Compact Binary Coalescences: Astrophysical Processes and Lessons Learned
Abstract
:1. Introduction
2. Single Stars
2.1. Overview
2.2. The Chandrasekhar Limit
2.3. The Tolman-Oppenheimer-Volkoff Limit
2.4. The Role of Stellar Winds
2.5. Core-Collapse Supernovae
2.6. Electron-Capture SNe
2.7. Compact Remnants and the Lower Mass Gap
2.8. Core-Collapse SNe in Population Synthesis Calculations
2.9. Pair-Instability SNe and the Upper Mass Gap
2.9.1. Piling-Up BHs
2.9.2. Populating the Gap
2.10. SNe Asymmetries and Kicks
2.11. Spins
3. Binary Stars
3.1. Stellar Tides
3.2. Mass Loss, Mass Transfer and Accretion
Approximate Solutions for Population Synthesis Simulations
3.3. Common Envelope
3.4. Supernovae: Blaauw and Velocity Kicks
4. Stellar Dynamics
4.1. Dense Stellar Environments
4.2. Two-Body Relaxation and the Gravothermal Instability
4.3. Dynamical Friction, Energy Equipartition and Mass Segregation
4.4. Halting Core Collapse with Binaries
4.5. Forming Merging Compact-Object Binaries
4.6. Small-N Systems
4.7. Hybrid Scenarios
5. Astrophysical Insights from Exceptional Gravitational-Wave Events
5.1. GW190814
5.2. GW190521
5.3. GW190412
5.4. GW200105_162426 and GW200115_042309
6. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AGN | active galactic nuclei |
BBH | binary black hole |
BH | black hole |
BNS | binary neutron star |
CO | carbon-oxygen |
CE | common envelope |
CHE | chemical homogeneous evolution |
GC | globular cluster |
GW | gravitational wave |
GWTC | Gravitational Wave Transient Catalog |
ECSN | electron-capture supernova |
LIGO | Laser Interferometer Gravitational-wave Observatory |
LVC | LIGO-Virgo Collaboration |
LVK | LIGO-Virgo-KAGRA |
NS | neutron star |
NSBH | neutron star-black hole binary |
NSC | nuclear star cluster |
OC | open cluster |
PISN | pair-instability supernova |
Pop III | population III |
PPISN | pulsational pair-instability supernova |
SMBH | super-massive black hole |
SN | supernova |
TOV | Tolman–Oppenheimer–Volkoff |
WD | white dwarf |
YDSC | young dense star cluster |
ZAMS | zero age main sequence |
ZKL | von Zeipel-Kozai-Lidov |
1 | Throughout this work, we will use the symbol to refer to the Sun’s mass. |
2 | |
3 | . |
4 | In cool supergiants () the mechanism responsible for winds is the absorption of photons by dust grains, i.e., dust- (or continuum-) driven winds. |
5 | It is worth noting that wind mass loss does not depend only on metallicity, but also on luminosity, effective temperature, stellar mass, and the velocity of wind at infinity. |
6 | , where m is a threshold mass in and is the radius enclosing m, in units of 1000 km. |
7 | It is worth noting that a PISN is driven by a thermonuclear explosion, i.e., very different from neutrino-driven core-collapse SNe. |
References
- Zel’dovich, Y.B.; Podurets, M.A. The Evolution of a System of Gravitationally Interacting Point Masses. Sov. Astron. 1966, 9, 742. [Google Scholar]
- Rees, M.; Ruffini, R.; Wheeler, J.A. Black Holes, Gravitational Waves, and Cosmology: An Introduction to Current Research; Gordon and Breach: New York, NY, USA, 1974. [Google Scholar]
- Lattimer, J.M.; Schramm, D.N. Black-Hole-Neutron-Star Collisions. Astrophys. J. 1974, 192, L145. [Google Scholar] [CrossRef]
- Clark, J.P.A.; Eardley, D.M. Evolution of close neutron star binaries. Astrophys. J. 1977, 215, 311–322. [Google Scholar] [CrossRef]
- Clark, J.P.A.; van den Heuvel, E.P.J.; Sutantyo, W. Formation of neutron star binaries and their importance for gravitational radiation. Astron. Astrophys. 1979, 72, 120–128. [Google Scholar]
- Hils, D.; Bender, P.L.; Webbink, R.F. Gravitational Radiation from the Galaxy. Astrophys. J. 1990, 360, 75. [Google Scholar] [CrossRef]
- Narayan, R.; Piran, T.; Shemi, A. Neutron Star and Black Hole Binaries in the Galaxy. Astrophys. J. 1991, 379, L17. [Google Scholar] [CrossRef]
- Phinney, E.S. The Rate of Neutron Star Binary Mergers in the Universe: Minimal Predictions for Gravity Wave Detectors. Astrophys. J. 1991, 380, L17. [Google Scholar] [CrossRef]
- Tutukov, A.V.; Yungelson, L.R. The merger rate of neutron star and black hole binaries. Mon. Not. R. Astron. Soc. 1993, 260, 675–678. [Google Scholar] [CrossRef]
- Einstein, A. Über Gravitationswellen. In Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften (Berlin); Deutsche Akademie der Wissenschaften zu Berlin: Berlin, Germany, 1918; pp. 154–167. [Google Scholar]
- Hulse, R.A.; Taylor, J.H. Discovery of a pulsar in a binary system. Astrophys. J. 1975, 195, L51–L53. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.; et al. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 2016, 116, 061102. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Astrophysical implications of the binary black hole merger GW150914. Astrophys. J. 2016, 818, L22. [Google Scholar] [CrossRef]
- Klimenko, S.; Yakushin, I.; Mercer, A.; Mitselmakher, G. A coherent method for detection of gravitational wave bursts. Class. Quantum Gravity 2008, 25, 114029. [Google Scholar] [CrossRef] [Green Version]
- Lynch, R.; Vitale, S.; Essick, R.; Katsavounidis, E.; Robinet, F. An information-theoretic approach to the gravitational-wave burst detection problem. arXiv 2015, arXiv:1511.05955. [Google Scholar] [CrossRef] [Green Version]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.; et al. GW150914: First results from the search for binary black hole coalescence with Advanced LIGO. Phys. Rev. D 2016, 93, 122003. [Google Scholar] [CrossRef] [Green Version]
- Özel, F.; Psaltis, D.; Narayan, R.; McClintock, J.E. The Black Hole Mass Distribution in the Galaxy. Astrophys. J. 2010, 725, 1918–1927. [Google Scholar] [CrossRef] [Green Version]
- Farr, W.M.; Sravan, N.; Cantrell, A.; Kreidberg, L.; Bailyn, C.D.; Mandel, I.; Kalogera, V. The Mass Distribution of Stellar-mass Black Holes. Astrophys. J. 2011, 741, 103. [Google Scholar] [CrossRef] [Green Version]
- Fishbach, M.; Kalogera, V. Apples and Oranges: Comparing black holes in X-ray binaries and gravitational-wave sources. arXiv 2021, arXiv:2111.02935. [Google Scholar] [CrossRef]
- Heger, A.; Fryer, C.L.; Woosley, S.E.; Langer, N.; Hartmann, D.H. How Massive Single Stars End Their Life. Astrophys. J. 2003, 591, 288–300. [Google Scholar] [CrossRef] [Green Version]
- Mapelli, M.; Colpi, M.; Zampieri, L. Low metallicity and ultra-luminous X-ray sources in the Cartwheel galaxy. Mon. Not. R. Astron. Soc. 2009, 395, L71–L75. [Google Scholar] [CrossRef] [Green Version]
- Spera, M.; Mapelli, M.; Bressan, A. The mass spectrum of compact remnants from the PARSEC stellar evolution tracks. Mon. Not. R. Astron. Soc. 2015, 451, 4086–4103. [Google Scholar] [CrossRef] [Green Version]
- Mapelli, M.; Zampieri, L.; Ripamonti, E.; Bressan, A. Dynamics of stellar black holes in young star clusters with different metallicities—I. Implications for X-ray binaries. Mon. Not. R. Astron. Soc. 2013, 429, 2298–2314. [Google Scholar] [CrossRef] [Green Version]
- Belczynski, K.; Bulik, T.; Fryer, C.L.; Ruiter, A.; Valsecchi, F.; Vink, J.S.; Hurley, J.R. On the Maximum Mass of Stellar Black Holes. Astrophys. J. 2010, 714, 1217–1226. [Google Scholar] [CrossRef] [Green Version]
- Woosley, S.E.; Heger, A.; Weaver, T.A. The evolution and explosion of massive stars. Rev. Mod. Phys. 2002, 74, 1015–1071. [Google Scholar] [CrossRef]
- Fryer, C.L.; Belczynski, K.; Wiktorowicz, G.; Dominik, M.; Kalogera, V.; Holz, D.E. Compact Remnant Mass Function: Dependence on the Explosion Mechanism and Metallicity. Astrophys. J. 2012, 749, 91. [Google Scholar] [CrossRef]
- Ziosi, B.M.; Mapelli, M.; Branchesi, M.; Tormen, G. Dynamics of stellar black holes in young star clusters with different metallicities—II. Black hole-black hole binaries. Mon. Not. R. Astron. Soc. 2014, 441, 3703–3717. [Google Scholar] [CrossRef] [Green Version]
- Webbink, R.F. Evolution of Helium White Dwarfs in Close Binaries. Mon. Not. R. Astron. Soc. 1975, 171, 555–568. [Google Scholar] [CrossRef] [Green Version]
- Paczynski, B. Common Envelope Binaries. In Structure and Evolution of Close Binary Systems; Eggleton, P., Mitton, S., Whelan, J., Eds.; Springer: Dordrecht, The Netherlands, 1976; Volume 73, p. 75. [Google Scholar]
- van den Heuvel, E.P.J. Late Stages of Close Binary Systems. In Structure and Evolution of Close Binary Systems; Eggleton, P., Mitton, S., Whelan, J., Eds.; Springer: Dordrecht, The Netherlands, 1976; Volume 73, p. 35. [Google Scholar]
- Hut, P. Tidal evolution in close binary systems. Astron. Astrophys. 1981, 99, 126–140. [Google Scholar]
- Webbink, R.F. Double white dwarfs as progenitors of R Coronae Borealis stars and type I supernovae. Astrophys. J. 1984, 277, 355–360. [Google Scholar] [CrossRef]
- Bethe, H.A.; Brown, G.E. Evolution of Binary Compact Objects That Merge. Astrophys. J. 1998, 506, 780–789. [Google Scholar] [CrossRef]
- Belczynski, K.; Kalogera, V.; Bulik, T. A Comprehensive Study of Binary Compact Objects as Gravitational Wave Sources: Evolutionary Channels, Rates, and Physical Properties. Astrophys. J. 2002, 572, 407–431. [Google Scholar] [CrossRef] [Green Version]
- Hurley, J.R.; Tout, C.A.; Pols, O.R. Evolution of binary stars and the effect of tides on binary populations. Mon. Not. R. Astron. Soc. 2002, 329, 897–928. [Google Scholar] [CrossRef]
- de Mink, S.E.; Cantiello, M.; Langer, N.; Yoon, S.C.; Brott, I.; Glebbeek, E.; Verkoulen, M.; Pols, O.R. Rotational mixing in close binaries. In The Art of Modeling Stars in the 21st Century, Proceedings of the International Astronomical Union (IAU) Symposium, Sanya, China, 6–11 April 2008; Deng, L., Chan, K.L., Eds.; Cambridge University Press: Cambridge, UK, 2008; Volume 252, pp. 365–370. [Google Scholar] [CrossRef] [Green Version]
- Dominik, M.; Belczynski, K.; Fryer, C.; Holz, D.E.; Berti, E.; Bulik, T.; Mandel, I.; O’Shaughnessy, R. Double Compact Objects. I. The Significance of the Common Envelope on Merger Rates. Astrophys. J. 2012, 759, 52. [Google Scholar] [CrossRef]
- Postnov, K.A.; Yungelson, L.R. The Evolution of Compact Binary Star Systems. Living Rev. Relativ. 2014, 17, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Mink, S.E.; Mandel, I. The chemically homogeneous evolutionary channel for binary black hole mergers: Rates and properties of gravitational-wave events detectable by advanced LIGO. Mon. Not. R. Astron. Soc. 2016, 460, 3545–3553. [Google Scholar] [CrossRef] [Green Version]
- Mandel, I.; de Mink, S.E. Merging binary black holes formed through chemically homogeneous evolution in short-period stellar binaries. Mon. Not. R. Astron. Soc. 2016, 458, 2634–2647. [Google Scholar] [CrossRef]
- Marchant, P.; Langer, N.; Podsiadlowski, P.; Tauris, T.M.; Moriya, T.J. A new route towards merging massive black holes. Astron. Astrophys. 2016, 588, A50. [Google Scholar] [CrossRef] [Green Version]
- Stevenson, S.; Vigna-Gómez, A.; Mandel, I.; Barrett, J.W.; Neijssel, C.J.; Perkins, D.; de Mink, S.E. Formation of the first three gravitational-wave observations through isolated binary evolution. Nat. Commun. 2017, 8, 14906. [Google Scholar] [CrossRef]
- Giacobbo, N.; Mapelli, M. The progenitors of compact-object binaries: Impact of metallicity, common envelope and natal kicks. Mon. Not. R. Astron. Soc. 2018, 480, 2011–2030. [Google Scholar] [CrossRef]
- Zevin, M.; Bavera, S.S.; Berry, C.P.L.; Kalogera, V.; Fragos, T.; Marchant, P.; Rodriguez, C.L.; Antonini, F.; Holz, D.E.; Pankow, C. One Channel to Rule Them All? Constraining the Origins of Binary Black Holes Using Multiple Formation Pathways. Astrophys. J. 2021, 910, 152. [Google Scholar] [CrossRef]
- Heggie, D.C. Binary Evolution in Stellar Dynamics. Mon. Not. R. Astron. Soc. 1975, 173, 729–787. [Google Scholar] [CrossRef]
- Lightman, A.P.; Shapiro, S.L. The dynamical evolution of globular clusters. Rev. Mod. Phys. 1978, 50, 437–481. [Google Scholar] [CrossRef]
- Hills, J.G.; Fullerton, L.W. Computer simulations of close encounters between single stars and hard binaries. Astron. J. 1980, 85, 1281–1291. [Google Scholar] [CrossRef]
- McMillan, S.; Hut, P.; Makino, J. Star Cluster Evolution with Primordial Binaries. II. Detailed Analysis. Astrophys. J. 1991, 372, 111. [Google Scholar] [CrossRef]
- Hut, P.; McMillan, S.; Goodman, J.; Mateo, M.; Phinney, E.S.; Pryor, C.; Richer, H.B.; Verbunt, F.; Weinberg, M. Binaries in Globular Clusters. Publ. Astron. Soc. Pac. 1992, 104, 981. [Google Scholar] [CrossRef]
- Sigurdsson, S.; Hernquist, L. Primordial black holes in globular clusters. Nature 1993, 364, 423–425. [Google Scholar] [CrossRef]
- Zwart, S.F.P.; McMillan, S.L.W. Black Hole Mergers in the Universe. Astrophys. J. 2000, 528, L17–L20. [Google Scholar] [CrossRef] [Green Version]
- Miller, M.C.; Hamilton, D.P. Four-Body Effects in Globular Cluster Black Hole Coalescence. Astrophys. J. 2002, 576, 894–898. [Google Scholar] [CrossRef]
- O’Leary, R.M.; Rasio, F.A.; Fregeau, J.M.; Ivanova, N.; O’Shaughnessy, R. Binary Mergers and Growth of Black Holes in Dense Star Clusters. Astrophys. J. 2006, 637, 937–951. [Google Scholar] [CrossRef] [Green Version]
- Downing, J.M.B.; Benacquista, M.J.; Giersz, M.; Spurzem, R. Compact binaries in star clusters—I. Black hole binaries inside globular clusters. Mon. Not. R. Astron. Soc. 2010, 407, 1946–1962. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, C.L.; Morscher, M.; Pattabiraman, B.; Chatterjee, S.; Haster, C.J.; Rasio, F.A. Binary Black Hole Mergers from Globular Clusters: Implications for Advanced LIGO. Phys. Rev. Lett. 2015, 115, 051101. [Google Scholar] [CrossRef]
- Antonini, F.; Rasio, F.A. Merging Black Hole Binaries in Galactic Nuclei: Implications for Advanced-LIGO Detections. Astrophys. J. 2016, 831, 187. [Google Scholar] [CrossRef] [Green Version]
- Mapelli, M. Massive black hole binaries from runaway collisions: The impact of metallicity. Mon. Not. R. Astron. Soc. 2016, 459, 3432–3446. [Google Scholar] [CrossRef] [Green Version]
- Kimpson, T.O.; Spera, M.; Mapelli, M.; Ziosi, B.M. Hierarchical black hole triples in young star clusters: Impact of Kozai–Lidov resonance on mergers. Mon. Not. R. Astron. Soc. 2016, 463, 2443–2452. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, S. Stellar-mass black holes in young massive and open stellar clusters and their role in gravitational-wave generation. Mon. Not. R. Astron. Soc. 2017, 467, 524–539. [Google Scholar] [CrossRef]
- Samsing, J.; Ramirez-Ruiz, E. On the Assembly Rate of Highly Eccentric Binary Black Hole Mergers. Astrophys. J. 2017, 840, L14. [Google Scholar] [CrossRef]
- Trani, A.A.; Rastello, S.; Carlo, U.N.D.; Santoliquido, F.; Tanikawa, A.; Mapelli, M. Compact object mergers in hierarchical triples from low-mass young star clusters. Mon. Not. R. Astron. Soc. 2022, 511, 1362–1372. [Google Scholar] [CrossRef]
- Kumamoto, J.; Fujii, M.S.; Tanikawa, A. Gravitational-wave emission from binary black holes formed in open clusters. Mon. Not. R. Astron. Soc. 2019, 486, 3942–3950. [Google Scholar] [CrossRef]
- Di Carlo, U.N.; Mapelli, M.; Giacobbo, N.; Spera, M.; Bouffanais, Y.; Rastello, S.; Santoliquido, F.; Pasquato, M.; Ballone, A.; Trani, A.A.; et al. Binary black holes in young star clusters: The impact of metallicity. Mon. Not. R. Astron. Soc. 2020, 498, 495–506. [Google Scholar] [CrossRef]
- Trani, A.A.; Tanikawa, A.; Fujii, M.S.; Leigh, N.W.C.; Kumamoto, J. Spin misalignment of black hole binaries from young star clusters: Implications for the origin of gravitational waves events. Mon. Not. R. Astron. Soc. 2021, 504, 910–919. [Google Scholar] [CrossRef]
