamma-ray lines and ’pure WIMP’ spectra from Dark Matter annihilations in dwarf galaxies with H.E.S.S. J. Cosmol. Astropart. Phys. 2018, 2018, 037. [Google Scholar] [CrossRef]
- Abdallah, H.; Adam, R.; Aharonian, F.; Ait Benkhali, F.; Angüner, E.O.; Arakawa, M.; Arcaro, C.; Armand, C.; Armstrong, T.; Ashkar, H.; et al. Search for dark matter signals towards a selection of recently detected DES dwarf galaxy satellites of the Milky Way with H.E.S.S. Phys. Rev. D 2020, 102, 062001. [Google Scholar] [CrossRef]
- Archambault, S.; Archer, A.; Benbow, W.; Bird, R.; Bourbeau, E.; Brantseg, T.; Buchovecky, M.; Buckley, J.H.; Bugaev, V.; Byrum, K.; et al. Dark matter constraints from a joint analysis of dwarf Spheroidal galaxy observations with VERITAS. Phys. Rev. D 2017, 95, 082001. [Google Scholar] [CrossRef]
- Acciari, V.A.; Ansoldi, S.; Antonelli, L.A.; Arbet Engels, A.; Artero, M.; Asano, K.; Baack, D.; Babić, A.; Baquero, A.; Barres de Almeida, U.; et al. Combined searches for dark matter in dwarf spheroidal galaxies observed with the MAGIC telescopes, including new data from Coma Berenices and Draco. Phys. Dark Univ. 2022, 35, 100912. [Google Scholar] [CrossRef]
- MAGIC Collaboration; Ahnen, M.L.; Ansoldi, S.; Antonelli, L.A.; Antoranz, P.; Babic, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J.A.; et al. Limits to dark matter annihilation cross-section from a combined analysis of MAGIC and Fermi-LAT observations of dwarf satellite galaxies. J. Cosmol. Astropart. Phys. 2016, 2016, 039. [Google Scholar] [CrossRef]
- Baring, M.G.; Ghosh, T.; Queiroz, F.S.; Sinha, K. New limits on the dark matter lifetime from dwarf spheroidal galaxies using Fermi-LAT. Phys. Rev. D 2016, 93, 103009. [Google Scholar] [CrossRef]
- Abramowski, A.; Acero, F.; Aharonian, F.; Akhperjanian, A.G.; Anton, G.; Balzer, A.; Barnacka, A.; Barres de Almeida, U.; Becherini, Y.; Becker, J.; et al. Search for Dark Matter Annihilation Signals from the Fornax Galaxy Cluster with H.E.S.S. (Erratum 773 in 2014, ApJ, 783, 63. Astrophys. J. 2012, 750, 123. [Google Scholar] [CrossRef]
- Cherenkov Telescope Array Consortium; Acharya, B.S.; Agudo, I.; Al Samarai, I.; Alfaro, R.; Alfaro, J.; Alispach, C.; Alves Batista, R.; Amans, J.P.; Amato, E.; et al. Science with the Cherenkov Telescope Array; World Scientific Publishin: Singapore, 2019. [CrossRef]
- He, D.Z.; Bi, X.J.; Lin, S.J.; Yin, P.F.; Zhang, X. Prospect for dark matter annihilation signatures from gamma-ray observation of dwarf galaxies by LHAASO. Phys. Rev. D 2019, 100, 083003. [Google Scholar] [CrossRef]
- Hütten, M. Prospects for Galactic Dark Matter Searches with the Cherenkov Telescope Array (CTA). Ph.D. Thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, Berlin, Germany, 2017. [Google Scholar] [CrossRef]
- Rico, J. Gamma-Ray Dark Matter Searches in Milky Way Satellites—A Comparative Review of Data Analysis Methods and Current Results. Galaxies 2020, 8, 25. [Google Scholar] [CrossRef]
- Ando, S.; Geringer-Sameth, A.; Hiroshima, N.; Hoof, S.; Trotta, R.; Walker, M.G. Structure formation models weaken limits on WIMP dark matter from dwarf spheroidal galaxies. Phys. Rev. D 2020, 102, 061302. [Google Scholar] [CrossRef]
- Horigome, S.; Hayashi, K.; Ando, S. Cosmological prior for the J-factor estimation of dwarf spheroidal galaxies. arXiv 2022, arXiv:2207.10378. [Google Scholar]
- Crocker, R.M.; Macias, O.; Mackey, D.; Krumholz, M.R.; Ando, S.; Horiuchi, S.; Baring, M.G.; Gordon, C.; Venville, T.; Duffy, A.R.; et al. Detection of gamma-ray emission from the Sagittarius Dwarf Spheroidal galaxy. arXiv 2022, arXiv:2204.12054. [Google Scholar]
- Hütten, M.; Combet, C.; Maier, G.; Maurin, D. Dark matter substructure modelling and sensitivity of the Cherenkov Telescope Array to Galactic dark halos. J. Cosmol. Astropart. Phys. 2016, 2016, 047. [Google Scholar] [CrossRef]
- Hütten, M.; Stref, M.; Combet, C.; Lavalle, J.; Maurin, D. γ-ray and ν Searches for Dark-Matter Subhalos in the Milky Way with a Baryonic Potential. Galaxies 2019, 7, 60. [Google Scholar] [CrossRef] [Green Version]
- Zackrisson, E.; Riehm, T. Gravitational Lensing as a Probe of Cold Dark Matter Subhalos. Adv. Astron. 2010, 2010, 478910. [Google Scholar] [CrossRef]
- Ibata, R.A.; Lewis, G.F.; Irwin, M.J.; Quinn, T. Uncovering cold dark matter halo substructure with tidal streams. Mon. Not. R. Astron. Soc. 2002, 332, 915–920. [Google Scholar] [CrossRef]
- Carlberg, R.G. Star Stream Folding by Dark Galactic Subhalos. Astrophys. J. Lett. 2009, 705, L223–L226. [Google Scholar] [CrossRef]
- Carlberg, R.G. Dark Matter Sub-halo Counts via Star Stream Crossings. Astrophys. J. 2012, 748, 20. [Google Scholar] [CrossRef]
- Erkal, D.; Belokurov, V.; Bovy, J.; Sanders, J.L. The number and size of subhalo-induced gaps in stellar streams. Mon. Not. R. Astron. Soc. 2016, 463, 102–119. [Google Scholar] [CrossRef]
- Banik, N.; Bertone, G.; Bovy, J.; Bozorgnia, N. Probing the nature of dark matter particles with stellar streams. J. Cosmol. Astropart. Phys. 2018, 2018, 061. [Google Scholar] [CrossRef]
- Banik, N.; Bovy, J.; Bertone, G.; Erkal, D.; de Boer, T.J.L. Novel constraints on the particle nature of dark matter from stellar streams. J. Cosmol. Astropart. Phys. 2021, 2021, 043. [Google Scholar] [CrossRef]
- Ciucǎ, I.; Kawata, D.; Ando, S.; Calore, F.; Read, J.I.; Mateu, C. A Gaia DR2 search for dwarf galaxies towards Fermi-LAT sources: Implications for annihilating dark matter. Mon. Not. R. Astron. Soc. 2018, 480, 2284–2291. [Google Scholar] [CrossRef]
- Grand, R.J.J.; White, S.D.M. Baryonic effects on the detectability of annihilation radiation from dark matter subhaloes around the Milky Way. Mon. Not. R. Astron. Soc. 2021, 501, 3558–3567. [Google Scholar] [CrossRef]
- Buckley, M.R.; Hooper, D. Dark matter subhalos in the Fermi first source catalog. Phys. Rev. D 2010, 82, 063501. [Google Scholar] [CrossRef] [Green Version]