- Arca Sedda, M.; Mapelli, M.; Benacquista, M.; Spera, M. Population synthesis of black hole mergers with B-POP: The impact of dynamics, natal spins, and intermediate-mass black holes on the population of gravitational wave sources. arXiv 2021, arXiv:2109.12119. [Google Scholar]
- Mikkola, S.; Aarseth, S.J. An efficient integration method for binaries in N-body simulations. New Astron. 1998, 3, 309–320. [Google Scholar] [CrossRef]
- Aarseth, S.J. Regularization tools for binary interactions. In Astrophysical Supercomputing Using Particle Simulations, Proceedings of the IAU Symposium n.208, Tokyo, Japan, 10–13 July 2001; Makino, J., Hut, P., Eds.; Astronomical Society of the Pacific: San Francisco, CA, USA, 2003; Volume 208, p. 295. [Google Scholar]
- Konstantinidis, S.; Kokkotas, K.D. MYRIAD: A new N-body code for simulations of star clusters. Astron. Astrophys. 2010, 522, A70. [Google Scholar] [CrossRef] [Green Version]
- Hypki, A.; Giersz, M. Mocca code for star cluster simulations—I. Blue stragglers, first results. Mon. Not. R. Astron. Soc. 2012, 429, 1221–1243. [Google Scholar] [CrossRef] [Green Version]
- Capuzzo-Dolcetta, R.; Spera, M.; Punzo, D. A fully parallel, high precision, N-body code running on hybrid computing platforms. J. Comput. Phys. 2013, 236, 580–593. [Google Scholar] [CrossRef] [Green Version]
- Capuzzo-Dolcetta, R.; Spera, M. A performance comparison of different graphics processing units running direct N-body simulations. Comput. Phys. Commun. 2013, 184, 2528–2539. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, C.L.; Morscher, M.; Wang, L.; Chatterjee, S.; Rasio, F.A.; Spurzem, R. Million-body star cluster simulations: Comparisons between Monte Carlo and direct N-body. Mon. Not. R. Astron. Soc. 2016, 463, 2109–2118. [Google Scholar] [CrossRef] [Green Version]
- Maureira-Fredes, C.; Amaro-Seoane, P. GraviDy, a GPU modular, parallel direct-summation N-body integrator: Dynamics with softening. Mon. Not. R. Astron. Soc. 2017, 473, 3113–3127. [Google Scholar] [CrossRef]
- Wang, L.; Iwasawa, M.; Nitadori, K.; Makino, J. PETAR: A high-performance N-body code for modelling massive collisional stellar systems. Mon. Not. R. Astron. Soc. 2020, 497, 536–555. [Google Scholar] [CrossRef]
- Mencagli, M.; Nazarova, N.; Spera, M. ISTEDDAS: A new direct N-Body code to study merging compact-object binaries. J. Phys. Conf. Ser. 2022, 2207, 012051. [Google Scholar] [CrossRef]
- Nitz, A.H.; Capano, C.D.; Kumar, S.; Wang, Y.F.; Kastha, S.; Schäfer, M.; Dhurkunde, R.; Cabero, M. 3-OGC: Catalog of Gravitational Waves from Compact-binary Mergers. Astrophys. J. 2021, 922, 76. [Google Scholar] [CrossRef]
- Olsen, S.; Venumadhav, T.; Mushkin, J.; Roulet, J.; Zackay, B.; Zaldarriaga, M. New binary black hole mergers in the LIGO–Virgo O3a data. arXiv 2022, arXiv:2201.02252. [Google Scholar]
- Zackay, B.; Venumadhav, T.; Dai, L.; Roulet, J.; Zaldarriaga, M. Highly spinning and aligned binary black hole merger in the Advanced LIGO first observing run. Phys. Rev. D 2019, 100, 023007. [Google Scholar] [CrossRef] [Green Version]
- Abbott, R.; et al.; [The LIGO Scientific Collaboration]; [the Virgo Collaboration]; [the KAGRA Collaboration] GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. arXiv 2021, arXiv:2111.03606. [Google Scholar]
- Abbott, R.; et al.; [The LIGO Scientific Collaboration]; [The Virgo Collaboration]; [The KAGRA Scientific Collaboration] The population of merging compact binaries inferred using gravitational waves through GWTC-3. arXiv 2021, arXiv:2111.03634. [Google Scholar]
- Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; Agathos, M.; et al. GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object. Astrophys. J. 2020, 896, L44. [Google Scholar] [CrossRef]
- Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; Agathos, M.; et al. GW190521: A Binary Black Hole Merger with a Total Mass of 150 M⊙. Phys. Rev. Lett. 2020, 125, 101102. [Google Scholar] [CrossRef]
- Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; Agathos, M.; et al. Properties and Astrophysical Implications of the 150 M⊙ Binary Black Hole Merger GW190521. Astrophys. J. 2020, 900, L13. [Google Scholar] [CrossRef]
- Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, A.; Adams, C.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; et al. Observation of Gravitational Waves from Two Neutron Star-Black Hole Coalescences. Astrophys. J. 2021, 915, L5. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.; et al. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett. 2017, 119, 161101. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, V.; Fairhurst, S. The Emergence of Structure in the Binary Black Hole Mass Distribution. Astrophys. J. 2021, 913, L19. [Google Scholar] [CrossRef]
- Karathanasis, C.; Mukherjee, S.; Mastrogiovanni, S. Binary black holes population and cosmology in new lights: Signature of PISN mass and formation channel in GWTC-3. arXiv 2022, arXiv:2204.13495. [Google Scholar]
- Mukherjee, S. The redshift dependence of black hole mass distribution: Is it reliable for standard sirens cosmology? arXiv 2021, arXiv:2112.10256. [Google Scholar]
- Mapelli, M. Formation Channels of Single and Binary Stellar-Mass Black Holes. In Handbook of Gravitational Wave Astronomy; Springer: Singapore, 2021; p. 4. [Google Scholar] [CrossRef]
- Mandel, I.; Broekgaarden, F.S. Rates of compact object coalescences. Living Rev. Rel. 2022, 25, 1. [Google Scholar] [CrossRef]
- Eddington, A.S. On the relation between the masses and luminosities of the stars. Mon. Not. R. Astron. Soc. 1924, 84, 308–332. [Google Scholar] [CrossRef]
- Smartt, S.J. Progenitors of Core-Collapse Supernovae. Annu. Rev. Astron. Astrophys. 2009, 47, 63–106. [Google Scholar] [CrossRef] [Green Version]
- Horiuchi, S.; Beacom, J.F.; Kochanek, C.S.; Prieto, J.L.; Stanek, K.Z.; Thompson, T.A. The cosmic core-collapse supernova rate does not match the massive-star formation rate. Astrophys. J. 2011, 738, 154. [Google Scholar] [CrossRef]
- Smartt, S.J. Observational Constraints on the Progenitors of Core-Collapse Supernovae: The Case for Missing High-Mass Stars. Publ. Astron. Soc. Aust. 2015, 32, e016. [Google Scholar] [CrossRef] [Green Version]
- Aguirre, V.S. Stellar Evolution and Modelling Stars. Asteroseismology and Exoplanets: Listening to the Stars and Searching for New Worlds; Springer: Berlin/Heidelberg, Germany, 2017; pp. 3–25. [Google Scholar] [CrossRef] [Green Version]
- Vink, J.S. Theory and Diagnostics of Hot Star Mass Loss. arXiv 2021, arXiv:2109.08164. [Google Scholar] [CrossRef]
- Spera, M.; Mapelli, M. Very massive stars, pair-instability supernovae and intermediate-mass black holes with the sevn code. Mon. Not. R. Astron. Soc. 2017, 470, 4739–4749. [Google Scholar] [CrossRef]
- Bressan, A.; Marigo, P.; Girardi, L.; Salasnich, B.; Dal Cero, C.; Rubele, S.; Nanni, A. PARSEC: Stellar tracks and isochrones with the PAdova and TRieste Stellar Evolution Code. Mon. Not. R. Astron. Soc. 2012, 427, 127–145. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Bressan, A.; Girardi, L.; Marigo, P.; Kong, X.; Lanza, A. PARSEC evolutionary tracks of massive stars up to 350 M⊙ at metallicities 0.0001 ≤ Z ≤ 0.04. Mon. Not. R. Astron. Soc. 2015, 452, 1068–1080. [Google Scholar] [CrossRef] [Green Version]
- Chandrasekhar, S. The highly collapsed configurations of a stellar mass (Second paper). Mon. Not. R. Astron. Soc. 1935, 95, 207–225. [Google Scholar] [CrossRef] [Green Version]
- Oppenheimer, J.R.; Volkoff, G.M. On Massive Neutron Cores. Phys. Rev. 1939, 55, 374–381. [Google Scholar] [CrossRef]
- Tolman, R.C. Static Solutions of Einstein’s Field Equations for Spheres of Fluid. Phys. Rev. 1939, 55, 364–373. [Google Scholar] [CrossRef] [Green Version]
- Rhoades, C.E.; Ruffini, R. Maximum Mass of a Neutron Star. Phys. Rev. Lett. 1974, 32, 324–327. [Google Scholar] [CrossRef] [Green Version]
- Kalogera, V.; Baym, G. The Maximum Mass of a Neutron Star. Astrophys. J. 1996, 470, L61–L64. [Google Scholar] [CrossRef]
- Srinivasan, G. The maximum mass of neutron stars. Astron. Astrophys. Rev. 2002, 11, 67–96. [Google Scholar] [CrossRef]
- Margalit, B.; Metzger, B.D. Constraining the Maximum Mass of Neutron Stars from Multi-messenger Observations of GW170817. Astrophys. J. 2017, 850, L19. [Google Scholar] [CrossRef]
- Shibata, M.; Fujibayashi, S.; Hotokezaka, K.; Kiuchi, K.; Kyutoku, K.; Sekiguchi, Y.; Tanaka, M. Modeling GW170817 based on numerical relativity and its implications. Phys. Rev. D 2017, 96, 123012. [Google Scholar] [CrossRef] [Green Version]
- Linares, M.; Shahbaz, T.; Casares, J. Peering into the Dark Side: Magnesium Lines Establish a Massive Neutron Star in PSR J2215 + 5135. Astrophys. J. 2018, 859, 54. [Google Scholar] [CrossRef]
- Alsing, J.; Silva, H.O.; Berti, E. Evidence for a maximum mass cut-off in the neutron star mass distribution and constraints on the equation of state. Mon. Not. R. Astron. Soc. 2018, 478, 1377–1391. [Google Scholar] [CrossRef] [Green Version]
- Rezzolla, L.; Most, E.R.; Weih, L.R. Using Gravitational-wave Observations and Quasi-universal Relations to Constrain the Maximum Mass of Neutron Stars. Astrophys. J. 2018, 852, L25. [Google Scholar] [CrossRef]
- Ruiz, M.; Shapiro, S.L.; Tsokaros, A. GW170817, general relativistic magnetohydrodynamic simulations, and the neutron star maximum mass. Phys. Rev. D 2018, 97, 021501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cromartie, H.T.; Fonseca, E.; Ransom, S.M.; Demorest, P.B.; Arzoumanian, Z.; Blumer, H.; Brook, P.R.; DeCesar, M.E.; Dolch, T.; Ellis, J.; et al. Relativistic Shapiro delay measurements of an extremely massive millisecond pulsar. Nat. Astron. 2020, 4, 72–76. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.P.; Dempsey, A.M.; Li, S.; Li, H.; Li, J. Orbital Evolution of Binary Black Holes in Active Galactic Nucleus Disks: A Disk Channel for Binary Black Hole Mergers? Astrophys. J. 2021, 911, 124. [Google Scholar] [CrossRef]
- Li, A.; Miao, Z.; Han, S.; Zhang, B. Constraints on the Maximum Mass of Neutron Stars with a Quark Core from GW170817 and NICER PSR J0030 + 0451 Data. Astrophys. J. 2021, 913, 27. [Google Scholar] [CrossRef]
- Shibata, M.; Zhou, E.; Kiuchi, K.; Fujibayashi, S. Constraint on the maximum mass of neutron stars using GW170817 event. Phys. Rev. D 2019, 100, 023015. [Google Scholar] [CrossRef] [Green Version]
- Kashyap, R.; Das, A.; Radice, D.; Padamata, S.; Prakash, A.; Logoteta, D.; Perego, A.; Godzieba, D.A.; Bernuzzi, S.; Bombaci, I.E.A. Numerical relativity simulations of prompt collapse mergers: Threshold mass and phenomenological constraints on neutron star properties after GW170817. arXiv 2021, arXiv:2111.05183. [Google Scholar] [CrossRef]
- Friedman, J.L.; Ipser, J.R. On the Maximum Mass of a Uniformly Rotating Neutron Star. Astrophys. J. 1987, 314, 594. [Google Scholar] [CrossRef]
- Lasota, J.P.; Haensel, P.; Abramowicz, M.A. Fast Rotation of Neutron Stars. Astrophys. J. 1996, 456, 300. [Google Scholar]
- Lattimer, J.M.; Schutz, B.F. Constraining the Equation of State with Moment of Inertia Measurements. Astrophys. J. 2005, 629, 979–984. [Google Scholar] [CrossRef] [Green Version]
- Breu, C.; Rezzolla, L. Maximum mass, moment of inertia and compactness of relativistic stars. Mon. Not. R. Astron. Soc. 2016, 459, 646–656. [Google Scholar] [CrossRef] [Green Version]
- Saha, M.N. On Radiation-Pressure and the Quantum Theory. Astrophys. J. 1919, 50, 220. [Google Scholar] [CrossRef]
- Morton, D.C. Mass Loss from Three OB Supergiants in Orion. Astrophys. J. 1967, 150, 535. [Google Scholar] [CrossRef]
- Morton, D.C. The Far-Ultraviolet Spectra of Six Stars in Orion. Astrophys. J. 1967, 147, 1017. [Google Scholar] [CrossRef]
- Castor, J.I.; Abbott, D.C.; Klein, R.I. Radiation-driven winds in of stars. Astrophys. J. 1975, 195, 157–174. [Google Scholar] [CrossRef]
- Sobolev, V.V. Moving Envelopes of Stars; Harvard University Press: Cambridge, MA, USA, 1960. [Google Scholar]
- Kudritzki, R.P.; Pauldrach, A.; Puls, J. Radiation driven winds of hot luminous stars. II. Wind models for O-stars in the Magellanic clouds. Astron. Astrophys. 1987, 173, 293–298. [Google Scholar]
- Abbott, D.C. The theory of radiatively driven stellar winds. II. The line acceleration. Astrophys. J. 1982, 259, 282–301. [Google Scholar] [CrossRef]
- Abbott, D.C.; Lucy, L.B. Multiline transfer and the dynamics of stellar winds. Astrophys. J. 1985, 288, 679–693. [Google Scholar] [CrossRef]
- Vink, J.S.; de Koter, A.; Lamers, H.J.G.L.M. Mass-loss predictions for O and B stars as a function of metallicity. Astron. Astrophys. 2001, 369, 574–588. [Google Scholar] [CrossRef]
- Vink, J.S.; de Koter, A. On the metallicity dependence of Wolf-Rayet winds. Astron. Astrophys. 2005, 442, 587–596. [Google Scholar] [CrossRef] [Green Version]
- Sander, A.A.C.; Vink, J.S. On the nature of massive helium star winds and Wolf-Rayet-type mass-loss. Mon. Not. R. Astron. Soc. 2020, 499, 873–892. [Google Scholar] [CrossRef]
- Björklund, R.; Sundqvist, J.O.; Puls, J.; Najarro, F. New predictions for radiation-driven, steady-state mass-loss and wind-momentum from hot, massive stars. II. A grid of O-type stars in the Galaxy and the Magellanic Clouds. Astron. Astrophys. 2021, 648, A36. [Google Scholar] [CrossRef]
- Vink, J.S.; Muijres, L.E.; Anthonisse, B.; de Koter, A.; Gräfener, G.; Langer, N. Wind modelling of very massive stars up to 300 solar masses. Astron. Astrophys. 2011, 531, A132. [Google Scholar] [CrossRef] [Green Version]
- Vink, J.S.; de Koter, A. Predictions of variable mass loss for Luminous Blue Variables. Astron. Astrophys. 2002, 393, 543–553. [Google Scholar] [CrossRef]
- Yoon, S.C.; Cantiello, M. Evolution Of Massive Stars with Pulsation-Driven Superwinds during the Red Supergiant Phase. Astrophys. J. 2010, 717, L62–L65. [Google Scholar] [CrossRef]
- Tang, J.; Bressan, A.; Rosenfield, P.; Slemer, A.; Marigo, P.; Girardi, L.; Bianchi, L. New PARSEC evolutionary tracks of massive stars at low metallicity: Testing canonical stellar evolution in nearby star-forming dwarf galaxies. Mon. Not. R. Astron. Soc. 2014, 445, 4287–4305. [Google Scholar] [CrossRef]
- Gräfener, G.; Vink, J.S.; de Koter, A.; Langer, N. The Eddington factor as the key to understand the winds of the most massive stars. Evidence for a Γ-dependence of Wolf-Rayet type mass loss. Astron. Astrophys. 2011, 535, A56. [Google Scholar] [CrossRef] [Green Version]
- Gräfener, G.; Hamann, W.R. Mass loss from late-type WN stars and its Z-dependence. Very massive stars approaching the Eddington limit. Astron. Astrophys. 2008, 482, 945–960. [Google Scholar] [CrossRef] [Green Version]
- Davies, B.; Oudmaijer, R.D.; Vink, J.S. Asphericity and clumpiness in the winds of Luminous Blue Variables. Astron. Astrophys. 2005, 439, 1107–1125. [Google Scholar] [CrossRef] [Green Version]
- Puls, J.; Markova, N.; Scuderi, S.; Stanghellini, C.; Taranova, O.G.; Burnley, A.W.; Howarth, I.D. Bright OB stars in the Galaxy. III. Constraints on the radial stratification of the clumping factor in hot star winds from a combined Hα, IR and radio analysis. Astron. Astrophys. 2006, 454, 625–651. [Google Scholar] [CrossRef]