- Mirabal, N.; Frías-Martinez, V.; Hassan, T.; Frías-Martinez, E. Fermi’s SIBYL: Mining the gamma-ray sky for dark matter subhaloes. Mon. Not. R. Astron. Soc. 2012, 424, L64–L68. [Google Scholar] [CrossRef]
- Zechlin, H.S.; Fernandes, M.V.; Elsässer, D.; Horns, D. Dark matter subhaloes as gamma-ray sources and candidates in the first Fermi-LAT catalogue. Astron. Astrophys. 2012, 538, A93. [Google Scholar] [CrossRef]
- Zechlin, H.S.; Horns, D. Unidentified sources in the Fermi-LAT second source catalog: The case for DM subhalos. J. Cosmol. Astropart. Phys. 2012, 2012, 050. [Google Scholar] [CrossRef]
- Ackermann, M.; Albert, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Blandford, R.D.; Bloom, E.D.; et al. Search for Dark Matter Satellites Using Fermi-LAT. Astrophys. J. 2012, 747, 121. [Google Scholar] [CrossRef]
- Belikov, A.V.; Buckley, M.R.; Hooper, D. Searching for dark matter subhalos in the Fermi-LAT second source catalog. Phys. Rev. D 2012, 86, 043504. [Google Scholar] [CrossRef]
- Berlin, A.; Hooper, D. Stringent constraints on the dark matter annihilation cross section from subhalo searches with the Fermi Gamma-Ray Space Telescope. Phys. Rev. D 2014, 89, 016014. [Google Scholar] [CrossRef]
- Bertoni, B.; Hooper, D.; Linden, T. Examining The Fermi-LAT Third Source Catalog in search of dark matter subhalos. J. Cosmol. Astropart. Phys. 2015, 2015, 035. [Google Scholar] [CrossRef]
- Bertoni, B.; Hooper, D.; Linden, T. Is the gamma-ray source 3FGL J2212.5+0703 a dark matter subhalo? J. Cosmol. Astropart. Phys. 2016, 2016, 049. [Google Scholar] [CrossRef]
- Mirabal, N.; Charles, E.; Ferrara, E.C.; Gonthier, P.L.; Harding, A.K.; Sánchez-Conde, M.A.; Thompson, D.J. 3FGL Demographics Outside the Galactic Plane using Supervised Machine Learning: Pulsar and Dark Matter Subhalo Interpretations. Astrophys. J. 2016, 825, 69. [Google Scholar] [CrossRef]
- Xia, Z.Q.; Duan, K.K.; Li, S.; Liang, Y.F.; Shen, Z.Q.; Yue, C.; Wang, Y.P.; Yuan, Q.; Fan, Y.Z.; Wu, J.; et al. 3FGL J1924.8-1034: A spatially extended stable unidentified GeV source? Phys. Rev. D 2017, 95, 102001. [Google Scholar] [CrossRef] [Green Version]
- Coronado-Blázquez, J.; Sánchez-Conde, M.A.; Di Mauro, M.; Aguirre-Santaella, A.; Ciucă, I.; Domínguez, A.; Kawata, D.; Mirabal, N. Spectral and spatial analysis of the dark matter subhalo candidates among Fermi Large Area Telescope unidentified sources. J. Cosmol. Astropart. Phys. 2019, 2019, 045. [Google Scholar] [CrossRef]
- Coronado-Blázquez, J.; Sánchez-Conde, M.A.; Domínguez, A.; Aguirre-Santaella, A.; Di Mauro, M.; Mirabal, N.; Nieto, D.; Charles, E. Unidentified gamma-ray sources as targets for indirect dark matter detection with the Fermi-Large Area Telescope. J. Cosmol. Astropart. Phys. 2019, 2019, 020. [Google Scholar] [CrossRef]
- Abeysekara, A.U.; Albert, A.; Alfaro, R.; Alvarez, C.; Arceo, R.; Arteaga-Velázquez, J.C.; Avila Rojas, D.; Ayala Solares, H.A.; Belmont-Moreno, E.; BenZvi, S.Y.; et al. Searching for dark matter sub-structure with HAWC. J. Cosmol. Astropart. Phys. 2019, 2019, 022. [Google Scholar] [CrossRef]
- Nieto, D.; Aleksić, J.; Barrio, J.A.; Contreras, J.L.; Doro, M.; Lombardi, S.; Mirabal, N.; Moralejo, A.; Pardo, S.; Rico, J.; et al. The search for galactic dark matter clump candidates with Fermi and MAGIC. arXiv 2011, arXiv:1109.5935. [Google Scholar]
- Nieto, D.F. Hunting for dark matter subhalos among the Fermi-LAT sources with VERITAS. arXiv 2015, arXiv:astro-ph.HE1509.00085. [Google Scholar]
- Abdalla, H.; Aharonian, F.; Ait Benkhali, F.; Angüner, E.O.; Arcaro, C.; Armand, C.; Armstrong, T.; Ashkar, H.; Backes, M.; Baghmanyan, V.; et al. Search for Dark Matter Annihilation Signals from Unidentified Fermi-LAT Objects with H.E.S.S. Astrophys. J. 2021, 918, 17. [Google Scholar] [CrossRef]
- Ahnen, M.L.; Ansoldi, S.; Antonelli, L.A.; Arcaro, C.; Baack, D.; Babić, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J.A.; et al. MAGIC and Fermi-LAT gamma-ray results on unassociated HAWC sources. Mon. Not. R. Astron. Soc. 2019, 485, 356–366. [Google Scholar] [CrossRef]
- Abeysekara, A.U.; Archer, A.; Benbow, W.; Bird, R.; Brose, R.; Buchovecky, M.; Buckley, J.H.; Bugaev, V.; Chromey, A.J.; Connolly, M.P.; et al. VERITAS and Fermi-LAT Observations of TeV Gamma-Ray Sources Discovered by HAWC in the 2HWC Catalog. Astrophys. J. 2018, 866, 24. [Google Scholar] [CrossRef]
- D’Abrusco, R.; Massaro, F.; Paggi, A.; Smith, H.A.; Masetti, N.; Landoni, M.; Tosti, G. The WISE Blazar-like Radio-loud Sources: An All-sky Catalog of Candidate γ-ray Blazars. Astrophys. J. Suppl. Ser. 2014, 215, 14. [Google Scholar] [CrossRef]
- Paiano, S.; Falomo, R.; Franceschini, A.; Treves, A.; Scarpa, R. Optical Spectroscopic Survey of a Sample of Unidentified Fermi Objects. Astrophys. J. 2017, 851, 135. [Google Scholar] [CrossRef]
- Albert, A.; Alvarez, C.; Angeles Camacho, J.R.; Arteaga-Velázquez, J.C.; Arunbabu, K.P.; Avila Rojas, D.; Ayala Solares, H.A.; Baghmanyan, V.; Belmont-Moreno, E.; BenZvi, S.Y.; et al. A Survey of Active Galaxies at TeV Photon Energies with the HAWC Gamma-Ray Observatory. Astrophys. J. 2021, 907, 67. [Google Scholar] [CrossRef]
- Chang, Y.L.; Arsioli, B.; Giommi, P.; Padovani, P.; Brandt, C.H. The 3HSP catalogue of extreme and high-synchrotron peaked blazars. Astron. Astrophys. 2019, 632, A77. [Google Scholar] [CrossRef] [Green Version]
- Petrov, L.; Mahony, E.K.; Edwards, P.G.; Sadler, E.M.; Schinzel, F.K.; McConnell, D. Australia Telescope Compact Array observations of Fermi unassociated sources. Mon. Not. R. Astron. Soc. 2013, 432, 1294–1302. [Google Scholar] [CrossRef]
- Ackermann, M.; Ajello, M.; Atwood, W.B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Becerra Gonzalez, J.; Bellazzini, R.; Bissaldi, E.; et al. The Third Catalog of Active Galactic Nuclei Detected by the Fermi Large Area Telescope. Astrophys. J. 2015, 810, 14. [Google Scholar] [CrossRef]