- Muijres, L.E.; de Koter, A.; Vink, J.S.; Krtička, J.; Kubát, J.; Langer, N. Predictions of the effect of clumping on the wind properties of O-type stars. Astron. Astrophys. 2011, 526, A32. [Google Scholar] [CrossRef] [Green Version]
- Petit, V.; Keszthelyi, Z.; MacInnis, R.; Cohen, D.H.; Townsend, R.H.D.; Wade, G.A.; Thomas, S.L.; Owocki, S.P.; Puls, J.; ud-Doula, A. Magnetic massive stars as progenitors of ‘heavy’ stellar-mass black holes. Mon. Not. R. Astron. Soc. 2017, 466, 1052–1060. [Google Scholar] [CrossRef] [Green Version]
- Heger, A.; Langer, N.; Woosley, S.E. Presupernova Evolution of Rotating Massive Stars. I. Numerical Method and Evolution of the Internal Stellar Structure. Astrophys. J. 2000, 528, 368–396. [Google Scholar] [CrossRef] [Green Version]
- Maeder, A.; Meynet, G. Stellar evolution with rotation. VI. The Eddington and Omega-limits, the rotational mass loss for OB and LBV stars. Astron. Astrophys. 2000, 361, 159–166. [Google Scholar]
- Colgate, S.A.; White, R.H. The Hydrodynamic Behavior of Supernovae Explosions. Astrophys. J. 1966, 143, 626. [Google Scholar] [CrossRef]
- Bethe, H.A.; Wilson, J.R. Revival of a stalled supernova shock by neutrino heating. Astrophys. J. 1985, 295, 14–23. [Google Scholar] [CrossRef]
- Janka, H.T.; Mueller, E. The First Second of a Type II Supernova: Convection, Accretion, and Shock Propagation. Astrophys. J. 1995, 448, L109. [Google Scholar] [CrossRef] [Green Version]
- Janka, H.T.; Mueller, E. Neutrino heating, convection, and the mechanism of Type-II supernova explosions. Astron. Astrophys. 1996, 306, 167. [Google Scholar]
- Burrows, A.; Hayes, J.; Fryxell, B.A. On the Nature of Core-Collapse Supernova Explosions. Astrophys. J. 1995, 450, 830. [Google Scholar] [CrossRef]
- Janka, H.T. Neutrino-Driven Explosions. In Handbook of Supernovae; Alsabti, A.W., Murdin, P., Eds.; Springer: Cham, Switzerland, 2017; p. 1095. [Google Scholar] [CrossRef] [Green Version]
- Janka, H.T. Explosion Mechanisms of Core-Collapse Supernovae. Annu. Rev. Nucl. Part. Sci. 2012, 62, 407–451. [Google Scholar] [CrossRef] [Green Version]
- Mezzacappa, A.; Endeve, E.; Messer, O.E.B.; Bruenn, S.W. Physical, numerical, and computational challenges of modeling neutrino transport in core-collapse supernovae. Living Rev. Comput. Astrophys. 2020, 6, 4. [Google Scholar] [CrossRef]
- LeBlanc, J.M.; Wilson, J.R. A Numerical Example of the Collapse of a Rotating Magnetized Star. Astrophys. J. 1970, 161, 541. [Google Scholar] [CrossRef]
- Bisnovatyi-Kogan, G.S. The Explosion of a Rotating Star As a Supernova Mechanism. Astron. Zhurnal 1970, 47, 813. [Google Scholar]
- Meier, D.L.; Epstein, R.I.; Arnett, W.D.; Schramm, D.N. Magnetohydrodynamic phenomena in collapsing stellar cores. Astrophys. J. 1976, 204, 869–878. [Google Scholar] [CrossRef]
- Mueller, E.; Hillebrandt, W. A magnetohydrodynamical supernova model. Astron. Astrophys. 1979, 80, 147–154. [Google Scholar]
- Fryer, C.L.; Warren, M.S. The Collapse of Rotating Massive Stars in Three Dimensions. Astrophys. J. 2004, 601, 391–404. [Google Scholar] [CrossRef]
- Kotake, K.; Sato, K.; Takahashi, K. Explosion mechanism, neutrino burst and gravitational wave in core-collapse supernovae. Rep. Prog. Phys. 2006, 69, 971–1143. [Google Scholar] [CrossRef]
- Nakamura, K.; Kuroda, T.; Takiwaki, T.; Kotake, K. Impacts of Rotation on Three-dimensional Hydrodynamics of Core-collapse Supernovae. Astrophys. J. 2014, 793, 45. [Google Scholar] [CrossRef] [Green Version]
- Takiwaki, T.; Kotake, K.; Suwa, Y. Three-dimensional simulations of rapidly rotating core-collapse supernovae: Finding a neutrino-powered explosion aided by non-axisymmetric flows. Mon. Not. R. Astron. Soc. 2016, 461, L112–L116. [Google Scholar] [CrossRef]
- Summa, A.; Janka, H.T.; Melson, T.; Marek, A. Rotation-supported Neutrino-driven Supernova Explosions in Three Dimensions and the Critical Luminosity Condition. Astrophys. J. 2018, 852, 28. [Google Scholar] [CrossRef] [Green Version]
- Miyaji, S.; Nomoto, K.; Yokoi, K.; Sugimoto, D. Supernova triggered by electron captures. Publ. Astron. Soc. Jpn. 1980, 32, 303–329. [Google Scholar]
- Nomoto, K.; Sparks, W.; Fesen, R.; Gull, T.R.; Miyaji, S.; Sugimoto, D. The Crab Nebula’s progenitor. Nature 1982, 299, 803–805. [Google Scholar] [CrossRef]
- Jones, S.; Röpke, F.K.; Pakmor, R.; Seitenzahl, I.R.; Ohlmann, S.T.; Edelmann, P.V.F. Do electron-capture supernovae make neutron stars? First multidimensional hydrodynamic simulations of the oxygen deflagration. Astron. Astrophys. 2016, 593, A72. [Google Scholar] [CrossRef]
- Kitaura, F.S.; Janka, H.T.; Hillebrandt, W. Explosions of O-Ne-Mg cores, the Crab supernova, and subluminous type II-P supernovae. Astron. Astrophys. 2006, 450, 345–350. [Google Scholar] [CrossRef] [Green Version]
- Özel, F.; Psaltis, D.; Narayan, R.; Santos Villarreal, A. On the Mass Distribution and Birth Masses of Neutron Stars. Astrophys. J. 2012, 757, 55. [Google Scholar] [CrossRef] [Green Version]
- Ugliano, M.; Janka, H.T.; Marek, A.; Arcones, A. Progenitor-explosion Connection and Remnant Birth Masses for Neutrino-driven Supernovae of Iron-core Progenitors. Astrophys. J. 2012, 757, 69. [Google Scholar] [CrossRef]
- O’Connor, E.; Ott, C.D. Black Hole Formation in Failing Core-Collapse Supernovae. Astrophys. J. 2011, 730, 70. [Google Scholar] [CrossRef] [Green Version]
- Limongi, M.; Chieffi, A. Presupernova Evolution and Explosive Nucleosynthesis of Rotating Massive Stars in the Metallicity Range −3 ≤ [Fe/H] ≤ 0. Astrophys. J. 2018, 237, 13. [Google Scholar] [CrossRef]
- Mapelli, M.; Spera, M.; Montanari, E.; Limongi, M.; Chieffi, A.; Giacobbo, N.; Bressan, A.; Bouffanais, Y. Impact of the Rotation and Compactness of Progenitors on the Mass of Black Holes. Astrophys. J. 2020, 888, 76. [Google Scholar] [CrossRef]
- Chieffi, A.; Roberti, L.; Limongi, M.; La Cognata, M.; Lamia, L.; Palmerini, S.; Pizzone, R.G.; Spartà, R.; Tumino, A. Impact of the New Measurement of the 12C + 12C Fusion Cross Section on the Final Compactness of Massive Stars. Astrophys. J. 2021, 916, 79. [Google Scholar] [CrossRef]
- Clausen, D.; Piro, A.L.; Ott, C.D. The Black Hole Formation Probability. Astrophys. J. 2015, 799, 190. [Google Scholar] [CrossRef] [Green Version]
- Ertl, T.; Janka, H.T.; Woosley, S.E.; Sukhbold, T.; Ugliano, M. A Two-parameter Criterion for Classifying the Explodability of Massive Stars by the Neutrino-driven Mechanism. Astrophys. J. 2016, 818, 124. [Google Scholar] [CrossRef]
- Sukhbold, T.; Ertl, T.; Woosley, S.E.; Brown, J.M.; Janka, H.T. Core-Collapse Supernovae from 9 to 120 Solar Masses Based on Neutrino-Powered Explosions. Astrophys. J. 2016, 821, 38. [Google Scholar] [CrossRef] [Green Version]
- Ertl, T.; Woosley, S.E.; Sukhbold, T.; Janka, H.T. The Explosion of Helium Stars Evolved with Mass Loss. Astrophys. J. 2020, 890, 51. [Google Scholar] [CrossRef] [Green Version]
- Burrows, A.; Radice, D.; Vartanyan, D.; Nagakura, H.; Skinner, M.A.; Dolence, J.C. The overarching framework of core-collapse supernova explosions as revealed by 3D FORNAX simulations. Mon. Not. R. Astron. Soc. 2020, 491, 2715–2735. [Google Scholar] [CrossRef] [Green Version]
- Woosley, S.E.; Sukhbold, T.; Janka, H.T. The Birth Function for Black Holes and Neutron Stars in Close Binaries. Astrophys. J. 2020, 896, 56. [Google Scholar] [CrossRef]
- Patton, R.A.; Sukhbold, T. Towards a realistic explosion landscape for binary population synthesis. Mon. Not. R. Astron. Soc. 2020, 499, 2803–2816. [Google Scholar] [CrossRef]
- Patton, R.A.; Sukhbold, T.; Eldridge, J.J. Comparing compact object distributions from mass- and presupernova core structure-based prescriptions. Mon. Not. R. Astron. Soc. 2022, 511, 903–913. [Google Scholar] [CrossRef]
- Woosley, S.E. Pulsational Pair-instability Supernovae. Astrophys. J. 2017, 836, 244. [Google Scholar] [CrossRef] [Green Version]
- Heger, A.; Woosley, S.E. The Nucleosynthetic Signature of Population III. Astrophys. J. 2002, 567, 532–543. [Google Scholar] [CrossRef]
- Fowler, W.A.; Hoyle, F. Neutrino Processes and Pair Formation in Massive Stars and Supernovae. Astrophys. J. Suppl. Ser. 1964, 9, 201. [Google Scholar] [CrossRef]
- Barkat, Z.; Rakavy, G.; Sack, N. Dynamics of Supernova Explosion Resulting from Pair Formation. Phys. Rev. Lett. 1967, 18, 379–381. [Google Scholar] [CrossRef]
- Rakavy, G.; Shaviv, G. Instabilities in Highly Evolved Stellar Models. Astrophys. J. 1967, 148, 803. [Google Scholar] [CrossRef]
- Woosley, S.E.; Blinnikov, S.; Heger, A. Pulsational pair instability as an explanation for the most luminous supernovae. Nature 2007, 450, 390–392. [Google Scholar] [CrossRef] [Green Version]
- Bond, J.R.; Arnett, W.D.; Carr, B.J. The evolution and fate of Very Massive Objects. Astrophys. J. 1984, 280, 825–847. [Google Scholar] [CrossRef]
- Fryer, C.L.; Woosley, S.E.; Heger, A. Pair-Instability Supernovae, Gravity Waves, and Gamma-Ray Transients. Astrophys. J. 2001, 550, 372–382. [Google Scholar] [CrossRef] [Green Version]
- Chatzopoulos, E.; Wheeler, J.C. Effects of Rotation on the Minimum Mass of Primordial Progenitors of Pair-Instability Supernovae. Astrophys. J. 2012, 748, 42. [Google Scholar] [CrossRef] [Green Version]
- Belczynski, K.; Heger, A.; Gladysz, W.; Ruiter, A.J.; Woosley, S.; Wiktorowicz, G.; Chen, H.Y.; Bulik, T.; O’Shaughnessy, R.; Holz, D.E.; et al. The effect of pair-instability mass loss on black-hole mergers. Astron. Astrophys. 2016, 594, A97. [Google Scholar] [CrossRef]
- Fishbach, M.; Holz, D.E. Where Are LIGO’s Big Black Holes? Astrophys. J. 2017, 851, L25. [Google Scholar] [CrossRef] [Green Version]
- Stevenson, S.; Sampson, M.; Powell, J.; Vigna-Gómez, A.; Neijssel, C.J.; Szécsi, D.; Mandel, I. The Impact of Pair-instability Mass Loss on the Binary Black Hole Mass Distribution. Astrophys. J. 2019, 882, 121. [Google Scholar] [CrossRef]
- Farmer, R.; Renzo, M.; de Mink, S.E.; Marchant, P.; Justham, S. Mind the Gap: The Location of the Lower Edge of the Pair-instability Supernova Black Hole Mass Gap. Astrophys. J. 2019, 887, 53. [Google Scholar] [CrossRef] [Green Version]
- Farmer, R.; Renzo, M.; de Mink, S.E.; Fishbach, M.; Justham, S. Constraints from Gravitational-wave Detections of Binary Black Hole Mergers on the 12C(α, γ)16O Rate. Astrophys. J. 2020, 902, L36. [Google Scholar] [CrossRef]
- Mangiagli, A.; Bonetti, M.; Sesana, A.; Colpi, M. Merger Rate of Stellar Black Hole Binaries above the Pair-instability Mass Gap. Astrophys. J. 2019, 883, L27. [Google Scholar] [CrossRef]
- Fishbach, M.; Holz, D.E. Minding the Gap: GW190521 as a Straddling Binary. Astrophys. J. 2020, 904, L26. [Google Scholar] [CrossRef]
- Ezquiaga, J.N.; Holz, D.E. Jumping the Gap: Searching for LIGO’s Biggest Black Holes. Astrophys. J. Lett. 2021, 909, L23. [Google Scholar] [CrossRef]
- Marchant, P.; Moriya, T.J. The impact of stellar rotation on the black hole mass-gap from pair-instability supernovae. Astron. Astrophys. 2020, 640, L18. [Google Scholar] [CrossRef]
- Woosley, S.E.; Heger, A. The Pair-instability Mass Gap for Black Holes. Astrophys. J. 2021, 912, L31. [Google Scholar] [CrossRef]
- Renzo, M.; Farmer, R.J.; Justham, S.; de Mink, S.E.; Götberg, Y.; Marchant, P. Sensitivity of the lower edge of the pair-instability black hole mass gap to the treatment of time-dependent convection. Mon. Not. R. Astron. Soc. 2020, 493, 4333–4341. [Google Scholar] [CrossRef] [Green Version]
- Nadezhin, D.K. Some Secondary Indications of Gravitational Collapse. Astrophys. Space Sci. 1980, 69, 115–125. [Google Scholar] [CrossRef]
- Lovegrove, E.; Woosley, S.E. Very Low Energy Supernovae from Neutrino Mass Loss. Astrophys. J. 2013, 769, 109. [Google Scholar] [CrossRef] [Green Version]
- Kochanek, C.S. Constraints on core collapse from the black hole mass function. Mon. Not. R. Astron. Soc. 2015, 446, 1213–1222. [Google Scholar] [CrossRef] [Green Version]
- Kroupa, P. On the variation of the initial mass function. Mon. Not. R. Astron. Soc. 2001, 322, 231–246. [Google Scholar] [CrossRef]
- deBoer, R.J.; Görres, J.; Wiescher, M.; Azuma, R.E.; Best, A.; Brune, C.R.; Fields, C.E.; Jones, S.; Pignatari, M.; Sayre, D.; et al. The 12C(α, γ )16O reaction and its implications for stellar helium burning. Rev. Mod. Phys. 2017, 89, 035007. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, K.; Yoshida, T.; Umeda, H. Stellar Yields of Rotating First Stars. II. Pair-instability Supernovae and Comparison with Observations. Astrophys. J. 2018, 857, 111. [Google Scholar] [CrossRef] [Green Version]
- Costa, G.; Bressan, A.; Mapelli, M.; Marigo, P.; Iorio, G.; Spera, M. Formation of GW190521 from stellar evolution: The impact of the hydrogen-rich envelope, dredge-up, and 12C(α, γ)16O rate on the pair-instability black hole mass gap. Mon. Not. R. Astron. Soc. 2021, 501, 4514–4533. [Google Scholar] [CrossRef]
- Tanikawa, A.; Yoshida, T.; Kinugawa, T.; Trani, A.A.; Hosokawa, T.; Susa, H.; Omukai, K. Merger Rate Density of Binary Black Holes through Isolated Population I, II, III and Extremely Metal-poor Binary Star Evolution. Astrophys. J. 2022, 926, 83. [Google Scholar] [CrossRef]
- Sakstein, J.; Croon, D.; McDermott, S.D.; Straight, M.C.; Baxter, E.J. Beyond the Standard Model Explanations of GW190521. Phys. Rev. Lett. 2020, 125, 261105. [Google Scholar] [CrossRef]
- Marchant, P.; Renzo, M.; Farmer, R.; Pappas, K.M.W.; Taam, R.E.; de Mink, S.E.; Kalogera, V. Pulsational Pair-instability Supernovae in Very Close Binaries. Astrophys. J. 2019, 882, 36. [Google Scholar] [CrossRef] [Green Version]
- Spera, M.; Giacobbo, N.; Mapelli, M. Shedding light on the black hole mass spectrum. Mem. Soc. Astron. Ital. 2016, 87, 575. [Google Scholar]
- Rodriguez, C.L.; Amaro-Seoane, P.; Chatterjee, S.; Kremer, K.; Rasio, F.A.; Samsing, J.; Ye, C.S.; Zevin, M. Post-Newtonian dynamics in dense star clusters: Formation, masses, and merger rates of highly-eccentric black hole binaries. Phys. Rev. D 2018, 98, 123005. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Bartos, I.; Gayathri, V.; Ford, K.E.S.; Haiman, Z.; Klimenko, S.; Kocsis, B.; Márka, S.; Márka, Z.; McKernan, B.; et al. Hierarchical Black Hole Mergers in Active Galactic Nuclei. Phys. Rev. Lett. 2019, 123, 181101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arca Sedda, M. Birth, Life, and Death of Black Hole Binaries around Supermassive Black Holes: Dynamical Evolution of Gravitational Wave Sources. Astrophys. J. 2020, 891, 47. [Google Scholar] [CrossRef] [Green Version]
- Di Carlo, U.N.; Giacobbo, N.; Mapelli, M.; Pasquato, M.; Spera, M.; Wang, L.; Haardt, F. Merging black holes in young star clusters. Mon. Not. R. Astron. Soc. 2019, 487, 2947–2960. [Google Scholar] [CrossRef]
- Di Carlo, U.N.; Mapelli, M.; Bouffanais, Y.; Giacobbo, N.; Santoliquido, F.; Bressan, A.; Spera, M.; Haardt, F. Binary black holes in the pair instability mass gap. Mon. Not. R. Astron. Soc. 2020, 497, 1043–1049. [Google Scholar] [CrossRef]
- Roupas, Z.; Kazanas, D. Generation of massive stellar black holes by rapid gas accretion in primordial dense clusters. Astron. Astrophys. 2019, 632, L8. [Google Scholar] [CrossRef] [Green Version]
- Natarajan, P. A new channel to form IMBHs throughout cosmic time. Mon. Not. R. Astron. Soc. 2020, 501, 1413–1425. [Google Scholar] [CrossRef]
- Safarzadeh, M.; Haiman, Z. Formation of GW190521 via Gas Accretion onto Population III Stellar Black Hole Remnants Born in High-redshift Minihalos. Astrophys. J. 2020, 903, L21. [Google Scholar] [CrossRef]
- Tanikawa, A.; Susa, H.; Yoshida, T.; Trani, A.A.; Kinugawa, T. Merger Rate Density of Population III Binary Black Holes Below, Above, and in the Pair-instability Mass Gap. Astrophys. J. 2021, 910, 30. [Google Scholar] [CrossRef]
- Farrell, E.; Groh, J.H.; Hirschi, R.; Murphy, L.; Kaiser, E.; Ekström, S.; Georgy, C.; Meynet, G. Is GW190521 the merger of black holes from the first stellar generations? Mon. Not. R. Astron. Soc. 2021, 502, L40–L44. [Google Scholar] [CrossRef]
- Liu, B.; Bromm, V. The Population III Origin of GW190521. Astrophys. J. 2020, 903, L40. [Google Scholar] [CrossRef]
- Spera, M.; Mapelli, M.; Giacobbo, N.; Trani, A.A.; Bressan, A.; Costa, G. Merging black hole binaries with the SEVN code. Mon. Not. R. Astron. Soc. 2019, 485, 889–907. [Google Scholar] [CrossRef] [Green Version]
- Kremer, K.; Spera, M.; Becker, D.; Chatterjee, S.; Di Carlo, U.N.; Fragione, G.; Rodriguez, C.L.; Ye, C.S.; Rasio, F.A. Populating the Upper Black Hole Mass Gap through Stellar Collisions in Young Star Clusters. Astrophys. J. 2020, 903, 45. [Google Scholar] [CrossRef]
- Blaauw, A. On the origin of the O- and B-type stars with high velocities (the “run-away” stars), and some related problems. Bull. Astron. Inst. Neth. 1961, 15, 265. [Google Scholar]
- Gunn, J.E.; Ostriker, J.P. On the Nature of Pulsars. III. Analysis of Observations. Astrophys. J. 1970, 160, 979. [Google Scholar] [CrossRef]
- Hobbs, G.; Lorimer, D.R.; Lyne, A.G.; Kramer, M. A statistical study of 233 pulsar proper motions. Mon. Not. R. Astron. Soc. 2005, 360, 974–992. [Google Scholar] [CrossRef] [Green Version]
- Verbunt, F.; Igoshev, A.; Cator, E. The observed velocity distribution of young pulsars. Astron. Astrophys. 2017, 608, A57. [Google Scholar] [CrossRef] [Green Version]
- Igoshev, A.P. The observed velocity distribution of young pulsars-II. Analysis of complete PSRπ. Mon. Not. R. Astron. Soc. 2020, 494, 3663–3674. [Google Scholar] [CrossRef]
- Wongwathanarat, A.; Janka, H.T.; Müller, E. Three-dimensional neutrino-driven supernovae: Neutron star kicks, spins, and asymmetric ejection of nucleosynthesis products. Astron. Astrophys. 2013, 552, A126. [Google Scholar] [CrossRef] [Green Version]
- Janka, H.T. Neutron Star Kicks by the Gravitational Tug-boat Mechanism in Asymmetric Supernova Explosions: Progenitor and Explosion Dependence. Astrophys. J. 2017, 837, 84. [Google Scholar] [CrossRef] [Green Version]
- Gessner, A.; Janka, H.T. Hydrodynamical Neutron-star Kicks in Electron-capture Supernovae and Implications for the CRAB Supernova. Astrophys. J. 2018, 865, 61. [Google Scholar] [CrossRef] [Green Version]
- Tauris, T.M.; Langer, N.; Podsiadlowski, P. Ultra-stripped supernovae: Progenitors and fate. Mon. Not. R. Astron. Soc. 2015, 451, 2123–2144. [Google Scholar] [CrossRef] [Green Version]
- Müller, B.; Gay, D.W.; Heger, A.; Tauris, T.M.; Sim, S.A. Multidimensional simulations of ultrastripped supernovae to shock breakout. Mon. Not. R. Astron. Soc. 2018, 479, 3675–3689. [Google Scholar] [CrossRef]
- Suwa, Y.; Yoshida, T.; Shibata, M.; Umeda, H.; Takahashi, K. Neutrino-driven explosions of ultra-stripped Type Ic supernovae generating binary neutron stars. Mon. Not. R. Astron. Soc. 2015, 454, 3073–3081. [Google Scholar] [CrossRef]
- Repetto, S.; Davies, M.B.; Sigurdsson, S. Investigating stellar-mass black hole kicks. Mon. Not. R. Astron. Soc. 2012, 425, 2799–2809. [Google Scholar] [CrossRef] [Green Version]
- Repetto, S.; Nelemans, G. Constraining the formation of black holes in short-period black hole low-mass X-ray binaries. Mon. Not. R. Astron. Soc. 2015, 453, 3341–3355. [Google Scholar] [CrossRef]
- Mandel, I. Estimates of black hole natal kick velocities from observations of low-mass X-ray binaries. Mon. Not. R. Astron. Soc. 2016, 456, 578–581. [Google Scholar] [CrossRef] [Green Version]
- Giacobbo, N.; Mapelli, M. The impact of electron-capture supernovae on merging double neutron stars. Mon. Not. R. Astron. Soc. 2019, 482, 2234–2243. [Google Scholar] [CrossRef] [Green Version]
- Bray, J.C.; Eldridge, J.J. Neutron star kicks—II. Revision and further testing of the conservation of momentum ‘kick’ model. Mon. Not. R. Astron. Soc. 2018, 480, 5657–5672. [Google Scholar] [CrossRef] [Green Version]
- Giacobbo, N.; Mapelli, M. Revising Natal Kick Prescriptions in Population Synthesis Simulations. Astrophys. J. 2020, 891, 141. [Google Scholar] [CrossRef] [Green Version]
- Bray, J.C.; Eldridge, J.J. Neutron star kicks and their relationship to supernovae ejecta mass. Mon. Not. R. Astron. Soc. 2016, 461, 3747–3759. [Google Scholar] [CrossRef] [Green Version]
- Beck, P.G.; Montalban, J.; Kallinger, T.; De Ridder, J.; Aerts, C.; García, R.A.; Hekker, S.; Dupret, M.A.; Mosser, B.; Eggenberger, P.; et al. Fast core rotation in red-giant stars as revealed by gravity-dominated mixed modes. Nature 2012, 481, 55–57. [Google Scholar] [CrossRef] [PubMed]
- Mosser, B.; Goupil, M.J.; Belkacem, K.; Marques, J.P.; Beck, P.G.; Bloemen, S.; De Ridder, J.; Barban, C.; Deheuvels, S.; Elsworth, Y.; et al. Spin down of the core rotation in red giants. Astron. Astrophys. 2012, 548, A10. [Google Scholar] [CrossRef] [Green Version]
- Deheuvels, S.; Doğan, G.; Goupil, M.J.; Appourchaux, T.; Benomar, O.; Bruntt, H.; Campante, T.L.; Casagr, L.; Ceillier, T.; Davies, G.R.; et al. Seismic constraints on the radial dependence of the internal rotation profiles of six Kepler subgiants and young red giants. Astron. Astrophys. 2014, 564, A27. [Google Scholar] [CrossRef] [Green Version]
- Triana, S.A.; Corsaro, E.; De Ridder, J.; Bonanno, A.; Pérez Hernández, F.; García, R.A. Internal rotation of 13 low-mass low-luminosity red giants in the Kepler field. Astron. Astrophys. 2017, 602, A62. [Google Scholar] [CrossRef] [Green Version]
- Hermes, J.J.; Gänsicke, B.T.; Kawaler, S.D.; Greiss, S.; Tremblay, P.E.; Fusillo, N.G.; Raddi, R.; Fanale, S.M.; Bell, K.J.; Dennihy, E.; et al. White Dwarf Rotation as a Function of Mass and a Dichotomy of Mode Line Widths: Kepler Observations of 27 Pulsating DA White Dwarfs through K2 Campaign 8. Astrophys. J. Suppl. Ser. 2017, 232, 23. [Google Scholar] [CrossRef] [Green Version]
- Gehan, C.; Mosser, B.; Michel, E.; Samadi, R.; Kallinger, T. Core rotation braking on the red giant branch for various mass ranges. Astron. Astrophys. 2018, 616, A24. [Google Scholar] [CrossRef] [Green Version]
- Eggenberger, P.; Montalbán, J.; Miglio, A. Angular momentum transport in stellar interiors constrained by rotational splittings of mixed modes in red giants. Astron. Astrophys. 2012, 544, L4. [Google Scholar] [CrossRef]
- Marques, J.P.; Goupil, M.J.; Lebreton, Y.; Talon, S.; Palacios, A.; Belkacem, K.; Ouazzani, R.M.; Mosser, B.; Moya, A.; Morel, P.; et al. Seismic diagnostics for transport of angular momentum in stars. I. Rotational splittings from the pre-main sequence to the red-giant branch. Astron. Astrophys. 2013, 549, A74. [Google Scholar] [CrossRef]
- Ceillier, T.; Eggenberger, P.; García, R.A.; Mathis, S. Understanding angular momentum transport in red giants: The case of KIC 7341231. Astron. Astrophys. 2013, 555, A54. [Google Scholar] [CrossRef] [Green Version]
- Tayar, J.; Pinsonneault, M.H. Implications of Rapid Core Rotation in Red Giants for Internal Angular Momentum Transport in Stars. Astrophys. J. 2013, 775, L1. [Google Scholar] [CrossRef]
- Cantiello, M.; Mankovich, C.; Bildsten, L.; Christensen-Dalsgaard, J.; Paxton, B. Angular Momentum Transport within Evolved Low-Mass Stars. Astrophys. J. 2014, 788, 93. [Google Scholar] [CrossRef] [Green Version]
- Fuller, J.; Lecoanet, D.; Cantiello, M.; Brown, B. Angular Momentum Transport via Internal Gravity Waves in Evolving Stars. Astrophys. J. 2014, 796, 17. [Google Scholar] [CrossRef]
- Belkacem, K.; Marques, J.P.; Goupil, M.J.; Mosser, B.; Sonoi, T.; Ouazzani, R.M.; Dupret, M.A.; Mathis, S.; Grosjean, M. Angular momentum redistribution by mixed modes in evolved low-mass stars. II. Spin-down of the core of red giants induced by mixed modes. Astron. Astrophys. 2015, 579, A31. [Google Scholar] [CrossRef]
- Fuller, J.; Cantiello, M.; Stello, D.; Garcia, R.A.; Bildsten, L. Asteroseismology can reveal strong internal magnetic fields in red giant stars. Science 2015, 350, 423–426. [Google Scholar] [CrossRef] [Green Version]
- Spada, F.; Gellert, M.; Arlt, R.; Deheuvels, S. Angular momentum transport efficiency in post-main sequence low-mass stars. Astron. Astrophys. 2016, 589, A23. [Google Scholar] [CrossRef] [Green Version]
- Eggenberger, P.; Lagarde, N.; Miglio, A.; Montalbán, J.; Ekström, S.; Georgy, C.; Meynet, G.; Salmon, S.; Ceillier, T.; García, R.A.; et al. Constraining the efficiency of angular momentum transport with asteroseismology of red giants: The effect of stellar mass. Astron. Astrophys. 2017, 599, A18. [Google Scholar] [CrossRef]
- Ouazzani, R.M.; Marques, J.P.; Goupil, M.J.; Christophe, S.; Antoci, V.; Salmon, S.J.A.J.; Ballot, J. γ Doradus stars as a test of angular momentum transport models. Astron. Astrophys. 2019, 626, A121. [Google Scholar] [CrossRef] [Green Version]
- Tayler, R.J. The adiabatic stability of stars containing magnetic fields—I.Toroidal fields. Mon. Not. R. Astron. Soc. 1973, 161, 365. [Google Scholar] [CrossRef]
- Spruit, H.C. Dynamo action by differential rotation in a stably stratified stellar interior. Astron. Astrophys. 2002, 381, 923–932. [Google Scholar] [CrossRef] [Green Version]
- Fuller, J.; Piro, A.L.; Jermyn, A.S. Slowing the spins of stellar cores. Mon. Not. R. Astron. Soc. 2019, 485, 3661–3680. [Google Scholar] [CrossRef]
- Fuller, J.; Ma, L. Most Black Holes Are Born Very Slowly Rotating. Astrophys. J. 2019, 881, L1. [Google Scholar] [CrossRef] [Green Version]
- Heger, A.; Woosley, S.E.; Spruit, H.C. Presupernova Evolution of Differentially Rotating Massive Stars Including Magnetic Fields. Astrophys. J. 2005, 626, 350–363. [Google Scholar] [CrossRef] [Green Version]
- Eggenberger, P.; den Hartogh, J.W.; Buldgen, G.; Meynet, G.; Salmon, S.J.A.J.; Deheuvels, S. Asteroseismology of evolved stars to constrain the internal transport of angular momentum. II. Test of a revised prescription for transport by the Tayler instability. Astron. Astrophys. 2019, 631, L6. [Google Scholar] [CrossRef] [Green Version]
- Qin, Y.; Fragos, T.; Meynet, G.; Andrews, J.; Sørensen, M.; Song, H.F. The spin of the second-born black hole in coalescing binary black holes. Astron. Astrophys. 2018, 616, A28. [Google Scholar] [CrossRef]
- Belczynski, K.; Klencki, J.; Fields, C.E.; Olejak, A.; Berti, E.; Meynet, G.; Fryer, C.L.; Holz, D.E.; O’Shaughnessy, R.; Brown, D.A.; et al. Evolutionary roads leading to low effective spins, high black hole masses, and O1/O2 rates for LIGO/Virgo binary black holes. Astron. Astrophys. 2020, 636, A104. [Google Scholar] [CrossRef]
- Miller, S.; Callister, T.A.; Farr, W.M. The Low Effective Spin of Binary Black Holes and Implications for Individual Gravitational-wave Events. Astrophys. J. 2020, 895, 128. [Google Scholar] [CrossRef]
- Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, A.; Adams, C.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; et al. Population Properties of Compact Objects from the Second LIGO–Virgo Gravitational-Wave Transient Catalog. Astrophys. J. Lett. 2021, 913, L7. [Google Scholar] [CrossRef]
- Belczynski, K.; Done, C.; Lasota, J.P. All Apples: Comparing black holes in X-ray binaries and gravitational-wave sources. arXiv 2021, arXiv:2111.09401. [Google Scholar]
- MacLeod, M.; Ramirez-Ruiz, E. On the Accretion-Fed Growth of Neutron Stars during Common Envelope. Astrophys. J. 2014, 798, L19. [Google Scholar] [CrossRef] [Green Version]
- Olejak, A.; Belczynski, K. The Implications of High Black Hole Spins for the Origin of Binary Black Hole Mergers. Astrophys. J. Lett. 2021, 921, L2. [Google Scholar] [CrossRef]
- Bavera, S.S.; Fragos, T.; Zevin, M.; Berry, C.P.; Marchant, P.; Andrews, J.J.; Coughlin, S.; Dotter, A.; Kovlakas, K.; Misra, D.; et al. The impact of mass-transfer physics on the observable properties of field binary black hole populations. Astron. Astrophys. 2021, 647, A153. [Google Scholar] [CrossRef]
- Berti, E.; Volonteri, M. Cosmological Black Hole Spin Evolution by Mergers and Accretion. Astrophys. J. 2008, 684, 822–828. [Google Scholar] [CrossRef] [Green Version]
- Gerosa, D.; Berti, E. Are merging black holes born from stellar collapse or previous mergers? Phys. Rev. D 2017, 95, 124046. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, C.L.; Zevin, M.; Amaro-Seoane, P.; Chatterjee, S.; Kremer, K.; Rasio, F.A.; Ye, C.S. Black holes: The next generation—Repeated mergers in dense star clusters and their gravitational-wave properties. Phys. Rev. D 2019, 100, 043027. [Google Scholar] [CrossRef] [Green Version]
- Mapelli, M.; Dall’Amico, M.; Bouffanais, Y.; Giacobbo, N.; Arca Sedda, M.; Artale, M.C.; Ballone, A.; Di Carlo, U.N.; Iorio, G.; Santoliquido, F.; et al. Hierarchical black hole mergers in young, globular and nuclear star clusters: The effect of metallicity, spin and cluster properties. Mon. Not. R. Astron. Soc. 2021, 505, 339–358. [Google Scholar] [CrossRef]
- Tagawa, H.; Haiman, Z.; Bartos, I.; Kocsis, B.; Omukai, K. Signatures of hierarchical mergers in black hole spin and mass distribution. Mon. Not. R. Astron. Soc. 2021, 507, 3362–3380. [Google Scholar] [CrossRef]
- Ebisuzaki, T.; Makino, J.; Tsuru, T.G.; Funato, Y.; Portegies Zwart, S.; Hut, P.; McMillan, S.; Matsushita, S.; Matsumoto, H.; Kawabe, R. Missing Link Found? The “Runaway” Path to Supermassive Black Holes. Astrophys. J. 2001, 562, L19–L22. [Google Scholar] [CrossRef] [Green Version]
- Hughes, S.A.; Blandford, R.D. Black Hole Mass and Spin Coevolution by Mergers. Astrophys. J. 2003, 585, L101–L104. [Google Scholar] [CrossRef] [Green Version]
- Damour, T. Coalescence of two spinning black holes: An effective one-body approach. Phys. Rev. D 2001, 64, 124013. [Google Scholar] [CrossRef] [Green Version]
- Racine, É. Analysis of spin precession in binary black hole systems including quadrupole-monopole interaction. Phys. Rev. D 2008, 78, 044021. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, P.; Hannam, M.; Husa, S. Towards models of gravitational waveforms from generic binaries: A simple approximate mapping between precessing and nonprecessing inspiral signals. Phys. Rev. D 2012, 86, 104063. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, P.; Ohme, F.; Hannam, M. Towards models of gravitational waveforms from generic binaries: II. Modelling precession effects with a single effective precession parameter. Phys. Rev. D 2015, 91, 024043. [Google Scholar] [CrossRef] [Green Version]
- Zevin, M.; Bavera, S.S. Suspicious Siblings: The Distribution of Mass and Spin Across Component Black Holes in Isolated Binary Evolution. arXiv 2022, arXiv:2203.02515. [Google Scholar]
- Tagawa, H.; Haiman, Z.; Bartos, I.; Kocsis, B. Spin Evolution of Stellar-mass Black Hole Binaries in Active Galactic Nuclei. Astrophys. J. 2020, 899, 26. [Google Scholar] [CrossRef]
- McKernan, B.; Ford, K.E.S.; Callister, T.; Farr, W.M.; O’Shaughnessy, R.; Smith, R.; Thrane, E.; Vajpeyi, A. LIGO–Virgo correlations between mass ratio and effective inspiral spin: Testing the active galactic nuclei channel. arXiv 2021, arXiv:2107.07551. [Google Scholar]