- Lefaucheur, J.; Pita, S. Research and characterisation of blazar candidates among the Fermi/LAT 3FGL catalogue using multivariate classifications. Astron. Astrophys. 2017, 602, A86. [Google Scholar] [CrossRef]
- Chang, Y.L.; Arsioli, B.; Giommi, P.; Padovani, P. 2WHSP: A multi-frequency selected catalogue of high energy and very high energy γ-ray blazars and blazar candidates. Astron. Astrophys. 2017, 598, A17. [Google Scholar] [CrossRef]
- Abdollahi, S.; Acero, F.; Ackermann, M.; Ajello, M.; Atwood, W.B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; et al. Fermi Large Area Telescope Fourth Source Catalog. Astrophys. J. Suppl. Ser. 2020, 247, 33. [Google Scholar] [CrossRef]
- Brun, P.; Moulin, E.; Diemand, J.; Glicenstein, J.F. Searches for dark matter subhaloes with wide-field Cherenkov telescope surveys. Phys. Rev. D 2011, 83, 015003. [Google Scholar] [CrossRef]
- Coronado-Blázquez, J.; Doro, M.; Sánchez-Conde, M.A.; Aguirre-Santaella, A. Sensitivity of the Cherenkov Telescope Array to dark subhalos. Phys. Dark Univ. 2021, 32, 100845. [Google Scholar] [CrossRef]
- Schoonenberg, D.; Gaskins, J.; Bertone, G.; Diemand, J. Dark matter subhalos and unidentified sources in the Fermi 3FGL source catalog. J. Cosmol. Astropart. Phys. 2016, 2016, 028. [Google Scholar] [CrossRef]
- Liang, Y.F.; Xia, Z.Q.; Duan, K.K.; Shen, Z.Q.; Li, X.; Fan, Y.Z. Limits on dark matter annihilation cross sections to gamma-ray lines with subhalo distributions in N -body simulations and Fermi LAT data. Phys. Rev. D 2017, 95, 063531. [Google Scholar] [CrossRef]
- Calore, F.; De Romeri, V.; Di Mauro, M.; Donato, F.; Marinacci, F. Realistic estimation for the detectability of dark matter subhalos using Fermi-LAT catalogs. Phys. Rev. D 2017, 96, 063009. [Google Scholar] [CrossRef] [Green Version]
- Calore, F.; Hütten, M.; Stref, M. Gamma-Ray Sensitivity to Dark Matter Subhalo Modelling at High Latitudes. Galaxies 2019, 7, 90. [Google Scholar] [CrossRef]
- Hooper, D.; Witte, S.J. Gamma rays from dark matter subhalos revisited: Refining the predictions and constraints. J. Cosmol. Astropart. Phys. 2017, 2017, 018. [Google Scholar] [CrossRef]
- Coronado-Blázquez, J.; Sánchez-Conde, M.A. Constraints to Dark Matter Annihilation from High-Latitude HAWC Unidentified Sources. Galaxies 2020, 8, 5. [Google Scholar] [CrossRef]
- Karukes, E.V.; Salucci, P. The universal rotation curve of dwarf disc galaxies. Mon. Not. R. Astron. Soc. 2017, 465, 4703–4722. [Google Scholar] [CrossRef]
- Klypin, A.; Karachentsev, I.; Makarov, D.; Nasonova, O. Abundance of field galaxies. Mon. Not. R. Astron. Soc. 2015, 454, 1798–1810. [Google Scholar] [CrossRef]
- Sreekumar, P.; Bertsch, D.L.; Dingus, B.L.; Fichtel, C.E.; Hartman, R.C.; Hunter, S.D.; Kanbach, G.; Kniffen, D.A.; Lin, Y.C.; Mattox, J.R.; et al. Observations of the Large Magellanic Cloud in High-Energy Gamma Rays. Astrophys. J. Lett. 1992, 400, L67. [Google Scholar] [CrossRef]
- Abdo, A.A.; Ackermann, M.; Ajello, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; et al. Detection of the Small Magellanic Cloud in gamma-rays with Fermi/LAT. Astron. Astrophys. 2010, 523, A46. [Google Scholar] [CrossRef]
- Robertson, B.; Bullock, J.S.; Font, A.S.; Johnston, K.V.; Hernquist, L. Λ Cold Dark Matter, Stellar Feedback, and the Galactic Halo Abundance Pattern. Astrophys. J. 2005, 632, 872–881. [Google Scholar] [CrossRef]
- Buckley, M.R.; Charles, E.; Gaskins, J.M.; Brooks, A.M.; Drlica-Wagner, A.; Martin, P.; Zhao, G. Search for gamma-ray emission from dark matter annihilation in the large magellanic cloud with the fermi large area telescope. Phys. Rev. D 2015, 91, 102001. [Google Scholar] [CrossRef]
- Caputo, R.; Buckley, M.R.; Martin, P.; Charles, E.; Brooks, A.M.; Drlica-Wagner, A.; Gaskins, J.; Wood, M. Search for gamma-ray emission from dark matter annihilation in the Small Magellanic Cloud with the Fermi Large Area Telescope. Phys. Rev. D 2016, 93, 062004. [Google Scholar] [CrossRef] [Green Version]
- Drlica-Wagner, A.; Gómez-Vargas, G.A.; Hewitt, J.W.; Linden, T.; Tibaldo, L. Searching for Dark Matter Annihilation in the Smith High-velocity Cloud. Astrophys. J. 2014, 790, 24. [Google Scholar] [CrossRef]
- Abdallah, H.; Adam, R.; Aharonian, F.; Benkhali, F.A.; Angüner, E.O.; Arcaro, C.; Armand, C.; Armstrong, T.; Ashkar, H.; Backes, M.; et al. Search for dark matter annihilation in the Wolf-Lundmark-Melotte dwarf irregular galaxy with H.E.S.S. Phys. Rev. D 2021, 103, 102002. [Google Scholar] [CrossRef]
- Babcock, H.W. The rotation of the Andromeda Nebula. Lick Obs. Bull. 1939, 498, 41–51. [Google Scholar] [CrossRef]
- Rubin, V.C. Dark matter in spiral galaxies. Sci. Am. 1983, 248, 96–106. [Google Scholar] [CrossRef]
- Sofue, Y.; Rubin, V. Rotation Curves of Spiral Galaxies. Ann. Rev. Astron. Astrophys. 2001, 39, 137–174. [Google Scholar] [CrossRef]
- Forbes, D.A. The mass-to-light ratio in spiral galaxies. Astron. Astrophys. 1992, 92, 583–604. [Google Scholar]
- Li, Z.; Huang, X.; Yuan, Q.; Xu, Y. Constraints on the dark matter annihilation from Fermi-LAT observation of M31. J. Cosmol. Astropart. Phys. 2016, 2016, 028. [Google Scholar] [CrossRef]
- Di Mauro, M.; Hou, X.; Eckner, C.; Zaharijas, G.; Charles, E. Search for γ -ray emission from dark matter particle interactions from the Andromeda and Triangulum galaxies with the Fermi Large Area Telescope. Phys. Rev. D 2019, 99, 123027. [Google Scholar] [CrossRef]
- Karwin, C.M.; Murgia, S.; Moskalenko, I.V.; Fillingham, S.P.; Burns, A.K.; Fieg, M. Dark matter interpretation of the Fermi-LAT observations toward the outer halo of M31. Phys. Rev. D 2021, 103, 023027. [Google Scholar] [CrossRef] [PubMed]
- Abdo, A.A.; Ackermann, M.; Ajello, M.; Allafort, A.; Atwood, W.B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; et al. Fermi Large Area Telescope observations of Local Group galaxies: Detection of M 31 and search for M 33. Astron. Astrophys. 2010, 523, L2. [Google Scholar] [CrossRef]