- Moe, M.; Di Stefano, R. Mind Your Ps and Qs: The Interrelation between Period (P) and Mass-ratio (Q) Distributions of Binary Stars. Astrophys. J. Suppl. Ser. 2017, 230, 15. [Google Scholar] [CrossRef] [Green Version]
- Peters, P.C.; Mathews, J. Gravitational Radiation from Point Masses in a Keplerian Orbit. Phys. Rev. 1963, 131, 435–440. [Google Scholar] [CrossRef]
- Eggleton, P.P.; Kiseleva, L.G.; Hut, P. The Equilibrium Tide Model for Tidal Friction. Astrophys. J. 1998, 499, 853–870. [Google Scholar] [CrossRef] [Green Version]
- Zahn, J.P. Reprint of 1977A&A....57..383Z. Tidal friction in close binary stars. Astron. Astrophys. 1977, 500, 121–132. [Google Scholar]
- Rasio, F.A.; Tout, C.A.; Lubow, S.H.; Livio, M. Tidal Decay of Close Planetary Orbits. Astrophys. J. 1996, 470, 1187. [Google Scholar] [CrossRef]
- Brandenburg, A. Stellar Mixing Length Theory with Entropy Rain. Astrophys. J. 2017, 832, 6. [Google Scholar] [CrossRef] [Green Version]
- Zahn, J.P. The dynamical tide in close binaries. Astron. Astrophys. 1975, 41, 329–344. [Google Scholar]
- Claret, A.; Cunha, N.C.S. Circularization and synchronization times in Main-Sequence of detached eclipsing binaries II. Using the formalisms by Zahn. Astron. Astrophys. 1997, 318, 187–197. [Google Scholar]
- Siess, L.; Izzard, R.G.; Davis, P.J.; Deschamps, R. BINSTAR: A new binary stellar evolution code. Tidal interactions. Astron. Astrophys. 2013, 550, A100. [Google Scholar] [CrossRef]
- Kushnir, D.; Zaldarriaga, M.; Kollmeier, J.A.; Waldman, R. Dynamical tides reexpressed. Mon. Not. R. Astron. Soc. 2017, 467, 2146–2149. [Google Scholar] [CrossRef] [Green Version]
- Piran, T. Gamma-ray Bursts and Binary Neutron Star Mergers. In Compact Stars in Binaries; van Paradijs, J., van den Heuvel, E.P.J., Kuulkers, E., Eds.; The Astrophysics Spectator: Old Hickory, TN, USA, 1996; Volume 165, p. 489. [Google Scholar]
- Thorne, K.S.; Zytkow, A.N. Stars with degenerate neutron cores. I. Structure of equilibrium models. Astrophys. J. 1977, 212, 832–858. [Google Scholar] [CrossRef]
- Fryer, C.L.; Benz, W.; Herant, M. The Dynamics and Outcomes of Rapid Infall onto Neutron Stars. Astrophys. J. 1996, 460, 801. [Google Scholar] [CrossRef] [Green Version]
- Endal, A.S.; Sofia, S. The evolution of rotating stars. II. Calculations with time-dependent redistribution of angular momentum for 7 and 10 M sun stars. Astrophys. J. 1978, 220, 279–290. [Google Scholar] [CrossRef]
- Zahn, J.P. Circulation and turbulence in rotating stars. Astron. Astrophys. 1992, 265, 115–132. [Google Scholar]
- de Mink, S.E.; Cottaar, M.; Pols, O.R. Can Low-Metallicity Binaries Avoid Merging. In First Stars III; O’Shea, B.W., Heger, A., Eds.; American Institute of Physics Conference Series; American Institute of Physics: Santa Fe, NM, USA, 2008; Volume 990, pp. 217–219. [Google Scholar] [CrossRef] [Green Version]
- de Mink, S.E.; Cantiello, M.; Langer, N.; Pols, O.R.; Brott, I.; Yoon, S.C. Rotational mixing in massive binaries. Detached short-period systems. Astron. Astrophys. 2009, 497, 243–253. [Google Scholar] [CrossRef]
- Hadjidemetriou, J.D. Two-body problem with variable mass: A new approach. Icarus 1963, 2, 440–451. [Google Scholar] [CrossRef]
- Dosopoulou, F.; Kalogera, V. Orbital Evolution of Mass-transferring Eccentric Binary Systems. I. Phase-dependent Evolution. Astrophys. J. 2016, 825, 70. [Google Scholar] [CrossRef] [Green Version]
- Bondi, H.; Hoyle, F. On the mechanism of accretion by stars. Mon. Not. R. Astron. Soc. 1944, 104, 273. [Google Scholar] [CrossRef]
- Dosopoulou, F.; Kalogera, V. Orbital Evolution of Mass-transferring Eccentric Binary Systems. II. Secular Evolution. Astrophys. J. 2016, 825, 71. [Google Scholar] [CrossRef] [Green Version]
- Hamers, A.S.; Dosopoulou, F. An Analytic Model for Mass Transfer in Binaries with Arbitrary Eccentricity, with Applications to Triple-star Systems. Astrophys. J. 2019, 872, 119. [Google Scholar] [CrossRef] [Green Version]
- Sepinsky, J.F.; Willems, B.; Kalogera, V.; Rasio, F.A. Interacting Binaries with Eccentric Orbits: Secular Orbital Evolution Due to Conservative Mass Transfer. Astrophys. J. 2007, 667, 1170–1184. [Google Scholar] [CrossRef] [Green Version]
- Sepinsky, J.F.; Willems, B.; Kalogera, V.; Rasio, F.A. Interacting Binaries with Eccentric Orbits. II. Secular Orbital Evolution due to Non-conservative Mass Transfer. Astrophys. J. 2009, 702, 1387–1392. [Google Scholar] [CrossRef] [Green Version]
- Sepinsky, J.F.; Willems, B.; Kalogera, V.; Rasio, F.A. Interacting Binaries with Eccentric Orbits. III. Orbital Evolution due to Direct Impact and Self-Accretion. Astrophys. J. 2010, 724, 546–558. [Google Scholar] [CrossRef] [Green Version]
- Eggleton, P.P. Aproximations to the radii of Roche lobes. Astrophys. J. 1983, 268, 368–369. [Google Scholar] [CrossRef]
- Ge, H.; Hjellming, M.S.; Webbink, R.F.; Chen, X.; Han, Z. Adiabatic Mass Loss in Binary Stars. I. Computational Method. Astrophys. J. 2010, 717, 724–738. [Google Scholar] [CrossRef] [Green Version]
- Leiner, E.M.; Geller, A. A Census of Blue Stragglers in Gaia DR2 Open Clusters as a Test of Population Synthesis and Mass Transfer Physics. Astrophys. J. 2021, 908, 229. [Google Scholar] [CrossRef]
- Neijssel, C.J.; Vigna-Gómez, A.; Stevenson, S.; Barrett, J.W.; Gaebel, S.M.; Broekgaarden, F.S.; de Mink, S.E.; Szécsi, D.; Vinciguerra, S.; Mandel, I. The effect of the metallicity-specific star formation history on double compact object mergers. Mon. Not. R. Astron. Soc. 2019, 490, 3740–3759. [Google Scholar] [CrossRef] [Green Version]
- Vigna-Gómez, A.; Neijssel, C.J.; Stevenson, S.; Barrett, J.W.; Belczynski, K.; Justham, S.; de Mink, S.E.; Müller, B.; Podsiadlowski, P.; Renzo, M.; et al. On the formation history of Galactic double neutron stars. Mon. Not. R. Astron. Soc. 2018, 481, 4009–4029. [Google Scholar] [CrossRef] [Green Version]
- Ivanova, N.; Justham, S.; Chen, X.; De Marco, O.; Fryer, C.L.; Gaburov, E.; Ge, H.; Glebbeek, E.; Han, Z.; Li, X.D.; et al. Common envelope evolution: Where we stand and how we can move forward. Astron. Astrophys. Rev. 2013, 21, 59. [Google Scholar] [CrossRef] [Green Version]
- Dominik, M.; Berti, E.; O’Shaughnessy, R.; Mandel, I.; Belczynski, K.; Fryer, C.; Holz, D.E.; Bulik, T.; Pannarale, F. Double Compact Objects III: Gravitational-wave Detection Rates. Astrophys. J. 2015, 806, 263. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, C.L.; Chatterjee, S.; Rasio, F.A. Binary black hole mergers from globular clusters: Masses, merger rates, and the impact of stellar evolution. Phys. Rev. D 2016, 93, 084029. [Google Scholar] [CrossRef] [Green Version]
- Mapelli, M.; Giacobbo, N. The cosmic merger rate of neutron stars and black holes. Mon. Not. R. Astron. Soc. 2018, 479, 4391–4398. [Google Scholar] [CrossRef] [Green Version]
- Tanikawa, A.; Kinugawa, T.; Yoshida, T.; Hijikawa, K.; Umeda, H. Population III binary black holes: Effects of convective overshooting on formation of GW190521. Mon. Not. R. Astron. Soc. 2021, 505, 2170–2176. [Google Scholar] [CrossRef]
- Sandquist, E.L.; Taam, R.E.; Chen, X.; Bodenheimer, P.; Burkert, A. Double Core Evolution. X. Through the Envelope Ejection Phase. Astrophys. J. 1998, 500, 909–922. [Google Scholar] [CrossRef] [Green Version]
- Ricker, P.M.; Taam, R.E. An AMR Study of the Common-envelope Phase of Binary Evolution. Astrophys. J. 2012, 746, 74. [Google Scholar] [CrossRef] [Green Version]
- Passy, J.C.; De Marco, O.; Fryer, C.L.; Herwig, F.; Diehl, S.; Oishi, J.S.; Mac Low, M.M.; Bryan, G.L.; Rockefeller, G. Simulating the Common Envelope Phase of a Red Giant Using Smoothed-particle Hydrodynamics and Uniform-grid Codes. Astrophys. J. 2012, 744, 52. [Google Scholar] [CrossRef] [Green Version]
- Ivanova, N.; Nandez, J.L.A. Common envelope events with low-mass giants: Understanding the transition to the slow spiral-in. Mon. Not. R. Astron. Soc. 2016, 462, 362–381. [Google Scholar] [CrossRef] [Green Version]
- Ohlmann, S.T.; Röpke, F.K.; Pakmor, R.; Springel, V. Constructing stable 3D hydrodynamical models of giant stars. Astron. Astrophys. 2017, 599, A5. [Google Scholar] [CrossRef] [Green Version]
- Iaconi, R.; De Marco, O.; Passy, J.C.; Staff, J. The effect of binding energy and resolution in simulations of the common envelope binary interaction. Mon. Not. R. Astron. Soc. 2018, 477, 2349–2365. [Google Scholar] [CrossRef] [Green Version]
- Reichardt, T.A.; De Marco, O.; Iaconi, R.; Tout, C.A.; Price, D.J. Extending common envelope simulations from Roche lobe overflow to the nebular phase. Mon. Not. R. Astron. Soc. 2019, 484, 631–647. [Google Scholar] [CrossRef] [Green Version]
- Reichardt, T.A.; De Marco, O.; Iaconi, R.; Chamandy, L.; Price, D.J. The impact of recombination energy on simulations of the common-envelope binary interaction. Mon. Not. R. Astron. Soc. 2020, 494, 5333–5349. [Google Scholar] [CrossRef]
- Glanz, H.; Perets, H.B. Common envelope evolution of eccentric binaries. Mon. Not. R. Astron. Soc. 2021, 507, 2659–2670. [Google Scholar] [CrossRef]
- Livio, M.; Soker, N. The Common Envelope Phase in the Evolution of Binary Stars. Astrophys. J. 1988, 329, 764. [Google Scholar] [CrossRef]
- de Kool, M. Common Envelope Evolution and Double Cores of Planetary Nebulae. Astrophys. J. 1990, 358, 189. [Google Scholar] [CrossRef]
- Nelemans, G.; Verbunt, F.; Yungelson, L.R.; Portegies Zwart, S.F. Reconstructing the evolution of double helium white dwarfs: Envelope loss without spiral-in. Astron. Astrophys. 2000, 360, 1011–1018. [Google Scholar]
- Nelemans, G.; Tout, C.A. Reconstructing the evolution of white dwarf binaries: Further evidence for an alternative algorithm for the outcome of the common-envelope phase in close binaries. Mon. Not. R. Astron. Soc. 2005, 356, 753–764. [Google Scholar] [CrossRef] [Green Version]
- Dewi, J.D.M.; Tauris, T.M. On the energy equation and efficiency parameter of the common envelope evolution. Astron. Astrophys. 2000, 360, 1043–1051. [Google Scholar]
- Xu, X.J.; Li, X.D. On the Binding Energy Parameter λ of Common Envelope Evolution. Astrophys. J. 2010, 716, 114–121. [Google Scholar] [CrossRef]
- Claeys, J.S.W.; Pols, O.R.; Izzard, R.G.; Vink, J.; Verbunt, F.W.M. Theoretical uncertainties of the Type Ia supernova rate. Astron. Astrophys. 2014, 563, A83. [Google Scholar] [CrossRef]
- Kruckow, M.U.; Tauris, T.M.; Langer, N.; Kramer, M.; Izzard, R.G. Progenitors of gravitational wave mergers: Binary evolution with the stellar grid-based code COMBINE. Mon. Not. R. Astron. Soc. 2018, 481, 1908–1949. [Google Scholar] [CrossRef]
- Zorotovic, M.; Schreiber, M.R.; Gänsicke, B.T.; Nebot Gómez-Morán, A. Post-common-envelope binaries from SDSS. IX: Constraining the common-envelope efficiency. Astron. Astrophys. 2010, 520, A86. [Google Scholar] [CrossRef]
- Davis, P.J.; Kolb, U.; Willems, B. A comprehensive population synthesis study of post-common envelope binaries. Mon. Not. R. Astron. Soc. 2010, 403, 179–195. [Google Scholar] [CrossRef] [Green Version]
- Davis, P.J.; Kolb, U.; Knigge, C. Is the common envelope ejection efficiency a function of the binary parameters? Mon. Not. R. Astron. Soc. 2012, 419, 287–303. [Google Scholar] [CrossRef] [Green Version]
- De Marco, O.; Passy, J.C.; Moe, M.; Herwig, F.; Mac Low, M.M.; Paxton, B. On the α formalism for the common envelope interaction. Mon. Not. R. Astron. Soc. 2011, 411, 2277–2292. [Google Scholar] [CrossRef] [Green Version]
- Nandez, J.L.A.; Ivanova, N. Common envelope events with low-mass giants: Understanding the energy budget. Mon. Not. R. Astron. Soc. 2016, 460, 3992–4002. [Google Scholar] [CrossRef]
- Fragos, T.; Andrews, J.J.; Ramirez-Ruiz, E.; Meynet, G.; Kalogera, V.; Taam, R.E.; Zezas, A. The Complete Evolution of a Neutron-star Binary through a Common Envelope Phase Using 1D Hydrodynamic Simulations. Astrophys. J. 2019, 883, L45. [Google Scholar] [CrossRef] [Green Version]
- Lynch, R.S.; Freire, P.C.C.; Ransom, S.M.; Jacoby, B.A. The Timing of Nine Globular Cluster Pulsars. Astrophys. J. 2012, 745, 109. [Google Scholar] [CrossRef] [Green Version]
- Kawka, A.; Vennes, S.; O’Toole, S.; Németh, P.; Burton, D.; Kotze, E.; Buckley, D.A.H. New binaries among UV-selected, hot subdwarf stars and population properties. Mon. Not. R. Astron. Soc. 2015, 450, 3514–3548. [Google Scholar] [CrossRef] [Green Version]
- Kruckow, M.U.; Neunteufel, P.G.; Di Stefano, R.; Gao, Y.; Kobayashi, C. A Catalog of Potential Post-Common Envelope Binaries. Astrophys. J. 2021, 920, 86. [Google Scholar] [CrossRef]
- Trani, A.A.; Rieder, S.; Tanikawa, A.; Iorio, G.; Martini, R.; Karelin, G.; Glanz, H.; Portegies Zwart, S. Revisiting Common Envelope Evolution—A New Semi-Analytic Model for N-body and Population Synthesis Codes. arXiv 2022, arXiv:2205.13537. [Google Scholar]
- Hills, J.G. The effects of sudden mass loss and a random kick velocity produced in a supernova explosion on the dynamics of a binary star of arbitrary orbital eccentricity. Applications to X-ray binaries and to the binarypulsars. Astrophys. J. 1983, 267, 322–333. [Google Scholar] [CrossRef]
- Belczynski, K. The Most Ordinary Formation of the Most Unusual Double Black Hole Merger. Astrophys. J. 2020, 905, L15. [Google Scholar] [CrossRef]
- Callister, T.A.; Farr, W.M.; Renzo, M. State of the Field: Binary Black Hole Natal Kicks and Prospects for Isolated Field Formation after GWTC-2. Astrophys. J. 2021, 920, 157. [Google Scholar] [CrossRef]
- Steinle, N.; Kesden, M. Pathways for producing binary black holes with large misaligned spins in the isolated formation channel. Phys. Rev. D 2021, 103, 063032. [Google Scholar] [CrossRef]
- Wysocki, D.; Gerosa, D.; O’Shaughnessy, R.; Belczynski, K.; Gladysz, W.; Berti, E.; Kesden, M.; Holz, D.E. Explaining LIGO’s observations via isolated binary evolution with natal kicks. Phys. Rev. D 2018, 97, 043014. [Google Scholar] [CrossRef] [Green Version]
- Sana, H.; de Mink, S.E.; de Koter, A.; Langer, N.; Evans, C.J.; Gieles, M.; Gosset, E.; Izzard, R.G.; Le Bouquin, J.B.; Schneider, F.R.N. Binary Interaction Dominates the Evolution of Massive Stars. Science 2012, 337, 444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lada, C.J.; Lada, E.A. Embedded Clusters in Molecular Clouds. Annu. Rev. Astron. Astrophys. 2003, 41, 57–115. [Google Scholar] [CrossRef] [Green Version]
- Portegies Zwart, S.F.; McMillan, S.L.; Gieles, M. Young Massive Star Clusters. Annu. Rev. Astron. Astrophys. 2010, 48, 431–493. [Google Scholar] [CrossRef] [Green Version]
- Ward, J.L.; Kruijssen, J.M.D.; Rix, H.W. Not all stars form in clusters—Gaia-DR2 uncovers the origin of OB associations. Mon. Not. R. Astron. Soc. 2020, 495, 663–685. [Google Scholar] [CrossRef]
- Weidner, C.; Kroupa, P. The maximum stellar mass, star-cluster formation and composite stellar populations. Mon. Not. R. Astron. Soc. 2006, 365, 1333–1347. [Google Scholar] [CrossRef] [Green Version]
- Weidner, C.; Kroupa, P.; Bonnell, I.A.D. The relation between the most-massive star and its parental star cluster mass. Mon. Not. R. Astron. Soc. 2009, 401, 275–293. [Google Scholar] [CrossRef]
- Mapelli, M.; Colpi, M.; Possenti, A.; Sigurdsson, S. The fingerprint of binary intermediate-mass black holes in globular clusters: Suprathermal stars and angular momentum alignment. Mon. Not. R. Astron. Soc. 2005, 364, 1315–1326. [Google Scholar] [CrossRef] [Green Version]