- Ackermann, M.; Ajello, M.; Albert, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Bissaldi, E.; Bloom, E.D.; et al. Observations of M31 and M33 with the Fermi Large Area Telescope: A Galactic Center Excess in Andromeda? Astrophys. J. 2017, 836, 208. [Google Scholar] [CrossRef] [Green Version]
- Eckner, C.; Hou, X.; Serpico, P.D.; Winter, M.; Zaharijas, G.; Martin, P.; di Mauro, M.; Mirabal, N.; Petrovic, J.; Prodanovic, T.; et al. Millisecond Pulsar Origin of the Galactic Center Excess and Extended Gamma-Ray Emission from Andromeda: A Closer Look. Astrophys. J. 2018, 862, 79. [Google Scholar] [CrossRef]
- Fragione, G.; Antonini, F.; Gnedin, O.Y. Millisecond Pulsars and the Gamma-Ray Excess in Andromeda. Astrophys. J. Lett. 2019, 871, L8. [Google Scholar] [CrossRef]
- Burns, A.K.; Fieg, M.; Rajaraman, A.; Karwin, C.M. Dark matter explanations of the gamma-ray excesses from the Galactic Center and M31. Phys. Rev. D 2021, 103, 063023. [Google Scholar] [CrossRef]
- Zimmer, F.; Macias, O.; Ando, S.; Crocker, R.M.; Horiuchi, S. The Andromeda Gamma-Ray Excess: Background Systematics of the Millisecond Pulsars and Dark Matter Interpretations. arXiv 2022, arXiv:2204.00636. [Google Scholar]
- Karwin, C.M.; Murgia, S.; Campbell, S.; Moskalenko, I.V. Fermi-LAT Observations of γ-Ray Emission toward the Outer Halo of M31. Astrophys. J. 2019, 880, 95. [Google Scholar] [CrossRef]
- Roy, M.; Nath, B.B. Gamma-rays from the circumgalactic medium of M31. arXiv 2022, arXiv:2205.12291. [Google Scholar] [CrossRef]
- Bhattacharjee, P.; Majumdar, P.; Das, M.; Das, S.; Joarder, P.S.; Biswas, S. Multiwavelength analysis of low surface brightness galaxies to study possible dark matter signature. Mon. Not. R. Astron. Soc. 2021, 501, 4238–4254. [Google Scholar] [CrossRef]
- Hashimoto, D.; Nishizawa, A.J.; Takada, M.; Macias, O. Dark matter constraints with stacked gamma rays scales with the number of galaxies. arXiv 2021, arXiv:2109.08832. [Google Scholar]
- Allen, S.W.; Evrard, A.E.; Mantz, A.B. Cosmological Parameters from Observations of Galaxy Clusters. Ann. Rev. Astron. Astrophys. 2011, 49, 409–470. [Google Scholar] [CrossRef]
- Nesti, F.; Salucci, P. The Dark Matter halo of the Milky Way, AD 2013. J. Cosmol. Astropart. Phys. 2013, 2013, 016. [Google Scholar] [CrossRef]
- Posti, L.; Helmi, A. Mass and shape of the Milky Way’s dark matter halo with globular clusters from Gaia and Hubble. Astron. Astrophys. 2019, 621, A56. [Google Scholar] [CrossRef]
- Ackermann, M.; Ajello, M.; Albert, A.; Atwood, W.B.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Bissaldi, E.; et al. Search for Extended Gamma-Ray Emission from the Virgo Galaxy Cluster with FERMI-LAT. Astrophys. J. 2015, 812, 159. [Google Scholar] [CrossRef]
- Ackermann, M.; Ajello, M.; Albert, A.; Atwood, W.B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; et al. Search for Gamma-Ray Emission from the Coma Cluster with Six Years of Fermi-LAT Data. Astrophys. J. 2016, 819, 149. [Google Scholar] [CrossRef]
- Adam, R.; Goksu, H.; Brown, S.; Rudnick, L.; Ferrari, C. γ-ray detection toward the Coma cluster with Fermi-LAT: Implications for the cosmic ray content in the hadronic scenario. Astron. Astrophys. 2021, 648, A60. [Google Scholar] [CrossRef]
- Aharonian, F.; Akhperjanian, A.G.; Anton, G.; Barres de Almeida, U.; Bazer-Bachi, A.R.; Becherini, Y.; Behera, B.; Bernlöhr, K.; Boisson, C.; Bochow, A.; et al. Constraints on the multi-TeV particle population in the Coma galaxy cluster with HESS observations. Astron. Astrophys. 2009, 502, 437–443. [Google Scholar] [CrossRef]
- Arlen, T.; Aune, T.; Beilicke, M.; Benbow, W.; Bouvier, A.; Buckley, J.H.; Bugaev, V.; Byrum, K.; Cannon, A.; Cesarini, A.; et al. Constraints on Cosmic Rays, Magnetic Fields, and Dark Matter from Gamma-Ray Observations of the Coma Cluster of Galaxies with VERITAS and Fermi. Astrophys. J. 2012, 757, 123. [Google Scholar] [CrossRef]
- Ahnen, M.L.; Ansoldi, S.; Antonelli, L.A.; Antoranz, P.; Babic, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J.A.; Becerra González, J.; et al. Deep observation of the NGC 1275 region with MAGIC: Search of diffuse γ-ray emission from cosmic rays in the Perseus cluster. Astron. Astrophys. 2016, 589, A33. [Google Scholar] [CrossRef]
- Moliné, Á.; Sánchez-Conde, M.A.; Palomares-Ruiz, S.; Prada, F. Characterization of subhalo structural properties and implications for dark matter annihilation signals. Mon. Not. R. Astron. Soc. 2017, 466, 4974–4990. [Google Scholar] [CrossRef]
- Wang, J.; Bose, S.; Frenk, C.S.; Gao, L.; Jenkins, A.; Springel, V.; White, S.D.M. Universal structure of dark matter haloes over a mass range of 20 orders of magnitude. Nature 2020, 585, 39–42. [Google Scholar] [CrossRef]
- Cirelli, M.; Moulin, E.; Panci, P.; Serpico, P.D.; Viana, A. Gamma ray constraints on decaying dark matter. Phys. Rev. D 2012, 86, 083506. [Google Scholar] [CrossRef]
- Acciari, V.A.; Ansoldi, S.; Antonelli, L.A.; Arbet Engels, A.; Arcaro, C.; Baack, D.; Babić, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; et al. Constraining dark matter lifetime with a deep gamma-ray survey of the Perseus galaxy cluster with MAGIC. Phys. Dark Univ. 2018, 22, 38–47. [Google Scholar] [CrossRef]
- Aleksić, J.; Antonelli, L.A.; Antoranz, P.; Backes, M.; Baixeras, C.; Balestra, S.; Barrio, J.A.; Bastieri, D.; Becerra González, J.; Bednarek, W.; et al. MAGIC Gamma-ray Telescope Observation of the Perseus Cluster of Galaxies: Implications for Cosmic Rays, Dark Matter, and NGC 1275. Astrophys. J. 2010, 710, 634–647. [Google Scholar] [CrossRef]
- Ackermann, M.; Ajello, M.; Atwood, W.B.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Blandford, R.D.; Bloom, E.D.; et al. Constraints on the Galactic Halo Dark Matter from Fermi-LAT Diffuse Measurements. Astrophys. J. 2012, 761, 91. [Google Scholar] [CrossRef]
- He, D.Z.; Bi, X.J.; Lin, S.J.; Yin, P.F.; Zhang, X. Expected LHAASO sensitivity to decaying dark matter signatures from dwarf galaxies gamma-ray emission. Chin. Phys. C 2020, 44, 085001. [Google Scholar] [CrossRef]
- Ackermann, M.; Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Blandford, R.D.; et al. Constraints on dark matter annihilation in clusters of galaxies with the Fermi large area telescope. J. Cosmol. Astropart. Phys. 2010, 2010, 025. [Google Scholar] [CrossRef]
- Dugger, L.; Jeltema, T.E.; Profumo, S. Constraints on decaying dark matter from Fermi observations of nearby galaxies and clusters. J. Cosmol. Astropart. Phys. 2010, 2010, 015. [Google Scholar] [CrossRef]
- Han, J.; Frenk, C.S.; Eke, V.R.; Gao, L.; White, S.D.M.; Boyarsky, A.; Malyshev, D.; Ruchayskiy, O. Constraining extended gamma-ray emission from galaxy clusters. Mon. Not. R. Astron. Soc. 2012, 427, 1651–1665. [Google Scholar] [CrossRef]
- Huang, X.; Yuan, Q.; Yin, P.F.; Bi, X.J.; Chen, X. Constraints on the dark matter annihilation scenario of Fermi 130 GeV gamma-ray line emission by continuous gamma-rays, Milky Way halo, galaxy clusters and dwarf galaxies observations. J. Cosmol. Astropart. Phys. 2012, 2012, 048. [Google Scholar] [CrossRef]
- Ando, S.; Nagai, D. Fermi-LAT constraints on dark matter annihilation cross section from observations of the Fornax cluster. J. Cosmol. Astropart. Phys. 2012, 2012, 017. [Google Scholar] [CrossRef]
- Macías-Ramírez, O.; Gordon, C.; Brown, A.M.; Adams, J. Evaluating the gamma-ray evidence for self-annihilating dark matter from the Virgo cluster. Phys. Rev. D 2012, 86, 076004. [Google Scholar] [CrossRef]
- Hektor, A.; Raidal, M.; Tempel, E. Evidence for Indirect Detection of Dark Matter from Galaxy Clusters in Fermi γ-Ray Data. Astrophys. J. Lett. 2013, 762, L22. [Google Scholar] [CrossRef]
- Anderson, B.; Zimmer, S.; Conrad, J.; Gustafsson, M.; Sánchez-Conde, M.; Caputo, R. Search for gamma-ray lines towards galaxy clusters with the Fermi-LAT. J. Cosmol. Astropart. Phys. 2016, 2016, 026. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.F.; Shen, Z.Q.; Li, X.; Fan, Y.Z.; Huang, X.; Lei, S.J.; Feng, L.; Liang, E.W.; Chang, J. Search for a gamma-ray line feature from a group of nearby galaxy clusters with Fermi LAT Pass 8 data. Phys. Rev. D 2016, 93, 103525. [Google Scholar] [CrossRef]
- Lisanti, M.; Mishra-Sharma, S.; Rodd, N.L.; Safdi, B.R. Search for Dark Matter Annihilation in Galaxy Groups. Phys. Rev. Lett. 2018, 120, 101101. [Google Scholar] [CrossRef] [PubMed]
- Thorpe-Morgan, C.; Malyshev, D.; Stegen, C.A.; Santangelo, A.; Jochum, J. Annihilating dark matter search with 12 yr of Fermi LAT data in nearby galaxy clusters. Mon. Not. R. Astron. Soc. 2021, 502, 4039–4047. [Google Scholar] [CrossRef]
- Cadena, S.H. Searching dark matter signatures from the Virgo cluster with HAWC. AIP Conf. Proc. 2017, 1792, 060010. [Google Scholar] [CrossRef]
- Quincy Adams, D.; Bergstrom, L.; Spolyar, D. Improved Constraints on Dark Matter Annihilation to a Line using Fermi-LAT observations of Galaxy Clusters. arXiv 2016, arXiv:1606.09642. [Google Scholar]
- Regis, M.; Xia, J.Q.; Cuoco, A.; Branchini, E.; Fornengo, N.; Viel, M. Particle Dark Matter Searches Outside the Local Group. Phys. Rev. Lett. 2015, 114, 241301. [Google Scholar] [CrossRef] [PubMed]
- Cuoco, A.; Xia, J.Q.; Regis, M.; Branchini, E.; Fornengo, N.; Viel, M. Dark Matter Searches in the Gamma-ray Extragalactic Background via Cross-correlations with Galaxy Catalogs. Astrophys. J. Suppl. Ser. 2015, 221, 29. [Google Scholar] [CrossRef]
- Ando, S.; Ishiwata, K. Constraining particle dark matter using local galaxy distribution. J. Cosmol. Astropart. Phys. 2016, 2016, 045. [Google Scholar] [CrossRef]
- Tan, X.; Colavincenzo, M.; Ammazzalorso, S. Bounds on WIMP dark matter from galaxy clusters at low redshift. Mon. Not. R. Astron. Soc. 2020, 495, 114–122. [Google Scholar] [CrossRef]
- Shirasaki, M.; Horiuchi, S.; Yoshida, N. Cross correlation of cosmic shear and extragalactic gamma-ray background: Constraints on the dark matter annihilation cross section. Phys. Rev. D 2014, 90, 063502. [Google Scholar] [CrossRef]
- Shirasaki, M.; Macias, O.; Horiuchi, S.; Shirai, S.; Yoshida, N. Cosmological constraints on dark matter annihilation and decay: Cross-correlation analysis of the extragalactic γ -ray background and cosmic shear. Phys. Rev. D 2016, 94, 063522. [Google Scholar] [CrossRef] [Green Version]
- Tröster, T.; Camera, S.; Fornasa, M.; Regis, M.; van Waerbeke, L.; Harnois-Déraps, J.; Ando, S.; Bilicki, M.; Erben, T.; Fornengo, N.; et al. Cross-correlation of weak lensing and gamma rays: Implications for the nature of dark matter. Mon. Not. R. Astron. Soc. 2017, 467, 2706–2722. [Google Scholar] [CrossRef]
- Bartlett, D.J.; Kostić, A.; Desmond, H.; Jasche, J.; Lavaux, G. Constraints on dark matter annihilation and decay from the large-scale structure of the nearby universe. arXiv 2022, arXiv:2205.12916. [Google Scholar]
- Di Mauro, M.; Donato, F. Composition of the Fermi-LAT isotropic gamma-ray background intensity: Emission from extragalactic point sources and dark matter annihilations. Phys. Rev. D 2015, 91, 123001. [Google Scholar] [CrossRef]
- Zhang, L.; Weniger, C.; Maccione, L.; Redondo, J.; Sigl, G. Constraining decaying dark matter with Fermi LAT gamma-rays. J. Cosmol. Astropart. Phys. 2010, 2010, 027. [Google Scholar] [CrossRef]
- Ando, S.; Ishiwata, K. Constraints on decaying dark matter from the extragalactic gamma-ray background. J. Cosmol. Astropart. Phys. 2015, 2015, 024. [Google Scholar] [CrossRef]
- Ackermann, M.; Ajello, M.; Albert, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Bloom, E.D.; et al. Anisotropies in the diffuse gamma-ray background measured by the Fermi LAT. Phys. Rev. D 2012, 85, 083007. [Google Scholar] [CrossRef]