- Tanikawa, A. Dynamical evolution of stellar mass black holes in dense stellar clusters: Estimate for merger rate of binary black holes originating from globular clusters. Mon. Not. R. Astron. Soc. 2013, 435, 1358–1375. [Google Scholar] [CrossRef] [Green Version]
- Breen, P.G.; Heggie, D.C. Dynamical evolution of black hole subsystems in idealized star clusters. Mon. Not. R. Astron. Soc. 2013, 432, 2779–2797. [Google Scholar] [CrossRef] [Green Version]
- Samsing, J.; MacLeod, M.; Ramirez-Ruiz, E. The Formation of Eccentric Compact Binary Inspirals and the Role of Gravitational Wave Emission in Binary-Single Stellar Encounters. Astrophys. J. 2014, 784, 71. [Google Scholar] [CrossRef] [Green Version]
- Samsing, J. Eccentric black hole mergers forming in globular clusters. Phys. Rev. D 2018, 97, 103014. [Google Scholar] [CrossRef] [Green Version]
- Askar, A.; Arca Sedda, M.; Giersz, M. MOCCA-SURVEY Database I: Galactic globular clusters harbouring a black hole subsystem. Mon. Not. R. Astron. Soc. 2018, 478, 1844–1854. [Google Scholar] [CrossRef] [Green Version]
- Arca Sedda, M.; Askar, A.; Giersz, M. MOCCA-Survey Database—I. Unravelling black hole subsystems in globular clusters. Mon. Not. R. Astron. Soc. 2018, 479, 4652–4664. [Google Scholar] [CrossRef]
- Kremer, K.; Rodriguez, C.L.; Amaro-Seoane, P.; Breivik, K.; Chatterjee, S.; Katz, M.L.; Larson, S.L.; Rasio, F.A.; Samsing, J.; Ye, C.S.; et al. Post-Newtonian dynamics in dense star clusters: Binary black holes in the LISA band. Phys. Rev. D 2019, 99, 063003. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Fujii, M.S.; Tanikawa, A. Impact of initial mass functions on the dynamical channel of gravitational wave sources. Mon. Not. R. Astron. Soc. 2021, 504, 5778–5787. [Google Scholar] [CrossRef]
- Askar, A.; Szkudlarek, M.; Gondek-Rosińska, D.; Giersz, M.; Bulik, T. MOCCA-SURVEY Database—I. Coalescing binary black holes originating from globular clusters. Mon. Not. R. Astron. Soc. 2017, 464, L36–L40. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, S.; Baumgardt, H.; Kroupa, P. Stellar-mass black holes in star clusters: Implications for gravitational wave radiation. Mon. Not. R. Astron. Soc. 2010, 402, 371–380. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, S. Stellar-mass black holes in young massive and open stellar clusters and their role in gravitational-wave generation—II. Mon. Not. R. Astron. Soc. 2018, 473, 909–926. [Google Scholar] [CrossRef]
- Banerjee, S. Stellar-mass black holes in young massive and open stellar clusters—IV. Updated stellar-evolutionary and black hole spin models and comparisons with the LIGO-Virgo O1/O2 merger-event data. Mon. Not. R. Astron. Soc. 2020, 500, 3002–3026. [Google Scholar] [CrossRef]
- Fujii, M.S.; Tanikawa, A.; Makino, J. The detection rates of merging binary black holes originating from star clusters and their mass function. Publ. Astron. Soc. Jpn. 2017, 69, 94. [Google Scholar] [CrossRef]
- Kumamoto, J.; Fujii, M.S.; Tanikawa, A. Merger rate density of binary black holes formed in open clusters. Mon. Not. R. Astron. Soc. 2020, 495, 4268–4278. [Google Scholar] [CrossRef]
- Böker, T.; Laine, S.; van der Marel, R.P.; Sarzi, M.; Rix, H.W.; Ho, L.C.; Shields, J.C. A Hubble Space Telescope Census of Nuclear Star Clusters in Late-Type Spiral Galaxies. I. Observations and Image Analysis. Astron. J. 2002, 123, 1389–1410. [Google Scholar] [CrossRef]
- Graham, A.W.; Spitler, L.R. Quantifying the coexistence of massive black holes and dense nuclear star clusters. Mon. Not. R. Astron. Soc. 2009, 397, 2148–2162. [Google Scholar] [CrossRef] [Green Version]
- Bahcall, J.N.; Wolf, R.A. Star distribution around a massive black hole in a globular cluster. Astrophys. J. 1976, 209, 214–232. [Google Scholar] [CrossRef]
- Szölgyén, Á.; Kocsis, B. Black Hole Disks in Galactic Nuclei. Phys. Rev. Lett. 2018, 121, 101101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gondán, L.; Kocsis, B.; Raffai, P.; Frei, Z. Eccentric Black Hole Gravitational-wave Capture Sources in Galactic Nuclei: Distribution of Binary Parameters. Astrophys. J. 2018, 860, 5. [Google Scholar] [CrossRef]
- Leigh, N.W.C.; Geller, A.M.; McKernan, B.; Ford, K.E.S.; Mac Low, M.M.; Bellovary, J.; Haiman, Z.; Lyra, W.; Samsing, J.; O’Dowd, M.; et al. On the rate of black hole binary mergers in galactic nuclei due to dynamical hardening. Mon. Not. R. Astron. Soc. 2018, 474, 5672–5683. [Google Scholar] [CrossRef] [Green Version]
- Trani, A.A.; Spera, M.; Leigh, N.W.C.; Fujii, M.S. The Keplerian Three-body Encounter. II. Comparisons with Isolated Encounters and Impact on Gravitational Wave Merger Timescales. Astrophys. J. 2019, 885, 135. [Google Scholar] [CrossRef] [Green Version]
- McKernan, B.; Ford, K.E.S.; Bellovary, J.; Leigh, N.W.C.; Haiman, Z.; Kocsis, B.; Lyra, W.; Mac Low, M.M.; Metzger, B.; O’Dowd, M.; et al. Constraining Stellar-mass Black Hole Mergers in AGN Disks Detectable with LIGO. Astrophys. J. 2018, 866, 66. [Google Scholar] [CrossRef] [Green Version]
- McKernan, B.; Ford, K.E.S.; O’Shaugnessy, R.; Wysocki, D. Monte Carlo simulations of black hole mergers in AGN discs: Low χeff mergers and predictions for LIGO. Mon. Not. R. Astron. Soc. 2020, 494, 1203–1216. [Google Scholar] [CrossRef] [Green Version]
- McKernan, B.; Ford, K.E.S.; O’Shaughnessy, R. Black hole, neutron star, and white dwarf merger rates in AGN discs. Mon. Not. R. Astron. Soc. 2020, 498, 4088–4094. [Google Scholar] [CrossRef]
- Ford, K.E.S.; McKernan, B. Binary Black Hole Merger Rates in AGN Disks versus Nuclear Star Clusters: Loud beats Quiet. arXiv 2021, arXiv:2109.03212. [Google Scholar]
- McKernan, B.; Ford, K.E.S.; Lyra, W.; Perets, H.B. Intermediate mass black holes in AGN discs—I. Production and growth. Mon. Not. R. Astron. Soc. 2012, 425, 460–469. [Google Scholar] [CrossRef] [Green Version]
- McKernan, B.; Ford, K.E.S.; Kocsis, B.; Lyra, W.; Winter, L.M. Intermediate-mass black holes in AGN discs—II. Model predictions and observational constraints. Mon. Not. R. Astron. Soc. 2014, 441, 900–909. [Google Scholar] [CrossRef] [Green Version]
- Bellovary, J.M.; Low, M.M.M.; McKernan, B.; Ford, K.E.S. Migration Traps in Disks Around Supermassive Black Holes. Astrophys. J. 2016, 819, L17. [Google Scholar] [CrossRef] [Green Version]
- Bartos, I.; Kocsis, B.; Haiman, Z.; Márka, S. Rapid and Bright Stellar-mass Binary Black Hole Mergers in Active Galactic Nuclei. Astrophys. J. 2017, 835, 165. [Google Scholar] [CrossRef] [Green Version]
- Stone, N.C.; Metzger, B.D.; Haiman, Z. Assisted inspirals of stellar mass black holes embedded in AGN discs: Solving the ‘final au problem’. Mon. Not. R. Astron. Soc. 2016, 464, 946–954. [Google Scholar] [CrossRef]
- Secunda, A.; Bellovary, J.; Low, M.M.M.; Ford, K.E.S.; McKernan, B.; Leigh, N.W.C.; Lyra, W.; Sándor, Z. Orbital Migration of Interacting Stellar Mass Black Holes in Disks around Supermassive Black Holes. Astrophys. J. 2019, 878, 85. [Google Scholar] [CrossRef]
- Tagawa, H.; Haiman, Z.; Kocsis, B. Formation and Evolution of Compact-object Binaries in AGN Disks. Astrophys. J. 2020, 898, 25. [Google Scholar] [CrossRef]
- Binney, J.; Tremaine, S. Galactic Dynamics, 2nd ed.; Princeton University Press: Princeton, NJ, USA, 2008. [Google Scholar]
- Lynden-Bell, D.; Wood, R. The gravo-thermal catastrophe in isothermal spheres and the onset of red-giant structure for stellar systems. Mon. Not. R. Astron. Soc. 1968, 138, 495. [Google Scholar] [CrossRef] [Green Version]
- Chandrasekhar, S. Dynamical Friction. I. General Considerations: The Coefficient of Dynamical Friction. Astrophys. J. 1943, 97, 255. [Google Scholar] [CrossRef]
- Chandrasekhar, S. Dynamical Friction. II. The Rate of Escape of Stars from Clusters and the Evidence for the Operation of Dynamical Friction. Astrophys. J. 1943, 97, 263. [Google Scholar] [CrossRef]
- Chandrasekhar, S. Dynamical Friction. III. A More Exact Theory of the Rate of Escape of Stars from Clusters. Astrophys. J. 1943, 98, 54. [Google Scholar] [CrossRef]
- Fujii, M.S.; Portegies Zwart, S. The moment of core collapse in star clusters with a mass function. Mon. Not. R. Astron. Soc. 2014, 439, 1003–1014. [Google Scholar] [CrossRef] [Green Version]
- Salpeter, E.E. The Luminosity Function and Stellar Evolution. Astrophys. J. 1955, 121, 161. [Google Scholar] [CrossRef]
- Spitzer, L., Jr. Equipartition and the Formation of Compact Nuclei in Spherical Stellar Systems. Astrophys. J. 1969, 158, L139. [Google Scholar] [CrossRef]
- Merritt, D. Two-component stellar systems in thermal and dynamical equilibrium. Astron. J. 1981, 86, 318–324. [Google Scholar] [CrossRef]
- Inagaki, S.; Wiyanto, P. On equipartition of kinetic energies in two-component star clusters. Publ. Astron. Soc. Jpn. 1984, 36, 391–402. [Google Scholar]
- Bianchini, P.; van de Ven, G.; Norris, M.A.; Schinnerer, E.; Varri, A.L. A novel look at energy equipartition in globular clusters. Mon. Not. R. Astron. Soc. 2016, 458, 3644–3654. [Google Scholar] [CrossRef]
- Spera, M.; Mapelli, M.; Jeffries, R.D. Do open star clusters evolve towards energy equipartition? Mon. Not. R. Astron. Soc. 2016, 460, 317–328. [Google Scholar] [CrossRef] [Green Version]
- Webb, J.J.; Vesperini, E. On the link between energy equipartition and radial variation in the stellar mass function of star clusters. Mon. Not. R. Astron. Soc. 2017, 464, 1977–1983. [Google Scholar] [CrossRef] [Green Version]
- Kremer, K.; Ye, C.S.; Chatterjee, S.; Rodriguez, C.L.; Rasio, F.A. How Black Holes Shape Globular Clusters: Modeling NGC 3201. Astrophys. J. 2018, 855, L15. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.M. Evolution of galactic nuclei with 10-M⊙ black holes. Mon. Not. R. Astron. Soc. 1995, 272, 605–617. [Google Scholar] [CrossRef]
- Jeans, J.H. The origin of binary systems. Mon. Not. R. Astron. Soc. 1919, 79, 408. [Google Scholar] [CrossRef] [Green Version]
- Monaghan, J.J. A statistical theory of the disruption of three-body systems—I. Low angular momentum. Mon. Not. R. Astron. Soc. 1976, 176, 63–72. [Google Scholar] [CrossRef]
- Monaghan, J.J. A statistical theory of the disruption of three-body systems—II. High angular momentum. Mon. Not. R. Astron. Soc. 1976, 177, 583–594. [Google Scholar] [CrossRef] [Green Version]
- Valtonen, M.; Karttunen, H. The Three-Body Problem; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Stone, N.C.; Leigh, N.W.C. A statistical solution to the chaotic, non-hierarchical three-body problem. Nature 2019, 576, 406–410. [Google Scholar] [CrossRef] [Green Version]
- Kol, B. Flux-based statistical prediction of three-body outcomes. Celest. Mech. Dyn. Astron. 2021, 133, 17. [Google Scholar] [CrossRef]
- Peters, P.C. Gravitational Radiation and the Motion of Two Point Masses. Phys. Rev. 1964, 136, 1224–1232. [Google Scholar] [CrossRef]
- Bae, Y.B.; Kim, C.; Lee, H.M. Compact binaries ejected from globular clusters as gravitational wave sources. Mon. Not. R. Astron. Soc. 2014, 440, 2714–2725. [Google Scholar] [CrossRef]
- Zevin, M.; Samsing, J.; Rodriguez, C.; Haster, C.J.; Ramirez-Ruiz, E. Eccentric Black Hole Mergers in Dense Star Clusters: The Role of Binary-Binary Encounters. Astrophys. J. 2019, 871, 91. [Google Scholar] [CrossRef] [Green Version]
- Lower, M.E.; Thrane, E.; Lasky, P.D.; Smith, R. Measuring eccentricity in binary black hole inspirals with gravitational waves. Phys. Rev. D 2018, 98, 083028. [Google Scholar] [CrossRef] [Green Version]
- Huerta, E.A.; Moore, C.J.; Kumar, P.; George, D.; Chua, A.J.; Haas, R.; Wessel, E.; Johnson, D.; Glennon, D.; Rebei, A.; et al. Eccentric, nonspinning, inspiral, Gaussian-process merger approximant for the detection and characterization of eccentric binary black hole mergers. Phys. Rev. D 2018, 97, 024031. [Google Scholar] [CrossRef] [Green Version]
- Samsing, J.; D’Orazio, D.J.; Kremer, K.; Rodriguez, C.L.; Askar, A. Single-single gravitational-wave captures in globular clusters: Eccentric deci-Hertz sources observable by DECIGO and Tian-Qin. Phys. Rev. D 2020, 101, 123010. [Google Scholar] [CrossRef]
- Hoang, B.M.; Naoz, S.; Kremer, K. Neutron Star-Black Hole Mergers from Gravitational-wave Captures. Astrophys. J. 2020, 903, 8. [Google Scholar] [CrossRef]
- Hamers, A.S. An Improved Numerical Fit to the Peak Harmonic Gravitational Wave Frequency Emitted by an Eccentric Binary. Res. Notes Am. Astron. Soc. 2021, 5, 275. [Google Scholar] [CrossRef]
- Safarzadeh, M.; Farr, W.M.; Ramirez-Ruiz, E. A Trend in the Effective Spin Distribution of LIGO Binary Black Holes with Mass. Astrophys. J. 2020, 894, 129. [Google Scholar] [CrossRef]
- Campanelli, M.; Lousto, C.; Zlochower, Y.; Merritt, D. Large Merger Recoils and Spin Flips from Generic Black Hole Binaries. Astrophys. J. 2007, 659, L5–L8. [Google Scholar] [CrossRef] [Green Version]
- Campanelli, M.; Lousto, C.O.; Zlochower, Y.; Merritt, D. Maximum Gravitational Recoil. Phys. Rev. Lett. 2007, 98, 231102. [Google Scholar] [CrossRef] [Green Version]
- Boyle, L.; Kesden, M.; Nissanke, S. Binary Black-Hole Merger: Symmetry and the Spin Expansion. Phys. Rev. Lett. 2008, 100, 151101. [Google Scholar] [CrossRef] [Green Version]
- Lousto, C.O.; Zlochower, Y. Modeling maximum astrophysical gravitational recoil velocities. Phys. Rev. D 2011, 83, 024003. [Google Scholar] [CrossRef] [Green Version]
- Lousto, C.O.; Zlochower, Y. Nonlinear gravitational recoil from the mergers of precessing black-hole binaries. Phys. Rev. D 2013, 87, 084027. [Google Scholar] [CrossRef] [Green Version]
- Lousto, C.O.; Zlochower, Y. Black hole binary remnant mass and spin: A new phenomenological formula. Phys. Rev. D 2014, 89, 104052. [Google Scholar] [CrossRef] [Green Version]
- Giersz, M.; Leigh, N.; Hypki, A.; Lützgendorf, N.; Askar, A. MOCCA code for star cluster simulations—IV. A new scenario for intermediate mass black hole formation in globular clusters. Mon. Not. R. Astron. Soc. 2015, 454, 3150–3165. [Google Scholar] [CrossRef]
- Antonini, F.; Gieles, M.; Gualandris, A. Black hole growth through hierarchical black hole mergers in dense star clusters: Implications for gravitational wave detections. Mon. Not. R. Astron. Soc. 2019, 486, 5008–5021. [Google Scholar] [CrossRef]
- Fragione, G.; Banerjee, S. Demographics of Neutron Stars in Young Massive and Open Clusters. Astrophys. J. 2020, 901, L16. [Google Scholar] [CrossRef]
- Mapelli, M.; Santoliquido, F.; Bouffanais, Y.; Arca Sedda, M.; Giacobbo, N.; Artale, M.C.; Ballone, A. Mass and rate of hierarchical black hole mergers in young, globular and nuclear star clusters. arXiv 2020, arXiv:2007.15022. [Google Scholar]
- Tokovinin, A. Comparative statistics and origin of triple and quadruple stars. Mon. Not. R. Astron. Soc. 2008, 389, 925–938. [Google Scholar] [CrossRef] [Green Version]
- Tokovinin, A. From Binaries to Multiples. I. Data on F and G Dwarfs within 67 pc of the Sun. Astron. J. 2014, 147, 86. [Google Scholar] [CrossRef] [Green Version]
- Tokovinin, A. From Binaries to Multiples. II. Hierarchical Multiplicity of F and G Dwarfs. Astron. J. 2014, 147, 87. [Google Scholar] [CrossRef] [Green Version]
- Tokovinin, A. The Updated Multiple Star Catalog. Astrophys. J. Suppl. Ser. 2018, 235, 6. [Google Scholar] [CrossRef] [Green Version]
- Duchêne, G.; Kraus, A. Stellar Multiplicity. Annu. Rev. Astron. Astrophys 2013, 51, 269–310. [Google Scholar] [CrossRef] [Green Version]