- Fornasa, M.; Cuoco, A.; Zavala, J.; Gaskins, J.M.; Sánchez-Conde, M.A.; Gomez-Vargas, G.; Komatsu, E.; Linden, T.; Prada, F.; Zandanel, F.; et al. Angular power spectrum of the diffuse gamma-ray emission as measured by the Fermi Large Area Telescope and constraints on its dark matter interpretation. Phys. Rev. D 2016, 94, 123005. [Google Scholar] [CrossRef]
- Oakes, L.; Armand, C.; Charles, E.; Mauro, M.D.; Giuri, C.; Harding, J.P.; Miener, T.; Moulin, E.; Kerszberg, D.; Poireau, V.; et al. Combined Dark Matter Search with Fermi-LAT, HAWC, HESS, MAGIC and VERITAS. In Proceedings of the 36th International Cosmic Ray Conference (ICRC2019), Madison, WI, USA, 24 July–1 August 2019; Volume 358, p. 12. [Google Scholar] [CrossRef]
- Armand, C.; Moulin, E.; Poireau, V.; Harding, J.P.; Tollefson, K.; Giuri, C.; Pueschel, E.; Hess; Abdalla, E.; Aharonian, F. Combined dark matter searches towards dwarf spheroidal galaxies with Fermi-LAT, HAWC, H.E.S.S., MAGIC, and VERITAS. In Proceedings of the 37th International Cosmic Ray Conference (ICRC2021), Berlin, Germany, 12–23 July 2021; Volume 395, p. 528. [Google Scholar] [CrossRef]
- Spekkens, K.; Mason, B.S.; Aguirre, J.E.; Nhan, B. A Deep Search for Extended Radio Continuum Emission from Dwarf Spheroidal Galaxies: Implications for Particle Dark Matter. Astrophys. J. 2013, 773, 61. [Google Scholar] [CrossRef]
- Natarajan, A.; Peterson, J.B.; Voytek, T.C.; Spekkens, K.; Mason, B.; Aguirre, J.; Willman, B. Bounds on dark matter properties from radio observations of Ursa Major II using the Green Bank Telescope. Phys. Rev. D 2013, 88, 083535. [Google Scholar] [CrossRef] [Green Version]
- Chan, M.H. Revisiting the constraints on annihilating dark matter by the radio observational data of M31. Phys. Rev. D 2016, 94, 023507. [Google Scholar] [CrossRef]
- Regis, M.; Richter, L.; Colafrancesco, S. Dark matter in the Reticulum II dSph: A radio search. J. Cosmol. Astropart. Phys. 2017, 2017, 025. [Google Scholar] [CrossRef]
- McDaniel, A.; Jeltema, T.; Profumo, S. Multiwavelength analysis of annihilating dark matter as the origin of the gamma-ray emission from M31. Phys. Rev. D 2018, 97, 103021. [Google Scholar] [CrossRef]
- Kar, A.; Mitra, S.; Mukhopadhyaya, B.; Choudhury, T.R.; Tingay, S. Constraints on dark matter annihilation in dwarf spheroidal galaxies from low frequency radio observations. Phys. Rev. D 2019, 100, 043002. [Google Scholar] [CrossRef]
- Vollmann, M.; Heesen, V.; Shimwell, T.W.; Hardcastle, M.J.; Brüggen, M.; Sigl, G.; Röttgering, H.J.A. Radio constraints on dark matter annihilation in Canes Venatici I with LOFAR. Mon. Not. R. Astron. Soc. 2020, 496, 2663–2672. [Google Scholar] [CrossRef]
- Chan, M.H.; Lee, C.M. Constraining the annihilating dark matter mass by the radio continuum spectral data of the NGC4214 galaxy. Phys. Rev. D 2020, 102, 063017. [Google Scholar] [CrossRef]
- Yuan, G.W.; Chen, Z.F.; Shen, Z.Q.; Guo, W.Q.; Ding, R.; Huang, X.; Yuan, Q. Constraints on dark matter annihilation from the Event Horizon Telescope observations of M87*. J. High Energy Phys. 2022, 2022, 18. [Google Scholar] [CrossRef]
- Chan, M.H.; Lee, C.M. Constraints on annihilating dark matter in the Omega Centauri cluster. Phys. Rev. D 2022, 105, 123006. [Google Scholar] [CrossRef]
- Regis, M.; Reynoso-Cordova, J.; Filipović, M.D.; Brüggen, M.; Carretti, E.; Collier, J.; Hopkins, A.M.; Lenc, E.; Maio, U.; Marvil, J.R.; et al. The EMU view of the Large Magellanic Cloud: Troubles for sub-TeV WIMPs. J. Cosmol. Astropart. Phys. 2021, 2021, 046. [Google Scholar] [CrossRef]
- Albert, A.; André, M.; Anghinolfi, M.; Ardid, M.; Aubert, J.J.; Aublin, J.; Baret, B.; Basa, S.; Belhorma, B.; Bertin, V.; et al. Combined search for neutrinos from dark matter self-annihilation in the Galactic Center with ANTARES and IceCube. Phys. Rev. D 2020, 102, 082002. [Google Scholar] [CrossRef]
- Gammaldi, V. Multimessenger TeV Dark Matter: A mini review. Front. Astron. Space Sci. 2019, 6, 19. [Google Scholar] [CrossRef]
- Carr, B.; Kühnel, F. Primordial Black Holes as Dark Matter: Recent Developments. Annu. Rev. Nuclear Part. Sci. 2020, 70, 355–394. [Google Scholar] [CrossRef]
- Carr, B.; Kohri, K.; Sendouda, Y.; Yokoyama, J. Constraints on primordial black holes. Rep. Prog. Phys. 2021, 84, 116902. [Google Scholar] [CrossRef] [PubMed]
- Carr, B.; Kuhnel, F. Primordial Black Holes as Dark Matter Candidates. arXiv s 2021, arXiv:2110.02821. [Google Scholar] [CrossRef]
- Montanari, F.; García-Bellido, J. Mass classification of dark matter perturbers of stellar tidal streams. Phys. Dark Univ. 2022, 35, 100978. [Google Scholar] [CrossRef]
- Green, A.M.; Kavanagh, B.J. Primordial black holes as a dark matter candidate. J. Phys. G Nuclear Phys. 2021, 48, 043001. [Google Scholar] [CrossRef]
- Ukwatta, T.N.; Stump, D.R.; Linnemann, J.T.; MacGibbon, J.H.; Marinelli, S.S.; Yapici, T.; Tollefson, K. Primordial Black Holes: Observational characteristics of the final evaporation. Astropart. Phys. 2016, 80, 90–114. [Google Scholar] [CrossRef]
- Capanema, A.; Esmaeili, A.; Esmaili, A. Evaporating primordial black holes in gamma ray and neutrino telescopes. J. Cosmol. Astropart. Phys. 2021, 2021, 051. [Google Scholar] [CrossRef]
- Page, D.N.; Hawking, S.W. Gamma rays from primordial black holes. Astrophys. J. 1976, 206, 1–7. [Google Scholar] [CrossRef]
- Linton, E.T.; Atkins, R.W.; Badran, H.M.; Blaylock, G.; Boyle, P.J.; Buckley, J.H.; Byrum, K.L.; Carter-Lewis, D.A.; Celik, O.; Chow, Y.C.K.; et al. A new search for primordial black hole evaporations using the Whipple gamma-ray telescope. J. Cosmol. Astropart. Phys. 2006, 2006, 013. [Google Scholar] [CrossRef]
- Alexandreas, D.E.; Allen, G.E.; Berley, D.; Biller, S.; Burman, R.L.; Cavalli-Sforza, M.; Chang, C.Y.; Chen, M.L.; Chumney, P.; Coyne, D.; et al. New limit on the rate-density of evaporating black holes. Phys. Rev. Lett. 1993, 71, 2524–2527. [Google Scholar] [CrossRef]
- Tibet As Gamma Collaboration; Amenomori, M.; Cao, Z.; Dai, B.Z.; Ding, L.K.; Feng, Y.X.; Feng, Z.Y.; Hibino, K.; Hotta, N.; Huang, Q.; et al. Search for 10 TeV burst-like events coincident with the BATSE bursts using the Tibet air shower array. Astron. Astrophys. 1996, 311, 919–926. [Google Scholar]
- Glicenstein, J.F.; Barnacka, A.; Vivier, M.; Herr, T. Limits on the Primordial Black Hole Evaporation with the H. In E.S.S. Array of Cherenkov Telescopes. In Proceedings of the 33rd International Cosmic Ray Conference (ICRC2013), Rio de Janeiro, Brazil, 2–9 July 2013; Volume 33, p. 2729. [Google Scholar]
- Tavernier, T.; Glicenstein, J.F.; Brun, F. Search for Primordial Black Hole evaporations with H. In E.S.S. In Proceedings of the 36th International Cosmic Ray Conference (ICRC2019), Madison, WI, USA, 24 July–1 August 2019; Volume 358, p. 804. [Google Scholar] [CrossRef]
- Tavernier, T.; Glicenstein, J.F.; Brun, F.; Marandon, V.; Hess; Abdalla, H.; Aharonian, F.; Ait-Benkhali, F.; Anguener, O.; Arcaro, t.; et al. Limits on primordial black hole evaporation from H.E.S.S. observations. In Proceedings of the 37th International Cosmic Ray Conference (ICRC2021), Berlin, Germany, 12–23 July 2021; Volume 395, p. 518. [Google Scholar] [CrossRef]
- Tešić, G.; VERITAS Collaboration. Searching for primordial black holes with the VERITAS gamma-ray experiment. J. Phys. Conf. Ser. 2012, 375, 052024. [Google Scholar] [CrossRef]
- Archambault, S.; VERITAS Collaboration. Search for Primordial Black Hole Evaporation with VERITAS. In Proceedings of the 35th International Cosmic Ray Conference (ICRC2017), Bexco, Busan, Korea, 10–20 July 2017; Volume 301, p. 691. [Google Scholar] [CrossRef]
- Kumar, S. Constraining the evaporation rate of Primordial black holes using archival data from VERITAS. In Proceedings of the 36th International Cosmic Ray Conference (ICRC2019), Madison, WI, USA, 24 July–1 August 2019; Volume 358, p. 719. [Google Scholar] [CrossRef]
- Pfrang, K.J.; VERITAS Collaboration. Deep Learning Transient Detection with VERITAS. In Proceedings of the 37th International Cosmic Ray Conference (ICRC2021), Berlin, Germany, 12–23 July 2021; Volume 395, p. 822. [Google Scholar] [CrossRef]
- Abdo, A.A.; Abeysekara, A.U.; Alfaro, R.; Allen, B.T.; Alvarez, C.; Álvarez, J.D.; Arceo, R.; Arteaga-Velázquez, J.C.; Aune, T.; Ayala Solares, H.A.; et al. Milagro limits and HAWC sensitivity for the rate-density of evaporating Primordial Black Holes. Astropart. Phys. 2015, 64, 4–12. [Google Scholar] [CrossRef]
- Ackermann, M.; Atwood, W.B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Berenji, B.; Bissaldi, E.; Blandford, R.D.; et al. Search for Gamma-Ray Emission from Local Primordial Black Holes with the Fermi Large Area Telescope. Astrophys. J. 2018, 857, 49. [Google Scholar] [CrossRef]
- Albert, A.; Alfaro, R.; Alvarez, C.; Arteaga-Velázquez, J.C.; Arunbabu, K.P.; Avila Rojas, D.; Ayala Solares, H.A.; Baghmanyan, V.; Belmont-Moreno, E.; BenZvi, S.Y.; et al. Constraining the local burst rate density of primordial black holes with HAWC. J. Cosmol. Astropart. Phys. 2020, 2020, 026. [Google Scholar] [CrossRef]
- López-Coto, R.; Doro, M.; de Angelis, A.; Mariotti, M.; Harding, J.P. Prospects for the observation of Primordial Black Hole evaporation with the Southern Wide field of view Gamma-ray Observatory. J. Cosmol. Astropart. Phys. 2021, 2021, 040. [Google Scholar] [CrossRef]
- Cassanyes, M. MAGIC Sensitivity to Primordial Black Hole Bursts and Modelization of BH Chromospheres and Gamma-Ray Emission Spectra. Master’s Thesis, Universidad Autònoma de Barcelona, Bellaterra, Barcelona, Spain, 2015. [Google Scholar]
- Chan, M.H. Radio Constraints of Dark Matter: A Review and Some Future Perspectives. Galaxies 2021, 9, 11. [Google Scholar] [CrossRef]
- Cook, R.H.W.; Seymour, N.; Spekkens, K.; Hurley-Walker, N.; Hancock, P.J.; Bell, M.E.; Callingham, J.R.; For, B.Q.; Franzen, T.M.O.; Gaensler, B.M.; et al. Searching for dark matter signals from local dwarf spheroidal galaxies at low radio frequencies in the GLEAM survey. Mon. Not. R. Astron. Soc. 2020, 494, 135–145. [Google Scholar] [CrossRef]
- Viana, A.; Albert, A.; Harding, J.P.; Hinton, J.; Schoorlemmer, H.; de Souza, V.; SWGO Collaboration. Searching for Dark Matter with the Southern Wide-field Gamma-ray Observatory (SWGO). In Proceedings of the 37th International Cosmic Ray Conference (ICRC2021), Berlin, Germany, 12–23 July 2021; Volume 395, p. 555. [Google Scholar] [CrossRef]
- Hunter, J.D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
- Li, S.; Liang, Y.F.; Xia, Z.Q.; Zu, L.; Duan, K.K.; Shen, Z.Q.; Feng, L.; Yuan, Q.; Fan, Y.Z. Study of the boxlike dark matter signals from dwarf spheroidal galaxies with Fermi-LAT data. Phys. Rev. D 2018, 97, 083007. [Google Scholar] [CrossRef]
- Geringer-Sameth, A.; Koushiappas, S.M. Dark matter line search using a joint analysis of dwarf galaxies with the Fermi Gamma-ray Space Telescope. Phys. Rev. D 2012, 86, 021302. [Google Scholar] [CrossRef]
- Mazziotta, M.N.; Loparco, F.; de Palma, F.; Giglietto, N. A model-independent analysis of the Fermi Large Area Telescope gamma-ray data from the Milky Way dwarf galaxies and halo to constrain dark matter scenarios. Astropart. Phys. 2012, 37, 26–39. [Google Scholar] [CrossRef]
- Prasad Modak, K.; Majumdar, D. Confronting Galactic and Extragalactic γ-Rays Observed by Fermi-LAT with Annihilating Dark Matter in an Inert Higgs Doublet Model. Astrophys. J. Suppl. Ser. 2015, 219, 37. [Google Scholar] [CrossRef]
- Profumo, S.; Queiroz, F.S.; Yaguna, C.E. Extending Fermi-LAT and H.E.S.S. limits on gamma-ray lines from dark matter annihilation. Mon. Not. R. Astron. Soc. 2016, 461, 3976–3981. [Google Scholar] [CrossRef] [Green Version]
- Profumo, S.; Queiroz, F.S.; Silk, J.; Siqueira, C. Searching for secluded dark matter with H.E.S.S., Fermi-LAT, and Planck. J. Cosmol. Astropart. Phys. 2018, 2018, 010. [Google Scholar] [CrossRef]