- Sana, H.; Le Bouquin, J.B.; Lacour, S.; Berger, J.P.; Duvert, G.; Gauchet, L.; Norris, B.; Olofsson, J.; Pickel, D.; Zins, G.; et al. Southern Massive Stars at High Angular Resolution: Observational Campaign and Companion Detection. Astrophys. J. Suppl. Ser. 2014, 215, 15. [Google Scholar] [CrossRef]
- Toonen, S.; Hamers, A.; Portegies Zwart, S. The evolution of hierarchical triple star-systems. Comput. Astrophys. Cosmol. 2016, 3, 6. [Google Scholar] [CrossRef] [Green Version]
- Lidov, M. The evolution of orbits of artificial satellites of planets under the action of gravitational perturbations of external bodies. Planet. Space Sci. 1962, 9, 719–759. [Google Scholar] [CrossRef]
- Kozai, Y. Secular perturbations of asteroids with high inclination and eccentricity. Astron. J. 1962, 67, 591–598. [Google Scholar] [CrossRef]
- Zeipel, H.V. Sur l’application des séries de M. Lindstedt à l’étude du mouvement des comètes périodiques. Astronom. Nachr. 1909, 183, 345–418. [Google Scholar] [CrossRef] [Green Version]
- Naoz, S. The Eccentric Kozai-Lidov Effect and Its Applications. Annu. Rev. Astron. Astrophys. 2016, 54, 441–489. [Google Scholar] [CrossRef] [Green Version]
- Shevchenko, I.I. The Lidov-Kozai Effect—Applications in Exoplanet Research and Dynamical Astronomy; Springer: Cham, Switzerland, 2017; Volume 441. [Google Scholar] [CrossRef]
- Ito, T.; Ohtsuka, K. The Lidov-Kozai Oscillation and Hugo von Zeipel. Monogr. Environ. Earth Planets 2019, 7, 1–113. [Google Scholar] [CrossRef] [Green Version]
- Hoang, B.M.; Naoz, S.; Kocsis, B.; Farr, W.M.; McIver, J. Detecting Supermassive Black Hole-induced Binary Eccentricity Oscillations with LISA. Astrophys. J. 2019, 875, L31. [Google Scholar] [CrossRef] [Green Version]
- Gupta, P.; Suzuki, H.; Okawa, H.; Maeda, K.i. Gravitational waves from hierarchical triple systems with Kozai-Lidov oscillation. Phys. Rev. D 2020, 101, 104053. [Google Scholar] [CrossRef]
- Arca-Sedda, M.; Rizzuto, F.P.; Naab, T.; Ostriker, J.; Giersz, M.; Spurzem, R. Breaching the Limit: Formation of GW190521-like and IMBH Mergers in Young Massive Clusters. Astrophys. J. 2021, 920, 128. [Google Scholar] [CrossRef]
- Gao, Y.; Toonen, S.; Grishin, E.; Comerford, T.; Kruckow, M.U. An empirical fit for viscoelastic simulations of tertiary tides. Mon. Not. R. Astron. Soc. 2020, 491, 264–271. [Google Scholar] [CrossRef] [Green Version]
- Glanz, H.; Perets, H.B. Simulations of common envelope evolution in triple systems: Circumstellar case. Mon. Not. R. Astron. Soc. 2021, 500, 1921–1932. [Google Scholar] [CrossRef]
- Toonen, S.; Portegies Zwart, S.; Hamers, A.S.; Bandopadhyay, D. The evolution of stellar triples. The most common evolutionary pathways. Astron. Astrophys. 2020, 640, A16. [Google Scholar] [CrossRef]
- Thompson, T.A. Accelerating Compact Object Mergers in Triple Systems with the Kozai Resonance: A Mechanism for “Prompt” Type Ia Supernovae, Gamma-Ray Bursts, and Other Exotica. Astrophys. J. 2011, 741, 82. [Google Scholar] [CrossRef] [Green Version]
- Antonini, F.; Toonen, S.; Hamers, A.S. Binary Black Hole Mergers from Field Triples: Properties, Rates, and the Impact of Stellar Evolution. Astrophys. J. 2017, 841, 77. [Google Scholar] [CrossRef]
- Antonini, F.; Chatterjee, S.; Rodriguez, C.L.; Morscher, M.; Pattabiraman, B.; Kalogera, V.; Rasio, F.A. Black Hole Mergers and Blue Stragglers from Hierarchical Triples Formed in Globular Clusters. Astrophys. J. 2016, 816, 65. [Google Scholar] [CrossRef] [Green Version]
- Grishin, E.; Perets, H.B.; Fragione, G. Quasi-secular evolution of mildly hierarchical triple systems: Analytics and applications for GW sources and hot Jupiters. Mon. Not. R. Astron. Soc. 2018, 481, 4907–4923. [Google Scholar] [CrossRef] [Green Version]
- Martinez, M.A.S.; Fragione, G.; Kremer, K.; Chatterjee, S.; Rodriguez, C.L.; Samsing, J.; Ye, C.S.; Weatherford, N.C.; Zevin, M.; Naoz, S.; et al. Black Hole Mergers from Hierarchical Triples in Dense Star Clusters. Astrophys. J. 2020, 903, 67. [Google Scholar] [CrossRef]
- Martinez, M.A.S.; Rodriguez, C.L.; Fragione, G. On the Mass Ratio Distribution of Black Hole Mergers in Triple Systems. arXiv 2021, arXiv:2105.01671. [Google Scholar]
- Silsbee, K.; Tremaine, S. Lidov-Kozai Cycles with Gravitational Radiation: Merging Black Holes in Isolated Triple Systems. Astrophys. J. 2017, 836, 39. [Google Scholar] [CrossRef] [Green Version]
- Toonen, S.; Perets, H.B.; Hamers, A.S. Rate of WD-WD head-on collisions in isolated triples is too low to explain standard type Ia supernovae. Astron. Astrophys. 2018, 610, A22. [Google Scholar] [CrossRef] [Green Version]
- Vigna-Gómez, A.; Toonen, S.; Ramirez-Ruiz, E.; Leigh, N.W.C.; Riley, J.; Haster, C.J. Massive Stellar Triples Leading to Sequential Binary Black Hole Mergers in the Field. Astrophys. J. 2021, 907, L19. [Google Scholar] [CrossRef]
- Antonini, F.; Perets, H.B. Secular Evolution of Compact Binaries near Massive Black Holes: Gravitational Wave Sources and Other Exotica. Astrophys. J. 2012, 757, 27. [Google Scholar] [CrossRef] [Green Version]
- VanLandingham, J.H.; Miller, M.C.; Hamilton, D.P.; Richardson, D.C. The Role of the Kozai–Lidov Mechanism in Black Hole Binary Mergers in Galactic Centers. Astrophys. J. 2016, 828, 77. [Google Scholar] [CrossRef] [Green Version]
- Fragione, G.; Grishin, E.; Leigh, N.W.C.; Perets, H.B.; Perna, R. Black hole and neutron star mergers in galactic nuclei. Mon. Not. R. Astron. Soc. 2019, 488, 47–63. [Google Scholar] [CrossRef]
- Hamers, A.S.; Bar-Or, B.; Petrovich, C.; Antonini, F. The Impact of Vector Resonant Relaxation on the Evolution of Binaries near a Massive Black Hole: Implications for Gravitational-wave Sources. Astrophys. J. 2018, 865, 2. [Google Scholar] [CrossRef]
- Hoang, B.M.; Naoz, S.; Kocsis, B.; Rasio, F.A.; Dosopoulou, F. Black Hole Mergers in Galactic Nuclei Induced by the Eccentric Kozai-Lidov Effect. Astrophys. J. 2018, 856, 140. [Google Scholar] [CrossRef]
- Trani, A.A. Do three-body encounters in galactic nuclei affect compact binary merger rates. In Star Clusters: From the Milky Way to the Early Universe; Bragaglia, A., Davies, M., Sills, A., Vesperini, E., Eds.; Cambridge University Press: Cambridge, UK, 2020; Volume 351, pp. 174–177. [Google Scholar] [CrossRef] [Green Version]
- Michaely, E. From Ultra-wide Binaries to Interacting Binaries in the Field. In Proceedings of the AAS/Division of Dynamical Astronomy Meeting, Boulder, CO, USA, 10–13 June 2019; Volume 51, p. 202.07. [Google Scholar]
- Michaely, E.; Perets, H.B. High rate of gravitational waves mergers from flyby perturbations of wide black hole triples in the field. Mon. Not. R. Astron. Soc. 2020, 498, 4924–4935. [Google Scholar] [CrossRef]
- Grishin, E.; Perets, H.B. Chaotic dynamics of wide triples induced by galactic tides: A novel channel for producing compact binaries, mergers, and collisions. Mon. Not. R. Astron. Soc. 2022, 512, 4993–5009. [Google Scholar] [CrossRef]
- Hamilton, C.; Rafikov, R.R. Compact Object Binary Mergers Driven By Cluster Tides: A New Channel for LIGO/Virgo Gravitational-wave Events. Astrophys. J. 2019, 881, L13. [Google Scholar] [CrossRef]
- Vynatheya, P.; Hamers, A.S. How Important Is Secular Evolution for Black Hole and Neutron Star Mergers in 2 + 2 and 3 + 1 Quadruple-star Systems? Astrophys. J. 2022, 926, 195. [Google Scholar] [CrossRef]
- Hamers, A.S.; Fragione, G.; Neunteufel, P.; Kocsis, B. First- and second-generation black hole and neutron star mergers in 2 + 2 quadruples: Population statistics. Mon. Not. R. Astron. Soc. 2021, 506, 5345–5360. [Google Scholar] [CrossRef]
- Liu, B.; Lai, D. Enhanced black hole mergers in binary-binary interactions. Mon. Not. R. Astron. Soc. 2019, 483, 4060–4069. [Google Scholar] [CrossRef] [Green Version]
- Rastello, S.; Mapelli, M.; Di Carlo, U.N.; Giacobbo, N.; Santoliquido, F.; Spera, M.; Ballone, A.; Iorio, G. Dynamics of black hole-neutron star binaries in young star clusters. Mon. Not. R. Astron. Soc. 2020, 497, 1563–1570. [Google Scholar] [CrossRef]
- Dobie, D.; Stewart, A.; Murphy, T.; Lenc, E.; Wang, Z.; Kaplan, D.L.; Andreoni, I.; Banfield, J.; Brown, I.; Corsi, A.; et al. An ASKAP Search for a Radio Counterpart to the First High-significance Neutron Star–Black Hole Merger LIGO/Virgo S190814bv. Astrophys. J. 2019, 887, L13. [Google Scholar] [CrossRef] [Green Version]
- Gomez, S.; Hosseinzadeh, G.; Cowperthwaite, P.S.; Villar, V.A.; Berger, E.; Gardner, T.; Alexander, K.D.; Blanchard, P.K.; Chornock, R.; Drout, M.R.; et al. A Galaxy-targeted Search for the Optical Counterpart of the Candidate NS–BH Merger S190814bv with Magellan. Astrophys. J. 2019, 884, L55. [Google Scholar] [CrossRef] [Green Version]
- Ackley, K.; Amati, L.; Barbieri, C.; Bauer, F.E.; Benetti, S.; Bernardini, M.G.; Bhirombhakdi, K.; Botticella, M.T.; Branchesi, M.; Brocato, E.; et al. Observational constraints on the optical and near-infrared emission from the neutron star-black hole binary merger candidate S190814bv. Astron. Astrophys. 2020, 643, A113. [Google Scholar] [CrossRef]
- Andreoni, I.; Goldstein, D.A.; Kasliwal, M.M.; Nugent, P.E.; Zhou, R.; Newman, J.A.; Bulla, M.; Foucart, F.; Hotokezaka, K.; Nakar, E.; et al. GROWTH on S190814bv: Deep Synoptic Limits on the Optical/Near-infrared Counterpart to a Neutron Star-Black Hole Merger. Astrophys. J. 2020, 890, 131. [Google Scholar] [CrossRef] [Green Version]
- Antier, S.; Agayeva, S.; Aivazyan, V.; Alishov, S.; Arbouch, E.; Baransky, A.; Barynova, K.; Bai, J.M.; Basa, S.; Beradze, S.; et al. The first six months of the Advanced LIGO’s and Advanced Virgo’s third observing run with GRANDMA. Mon. Not. R. Astron. Soc. 2020, 492, 3904–3927. [Google Scholar] [CrossRef]
- Gompertz, B.P.; Levan, A.J.; Tanvir, N.R. A Search for Neutron Star-Black Hole Binary Mergers in the Short Gamma-Ray Burst Population. Astrophys. J. 2020, 895, 58. [Google Scholar] [CrossRef]
- Morgan, R.; Soares-Santos, M.; Annis, J.; Herner, K.; Garcia, A.; Palmese, A.; Drlica-Wagner, A.; Kessler, R.; García-Bellido, J.; Bachmann, T.; et al. Constraints on the Physical Properties of GW190814 through Simulations Based on DECam Follow-up Observations by the Dark Energy Survey. Astrophys. J. 2020, 901, 83. [Google Scholar] [CrossRef]
- Page, K.L.; Evans, P.A.; Tohuvavohu, A.; Kennea, J.A.; Klingler, N.J.; Cenko, S.B.; Oates, S.R.; Ambrosi, E.; Barthelmy, S.D.; Beardmore, A.; et al. Swift-XRT follow-up of gravitational wave triggers during the third aLIGO/Virgo observing run. Mon. Not. R. Astron. Soc. 2020, 499, 3459–3480. [Google Scholar] [CrossRef]
- Thakur, A.L.; Dichiara, S.; Troja, E.; Chase, E.A.; Sánchez-Ramírez, R.; Piro, L.; Fryer, C.L.; Butler, N.R.; Watson, A.M.; Wollaeger, R.; et al. A search for optical and near-infrared counterparts of the compact binary merger GW190814. Mon. Not. R. Astron. Soc. 2020, 499, 3868–3883. [Google Scholar] [CrossRef]
- Vieira, N.; Ruan, J.J.; Haggard, D.; Drout, M.R.; Nynka, M.C.; Boyce, H.; Spekkens, K.; Safi-Harb, S.; Carlberg, R.G.; Fernández, R.; et al. A Deep CFHT Optical Search for a Counterpart to the Possible Neutron Star–Black Hole Merger GW190814. Astrophys. J. 2020, 895, 96. [Google Scholar] [CrossRef]
- Watson, A.M.; Butler, N.R.; Lee, W.H.; Becerra, R.L.; Pereyra, M.; Angeles, F.; Farah, A.; Figueroa, L.; Gónzalez-Buitrago, D.; Quirós, F.; et al. Limits on the electromagnetic counterpart to S190814bv. Mon. Not. R. Astron. Soc. 2020, 492, 5916–5921. [Google Scholar] [CrossRef] [Green Version]
- Essick, R.; Landry, P. Discriminating between Neutron Stars and Black Holes with Imperfect Knowledge of the Maximum Neutron Star Mass. Astrophys. J. 2020, 904, 80. [Google Scholar] [CrossRef]
- Lackey, B.D.; Wade, L. Reconstructing the neutron-star equation of state with gravitational-wave detectors from a realistic population of inspiralling binary neutron stars. Phys. Rev. D 2015, 91. [Google Scholar] [CrossRef] [Green Version]
- Malik, T.; Ferreira, M.; Agrawal, B.K.; Providência, C. Relativistic description of dense matter equation of state and compatibility with neutron star observables: A Bayesian approach. arXiv 2022, arXiv:2201.12552. [Google Scholar] [CrossRef]
- Antoniadis, J.; Freire, P.C.; Wex, N.; Tauris, T.M.; Lynch, R.S.; Van Kerkwijk, M.H.; Kramer, M.; Bassa, C.; Dhillon, V.S.; Driebe, T.; et al. A Massive Pulsar in a Compact Relativistic Binary. Science 2013, 340, 1233232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fonseca, E.; Cromartie, H.T.; Pennucci, T.T.; Ray, P.S.; Kirichenko, A.Y.; Ransom, S.M.; Demorest, P.B.; Stairs, I.H.; Arzoumanian, Z.; Guillemot, L.; et al. Refined Mass and Geometric Measurements of the High-mass PSR J0740 + 6620. Astrophys. J. Lett. 2021, 915, L12. [Google Scholar] [CrossRef]
- Romani, R.W.; Kandel, D.; Filippenko, A.V.; Brink, T.G.; Zheng, W. PSR J1810+1744: Companion Darkening and a Precise High Neutron Star Mass. Astrophys. J. Lett. 2021, 908, L46. [Google Scholar] [CrossRef]
- Annala, E.; Gorda, T.; Katerini, E.; Kurkela, A.; Nättilä, J.; Paschalidis, V.; Vuorinen, A. Multimessenger Constraints for Ultra-Dense Matter. Phys. Rev. X 2022, 12, 011058. [Google Scholar]
- Tews, I.; Pang, P.T.H.; Dietrich, T.; Coughlin, M.W.; Antier, S.; Bulla, M.; Heinzel, J.; Issa, L. On the Nature of GW190814 and Its Impact on the Understanding of Supranuclear Matter. Astrophys. J. 2021, 908, L1. [Google Scholar] [CrossRef]
- Fattoyev, F.J.; Horowitz, C.J.; Piekarewicz, J.; Reed, B. GW190814: Impact of a 2.6 solar mass neutron star on the nucleonic equations of state. Phys. Rev. C 2020, 102, 065805. [Google Scholar] [CrossRef]
- Dexheimer, V.; Gomes, R.O.; Klähn, T.; Han, S.; Salinas, M. GW190814 as a massive rapidly rotating neutron star with exotic degrees of freedom. Phys. Rev. C 2021, 103, 025808. [Google Scholar] [CrossRef]
- Tsokaros, A.; Ruiz, M.; Shapiro, S.L. GW190814: Spin and Equation of State of a Neutron Star Companion. Astrophys. J. 2020, 905, 48. [Google Scholar] [CrossRef]
- Nathanail, A.; Most, E.R.; Rezzolla, L. GW170817 and GW190814: Tension on the Maximum Mass. Astrophys. J. 2021, 908, L28. [Google Scholar] [CrossRef]
- Most, E.R.; Papenfort, L.J.; Weih, L.R.; Rezzolla, L. A lower bound on the maximum mass if the secondary in GW190814 was once a rapidly spinning neutron star. Mon. Not. R. Astron. Soc. 2020, 499, L82–L86. [Google Scholar] [CrossRef]
- Biswas, B.; Nandi, R.; Char, P.; Bose, S.; Stergioulas, N. GW190814: On the properties of the secondary component of the binary. Mon. Not. R. Astron. Soc. 2021, 505, 1600–1606. [Google Scholar] [CrossRef]
- Zhang, N.B.; Li, B.A. GW190814’s Secondary Component with Mass 2.50–2.67 M⊙ as a Superfast Pulsar. Astrophys. J. 2020, 902, 38. [Google Scholar] [CrossRef]
- Tan, H.; Noronha-Hostler, J.; Yunes, N. Neutron Star Equation of State in Light of GW190814. Phys. Rev. Lett. 2020, 125, 261104. [Google Scholar] [CrossRef] [PubMed]
- Godzieba, D.A.; Radice, D.; Bernuzzi, S. On the Maximum Mass of Neutron Stars and GW190814. Astrophys. J. 2021, 908, 122. [Google Scholar] [CrossRef]
- Wu, X.; Bao, S.; Shen, H.; Xu, R. Effect of the symmetry energy on the secondary component of GW190814 as a neutron star. Phys. Rev. C 2021, 104, 015802. [Google Scholar] [CrossRef]
- Huang, K.; Hu, J.; Zhang, Y.; Shen, H. The Possibility of the Secondary Object in GW190814 as a Neutron Star. Astrophys. J. 2020, 904, 39. [Google Scholar] [CrossRef]