- Calore, F.; Serpico, P.D.; Zaldivar, B. Dark matter constraints from dwarf galaxies: A data-driven analysis. J. Cosmol. Astropart. Phys. 2018, 2018, 029. [Google Scholar] [CrossRef]
- Queiroz, F.S.; Siqueira, C. Search for semi-annihilating dark matter with Fermi-LAT, H.E.S.S., Planck, and the Cherenkov Telescope Array. J. Cosmol. Astropart. Phys. 2019, 2019, 048. [Google Scholar] [CrossRef]
- Albert, A.; Alfaro, R.; Alvarez, C.; Arteaga-Velázquez, J.C.; Arunbabu, K.P.; Avila Rojas, D.; Ayala Solares, H.A.; Belmont-Moreno, E.; BenZvi, S.Y.; Brisbois, C.; et al. Search for gamma-ray spectral lines from dark matter annihilation in dwarf galaxies with the High-Altitude Water Cherenkov observatory. Phys. Rev. D 2020, 101, 103001. [Google Scholar] [CrossRef]
- Liang, Y.F.; Xia, Z.Q.; Shen, Z.Q.; Li, X.; Jiang, W.; Yuan, Q.; Fan, Y.Z.; Feng, L.; Liang, E.W.; Chang, J. Search for gamma-ray line features from Milky Way satellites with Fermi LAT Pass 8 data. Phys. Rev. D 2016, 94, 103502. [Google Scholar] [CrossRef]
- Hooper, D.; Linden, T. On The gamma-ray emission from Reticulum II and other dwarf galaxies. J. Cosmol. Astropart. Phys. 2015, 2015, 016. [Google Scholar] [CrossRef]
- Geringer-Sameth, A.; Koushiappas, S.M. Exclusion of Canonical Weakly Interacting Massive Particles by Joint Analysis of Milky Way Dwarf Galaxies with Data from the Fermi Gamma-Ray Space Telescope. Phys. Rev. Lett. 2011, 107, 241303. [Google Scholar] [CrossRef]
- Li, S.; Liang, Y.F.; Fan, Y.Z. Search for gamma-ray emission from the 12 nearby dwarf spheroidal galaxies with 12 years of Fermi-LAT data. Phys. Rev. D 2021, 104, 083037. [Google Scholar] [CrossRef]
- Li, S.; Duan, K.K.; Liang, Y.F.; Xia, Z.Q.; Shen, Z.Q.; Li, X.; Liao, N.H.; Feng, L.; Yuan, Q.; Fan, Y.Z.; et al. Search for gamma-ray emission from the nearby dwarf spheroidal galaxies with 9 years of Fermi-LAT data. Phys. Rev. D 2018, 97, 122001. [Google Scholar] [CrossRef]
- Alvarez, A.; Calore, F.; Genina, A.; Read, J.; Serpico, P.D.; Zaldivar, B. Dark matter constraints from dwarf galaxies with data-driven J-factors. J. Cosmol. Astropart. Phys. 2020, 2020, 004. [Google Scholar] [CrossRef]
- Cholis, I.; Salucci, P. Extracting limits on dark matter annihilation from gamma ray observations towards dwarf spheroidal galaxies. Phys. Rev. D 2012, 86, 023528. [Google Scholar] [CrossRef]
- Zhao, Y.; Bi, X.J.; Jia, H.Y.; Yin, P.F.; Zhu, F.R. Constraint on the velocity dependent dark matter annihilation cross section from Fermi-LAT observations of dwarf galaxies. Phys. Rev. D 2016, 93, 083513. [Google Scholar] [CrossRef]
- Drlica-Wagner, A.; Albert, A.; Bechtol, K.; Wood, M.; Strigari, L.; Sánchez-Conde, M.; Baldini, L.; Essig, R.; Cohen-Tanugi, J.; Anderson, B.; et al. Search for Gamma-Ray Emission from DES Dwarf Spheroidal Galaxy Candidates with Fermi-LAT Data. Astrophys. J. Lett. 2015, 809, L4. [Google Scholar] [CrossRef]
- Zhao, Y.; Bi, X.J.; Yin, P.F.; Zhang, X. Searching for γ-ray emission from Reticulum II by Fermi-LAT. Chin. Phys. C 2018, 42, 025102. [Google Scholar] [CrossRef]
- Geringer-Sameth, A.; Walker, M.G.; Koushiappas, S.M.; Koposov, S.E.; Belokurov, V.; Torrealba, G.; Evans, N.W. Indication of Gamma-Ray Emission from the Newly Discovered Dwarf Galaxy Reticulum II. Phys. Rev. Lett. 2015, 115, 081101. [Google Scholar] [CrossRef]
- Baushev, A.N.; Federici, S.; Pohl, M. Spectral analysis of the gamma-ray background near the dwarf Milky Way satellite Segue 1: Improved limits on the cross section of neutralino dark matter annihilation. Phys. Rev. D 2012, 86, 063521. [Google Scholar] [CrossRef]
- Scott, P.; Conrad, J.; Edsjö, J.; Bergström, L.; Farnier, C.; Akrami, Y. Direct constraints on minimal supersymmetry from Fermi-LAT observations of the dwarf galaxy Segue 1. J. Cosmol. Astropart. Phys. 2010, 2010, 031. [Google Scholar] [CrossRef]
- Bhattacharjee, P.; Majumdar, P.; Biswas, S.; Joarder, P.S. Analysis of Fermi-LAT data from Tucana-II: Possible constraints on the Dark Matter models with an intriguing hint of a signal. J. Cosmol. Astropart. Phys. 2019, 2019, 028. [Google Scholar] [CrossRef]
- Li, S.; Liang, Y.F.; Duan, K.K.; Shen, Z.Q.; Huang, X.; Li, X.; Fan, Y.Z.; Liao, N.H.; Feng, L.; Chang, J. Search for gamma-ray emission from eight dwarf spheroidal galaxy candidates discovered in year two of Dark Energy Survey with Fermi-LAT data. Phys. Rev. D 2016, 93, 043518. [Google Scholar] [CrossRef]
- Biswas, S.; Bhattacharjee, P.; Majumdar, P.; Das, S.; Das, M.; Joarder, P.S. Constraints on dark matter models from the observation of Triangulum-II with the Fermi Large Area Telescope. J. Cosmol. Astropart. Phys. 2017, 2017, 003. [Google Scholar] [CrossRef] [Green Version]
Source Name | Association | Type | Reference |
---|---|---|---|
1FGL J2347.3+0710 | TXS 2344+068 | BL Lac | [123,124,125] |
1FGL J0338.8+1313 | RX J0338.4+1302 | BL Lac | [123,124,126] |
2FGL J0545.6+6018 | —still unidentified— | ||
2FGL J1115.0−0701 | FIRST J111511.6−070241 | BL Lac | [127,128,129] |
3FHL J0929.2−4110 | —still unidentified— | ||
3FHL J1915.2−1323 | —still unidentified— | ||
3FHL J2030.2−5037 | 3HSP J203024.0−503413 | Possible Blazar | [126] |
3FHL J2104.5+2117 | 3HSP J210415.9+211808 | BL Lac | [126,129,130,131] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hütten, M.; Kerszberg, D. TeV Dark Matter Searches in the Extragalactic Gamma-ray Sky. Galaxies 2022, 10, 92. https://doi.org/10.3390/galaxies10050092
Hütten M, Kerszberg D. TeV Dark Matter Searches in the Extragalactic Gamma-ray Sky. Galaxies. 2022; 10(5):92. https://doi.org/10.3390/galaxies10050092
Chicago/Turabian StyleHütten, Moritz, and Daniel Kerszberg. 2022. "TeV Dark Matter Searches in the Extragalactic Gamma-ray Sky" Galaxies 10, no. 5: 92. https://doi.org/10.3390/galaxies10050092
APA StyleHütten, M., & Kerszberg, D. (2022). TeV Dark Matter Searches in the Extragalactic Gamma-ray Sky. Galaxies, 10(5), 92. https://doi.org/10.3390/galaxies10050092