- Kanakis-Pegios, A.; Koliogiannis, P.S.; Moustakidis, C.C. Probing the Nuclear Equation of State from the Existence of a ∼2.6 M⊙ Neutron Star: The GW190814 Puzzle. Symmetry 2021, 13, 183. [Google Scholar] [CrossRef]
- Astashenok, A.V.; Capozziello, S.; Odintsov, S.D.; Oikonomou, V.K. Extended gravity description for the GW190814 supermassive neutron star. Phys. Lett. B 2020, 811, 135910. [Google Scholar] [CrossRef]
- Zevin, M.; Spera, M.; Berry, C.P.L.; Kalogera, V. Exploring the Lower Mass Gap and Unequal Mass Regime in Compact Binary Evolution. Astrophys. J. 2020, 899, L1. [Google Scholar] [CrossRef]
- Broekgaarden, F.S.; Berger, E.; Neijssel, C.J.; Vigna-Gómez, A.; Chattopadhyay, D.; Stevenson, S.; Chruslinska, M.; Justham, S.; de Mink, S.E.; Mandel, I. Impact of Massive Binary Star and Cosmic Evolution on Gravitational Wave Observations I: Black Hole—Neutron Star Mergers. Mon. Not. R. Astron. Soc. 2021. [Google Scholar] [CrossRef]
- Olejak, A.; Fishbach, M.; Belczynski, K.; Holz, D.E.; Lasota, J.P.; Miller, M.C.; Bulik, T. The Origin of Inequality: Isolated Formation of a 30 + 10 M⊙ Binary Black Hole Merger. Astrophys. J. 2020, 901, L39. [Google Scholar] [CrossRef]
- Mandel, I.; Müller, B.; Riley, J.; de Mink, S.E.; Vigna-Gómez, A.; Chattopadhyay, D. Binary population synthesis with probabilistic remnant mass and kick prescriptions. Mon. Not. R. Astron. Soc. 2021, 500, 1380–1384. [Google Scholar] [CrossRef]
- Eldridge, J.J.; Stanway, E.R. BPASS predictions for binary black hole mergers. Mon. Not. R. Astron. Soc. 2016, 462, 3302–3313. [Google Scholar] [CrossRef] [Green Version]
- Eldridge, J.J.; Stanway, E.R.; Xiao, L.; McClelland, L.A.S.; Taylor, G.; Ng, M.; Greis, S.M.L.; Bray, J.C. Binary Population and Spectral Synthesis Version 2.1: Construction, Observational Verification, and New Results. Publ. Astron. Soc. Aust. 2017, 34, e058. [Google Scholar] [CrossRef] [Green Version]
- Lu, W.; Beniamini, P.; Bonnerot, C. On the formation of GW190814. Mon. Not. R. Astron. Soc. 2021, 500, 1817–1832. [Google Scholar] [CrossRef]
- Samsing, J.; Ilan, T. Double gravitational wave mergers. Mon. Not. R. Astron. Soc. 2019, 482, 30–39. [Google Scholar] [CrossRef]
- Cholis, I.; Kritos, K.; Garfinkle, D. Can Thorne-Żytkow Objects source GW190814-type events? arXiv 2021, arXiv:2106.07662. [Google Scholar] [CrossRef]
- Jiménez-Esteban, F.M.; Solano, E.; Rodrigo, C. A Catalog of Wide Binary and Multiple Systems of Bright Stars from Gaia-DR2 and the Virtual Observatory. Astron. J. 2019, 157, 78. [Google Scholar] [CrossRef] [Green Version]
- Duquennoy, A.; Mayor, M. Multiplicity among solar-type stars in the solar neighbourhood. II—Distribution of the orbital elements in an unbiased sample. Astron. Astrophys. 1991, 500, 337–376. [Google Scholar]
- Sana, H. The multiplicity of massive stars: A 2016 view. In The Lives and Death-Throes of Massive Stars; Proceedings of the International Astronomical Union; Eldridge, J.J., Bray, J.C., McClelland, L.A.S., Xiao, L., Eds.; Cambridge University Press: Cambridge, UK, 2017; Volume 329, pp. 110–117. [Google Scholar] [CrossRef] [Green Version]
- Gao, S.; Liu, C.; Zhang, X.; Justham, S.; Deng, L.; Yang, M. The Binarity of Milky Way F,G,K Stars as a Function of Effective Temperature And Metallicity. Astrophys. J. 2014, 788, L37. [Google Scholar] [CrossRef] [Green Version]
- Yuan, H.; Liu, X.; Xiang, M.; Huang, Y.; Chen, B.; Wu, Y.; Hou, Y.; Zhang, Y. Stellar Loci II. A Model-Free Estimate of the Binary Fraction for Field FGK Stars. Astrophys. J. 2015, 799, 135. [Google Scholar] [CrossRef] [Green Version]
- Moe, M.; Kratter, K.M.; Badenes, C. The Close Binary Fraction of Solar-type Stars Is Strongly Anticorrelated with Metallicity. Astrophys. J. 2019, 875, 61. [Google Scholar] [CrossRef]
- Thorne, K.S.; Zytkow, A.N. Red giants and supergiants with degenerate neutron cores. Astrophys. J. 1975, 199, L19–L24. [Google Scholar] [CrossRef]
- Safarzadeh, M.; Hamers, A.S.; Loeb, A.; Berger, E. Formation and Merging of Mass Gap Black Holes in Gravitational-wave Merger Events from Wide Hierarchical Quadruple Systems. Astrophys. J. 2020, 888, L3. [Google Scholar] [CrossRef]
- Fragione, G.; Loeb, A.; Rasio, F.A. Merging Black Holes in the Low-mass and High-mass Gaps from 2 + 2 Quadruple Systems. Astrophys. J. 2020, 895, L15. [Google Scholar] [CrossRef]
- Fragione, G.; Kocsis, B. Black hole mergers from quadruples. Mon. Not. R. Astron. Soc. 2019, 486, 4781–4789. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Lai, D. Hierarchical black hole mergers in multiple systems: Constrain the formation of GW190412-, GW190814-, and GW190521-like events. Mon. Not. R. Astron. Soc. 2021, 502, 2049–2064. [Google Scholar] [CrossRef]
- Sigurdsson, S.; Phinney, E.S. Dynamics and Interactions of Binaries and Neutron Stars in Globular Clusters. Astrophys. J. Suppl. Ser. 1995, 99, 609. [Google Scholar] [CrossRef] [Green Version]
- Fragione, G.; Kocsis, B. Black Hole Mergers from an Evolving Population of Globular Clusters. Phys. Rev. Lett. 2018, 121, 161103. [Google Scholar] [CrossRef] [Green Version]
- Clausen, D.; Sigurdsson, S.; Chernoff, D.F. Black hole-neutron star mergers in globular clusters. Mon. Not. R. Astron. Soc. 2013, 428, 3618–3629. [Google Scholar] [CrossRef]
- Clausen, D.; Sigurdsson, S.; Chernoff, D.F. Dynamically formed black hole + millisecond pulsar binaries in globular clusters. Mon. Not. R. Astron. Soc. 2014, 442, 207–219. [Google Scholar] [CrossRef] [Green Version]
- Devecchi, B.; Colpi, M.; Mapelli, M.; Possenti, A. Millisecond pulsars around intermediate-mass black holes in globular clusters. Mon. Not. R. Astron. Soc. 2007, 380, 691–702. [Google Scholar] [CrossRef] [Green Version]
- Ye, C.S.; Fong, W.F.; Kremer, K.; Rodriguez, C.L.; Chatterjee, S.; Fragione, G.; Rasio, F.A. On the Rate of Neutron Star Binary Mergers from Globular Clusters. Astrophys. J. 2020, 888, L10. [Google Scholar] [CrossRef] [Green Version]
- Kritos, K.; Cholis, I. Black holes merging with low mass gap objects inside globular clusters. Phys. Rev. D 2021, 104, 043004. [Google Scholar] [CrossRef]
- Arca Sedda, M. Dynamical Formation of the GW190814 Merger. Astrophys. J. 2021, 908, L38. [Google Scholar] [CrossRef]
- Arca Sedda, M. Dissecting the properties of neutron star-black hole mergers originating in dense star clusters. Commun. Phys. 2020, 3, 43. [Google Scholar] [CrossRef] [Green Version]
- Santoliquido, F.; Mapelli, M.; Bouffanais, Y.; Giacobbo, N.; Di Carlo, U.N.; Rastello, S.; Artale, M.C.; Ballone, A. The Cosmic Merger Rate Density Evolution of Compact Binaries Formed in Young Star Clusters and in Isolated Binaries. Astrophys. J. 2020, 898, 152. [Google Scholar] [CrossRef]
- Tagawa, H.; Kocsis, B.; Haiman, Z.; Bartos, I.; Omukai, K.; Samsing, J. Mass-gap Mergers in Active Galactic Nuclei. Astrophys. J. 2021, 908, 194. [Google Scholar] [CrossRef]
- Yang, Y.; Gayathri, V.; Bartos, I.; Haiman, Z.; Safarzadeh, M.; Tagawa, H. Black Hole Formation in the Lower Mass Gap through Mergers and Accretion in AGN Disks. Astrophys. J. 2020, 901, L34. [Google Scholar] [CrossRef]
- Bombaci, I.; Drago, A.; Logoteta, D.; Pagliara, G.; Vidaña, I. Was GW190814 a Black Hole–Strange Quark Star System? Phys. Rev. Lett. 2021, 126, 162702. [Google Scholar] [CrossRef] [PubMed]
- Jedamzik, K. Consistency of Primordial Black Hole Dark Matter with LIGO/Virgo Merger Rates. Phys. Rev. Lett. 2021, 126, 051302. [Google Scholar] [CrossRef] [PubMed]
- Vattis, K.; Goldstein, I.S.; Koushiappas, S.M. Could the 2.6 M⊙ object in GW190814 be a primordial black hole? Phys. Rev. D 2020, 102, 061301. [Google Scholar] [CrossRef]
- Carr, B.; Clesse, S.; García-Bellido, J.; Kühnel, F. Cosmic conundra explained by thermal history and primordial black holes. Phys. Dark Universe 2021, 31, 100755. [Google Scholar] [CrossRef]
- Clesse, S.; Garcia-Bellido, J. GW190425, GW190521 and GW190814: Three candidate mergers of primordial black holes from the QCD epoch. arXiv 2020, arXiv:2007.06481. [Google Scholar]
- Romero-Shaw, I.; Lasky, P.D.; Thrane, E.; Calderón Bustillo, J. GW190521: Orbital Eccentricity and Signatures of Dynamical Formation in a Binary Black Hole Merger Signal. Astrophys. J. 2020, 903, L5. [Google Scholar] [CrossRef]
- Gayathri, V.; Healy, J.; Lange, J.; O’Brien, B.; Szczepanczyk, M.; Bartos, I.; Campanelli, M.; Klimenko, S.; Lousto, C.; O’Shaughnessy, R. GW190521 as a Highly Eccentric Black Hole Merger. arXiv 2020, arXiv:2009.05461. [Google Scholar]
- Holgado, A.M.; Ortega, A.; Rodriguez, C.L. Dynamical Formation Scenarios for GW190521 and Prospects for Decihertz Gravitational-wave Astronomy with GW190521-like Binaries. Astrophys. J. 2021, 909, L24. [Google Scholar] [CrossRef]
- Nitz, A.H.; Capano, C.D. GW190521 May Be an Intermediate-mass Ratio Inspiral. Astrophys. J. 2021, 907, L9. [Google Scholar] [CrossRef]
- Fragione, G.; Loeb, A.; Rasio, F.A. On the Origin of GW190521-like Events from Repeated Black Hole Mergers in Star Clusters. Astrophys. J. 2020, 902, L26. [Google Scholar] [CrossRef]
- Fragione, G.; Kocsis, B.; Rasio, F.A.; Silk, J. Repeated mergers, mass-gap black holes, and formation of intermediate-mass black holes in nuclear star clusters. arXiv 2021, arXiv:2107.04639. [Google Scholar]
- Mapelli, M.; Santoliquido, F.; Bouffanais, Y.; Arca Sedda, M.A.; Artale, M.C.; Ballone, A. Mass and Rate of Hierarchical Black Hole Mergers in Young, Globular and Nuclear Star Clusters. Symmetry 2021, 13, 1678. [Google Scholar] [CrossRef]
- Baibhav, V.; Berti, E.; Gerosa, D.; Mould, M.; Wong, K.W.K. Looking for the parents of LIGO’s black holes. Phys. Rev. D 2021, 104, 084002. [Google Scholar] [CrossRef]
- Anagnostou, O.; Trenti, M.; Melatos, A. Hierarchical Formation Of An Intermediate Mass Black Hole Via Seven Mergers: Implications For GW190521. arXiv 2020, arXiv:2010.06161. [Google Scholar]
- Kimball, C.; Talbot, C.; Berry, C.P.L.; Zevin, M.; Thrane, E.; Kalogera, V.; Buscicchio, R.; Carney, M.; Dent, T.; Middleton, H.; et al. Evidence for Hierarchical Black Hole Mergers in the Second LIGO-Virgo Gravitational Wave Catalog. Astrophys. J. 2021, 915, L35. [Google Scholar] [CrossRef]
- Fragione, G.; Banerjee, S. Binary Black Hole Mergers from Young Massive and Open Clusters: Comparison to GWTC-2 Gravitational Wave Data. Astrophys. J. 2021, 913, L29. [Google Scholar] [CrossRef]
- Di Carlo, U.N.; Mapelli, M.; Pasquato, M.; Rastello, S.; Ballone, A.; Dall’Amico, M.; Giacobbo, N.; Iorio, G.; Spera, M.; Torniamenti, S.; et al. Intermediate-mass black holes from stellar mergers in young star clusters. Mon. Not. R. Astron. Soc. 2021, 507, 5132–5143. [Google Scholar] [CrossRef]
- Dall’Amico, M.; Mapelli, M.; Di Carlo, U.N.; Bouffanais, Y.; Rastello, S.; Santoliquido, F.; Ballone, A.; Arca Sedda, M. GW190521 formation via three-body encounters in young massive star clusters. Mon. Not. R. Astron. Soc. 2021, 508, 3045–3054. [Google Scholar] [CrossRef]
- González, E.; Kremer, K.; Chatterjee, S.; Fragione, G.; Rodriguez, C.L.; Weatherford, N.C.; Ye, C.S.; Rasio, F.A. Intermediate-mass Black Holes from High Massive-star Binary Fractions in Young Star Clusters. Astrophys. J. 2021, 908, L29. [Google Scholar] [CrossRef]
- Palmese, A.; Conselice, C.J. GW190521 from the Merger of Ultradwarf Galaxies. Phys. Rev. Lett. 2021, 126, 181103. [Google Scholar] [CrossRef]
- Reines, A.E.; Volonteri, M. Relations between Central Black Hole Mass and Total Galaxy Stellar Mass in the Local Universe. Astrophys. J. 2015, 813, 82. [Google Scholar] [CrossRef] [Green Version]
- McKernan, B.; Ford, K.E.S.; Bartos, I.; Graham, M.J.; Lyra, W.; Marka, S.; Marka, Z.; Ross, N.P.; Stern, D.; Yang, Y. Ram-pressure Stripping of a Kicked Hill Sphere: Prompt Electromagnetic Emission from the Merger of Stellar Mass Black Holes in an AGN Accretion Disk. Astrophys. J. 2019, 884, L50. [Google Scholar] [CrossRef]
- Ashton, G.; Ackley, K.; Hernandez, I.M.; Piotrzkowski, B. Current observations are insufficient to confidently associate the binary black hole merger GW190521 with AGN J124942.3 + 344929. Class. Quantum Gravity 2021, 38, 235004. [Google Scholar] [CrossRef]
- Graham, M.J.; Ford, K.E.S.; McKernan, B.; Ross, N.P.; Stern, D.; Burdge, K.; Coughlin, M.; Djorgovski, S.G.; Drake, A.J.; Duev, D.; et al. Candidate Electromagnetic Counterpart to the Binary Black Hole Merger Gravitational-Wave Event S190521g. Phys. Rev. Lett. 2020, 124, 251102. [Google Scholar] [CrossRef] [PubMed]
- Palmese, A.; Fishbach, M.; Burke, C.J.; Annis, J.; Liu, X. Do LIGO/Virgo Black Hole Mergers Produce AGN Flares? The Case of GW190521 and Prospects for Reaching a Confident Association. Astrophys. J. 2021, 914, L34. [Google Scholar] [CrossRef]
- Kinugawa, T.; Nakamura, T.; Nakano, H. Formation of binary black holes similar to GW190521 with a total mass of ∼150 M⊙ from Population III binary star evolution. Mon. Not. R. Astron. Soc. 2021, 501, L49–L53. [Google Scholar] [CrossRef]
- Liu, B.; Meynet, G.; Bromm, V. Dynamical evolution of population III stellar systems and the resulting binary statistics. Mon. Not. R. Astron. Soc. 2021, 501, 643–663. [Google Scholar] [CrossRef]
- Rice, J.R.; Zhang, B. Growth of Stellar-mass Black Holes in Dense Molecular Clouds and GW190521. Astrophys. J. 2021, 908, 59. [Google Scholar] [CrossRef]
- De Luca, V.; Desjacques, V.; Franciolini, G.; Pani, P.; Riotto, A. GW190521 Mass Gap Event and the Primordial Black Hole Scenario. Phys. Rev. Lett. 2021, 126, 051101. [Google Scholar] [CrossRef]
- Yang, Y. Influences of accreting primordial black holes on the global 21 cm signal in the dark ages. Mon. Not. R. Astron. Soc. 2021, 508, 5709–5715. [Google Scholar] [CrossRef]
- Cruz-Osorio, A.; Lora-Clavijo, F.D.; Herdeiro, C. GW190521 formation scenarios via relativistic accretion. J. Cosmol. Astropart. Phys. 2021, 2021, 032. [Google Scholar] [CrossRef]
- Kritos, K.; De Luca, V.; Franciolini, G.; Kehagias, A.; Riotto, A. The astro-primordial black hole merger rates: A reappraisal. J. Cosmol. Astropart. Phys. 2021, 2021, 039. [Google Scholar] [CrossRef]
- Bustillo, J.C.; Sanchis-Gual, N.; Torres-Forné, A.; Font, J.A.; Vajpeyi, A.; Smith, R.; Herdeiro, C.; Radu, E.; Leong, S.H.W. GW190521 as a Merger of Proca Stars: A Potential New Vector Boson of 8.7 × 10−13 eV. Phys. Rev. Lett. 2021, 126, 081101. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, J.; Freese, K. Filling the black hole mass gap: Avoiding pair instability in massive stars through addition of nonnuclear energy. Phys. Rev. D 2021, 104, 043015. [Google Scholar] [CrossRef]
- Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; Agathos, M.; et al. GW190412: Observation of a binary-black-hole coalescence with asymmetric masses. Phys. Rev. D 2020, 102, 043015. [Google Scholar] [CrossRef]
- Mandel, I.; Fragos, T. An Alternative Interpretation of GW190412 as a Binary Black Hole Merger with a Rapidly Spinning Secondary. Astrophys. J. 2020, 895, L28. [Google Scholar] [CrossRef]
- Zevin, M.; Berry, C.P.L.; Coughlin, S.; Chatziioannou, K.; Vitale, S. You Can’t Always Get What You Want: The Impact of Prior Assumptions on Interpreting GW190412. Astrophys. J. 2020, 899, L17. [Google Scholar] [CrossRef]
- Riley, J.; Mandel, I.; Marchant, P.; Butler, E.; Nathaniel, K.; Neijssel, C.; Shortt, S.; Vigna-Gómez, A. Chemically homogeneous evolution: A rapid population synthesis approach. Mon. Not. R. Astron. Soc. 2021, 505, 663–676. [Google Scholar] [CrossRef]
- Rodriguez, C.L.; Kremer, K.; Grudić, M.Y.; Hafen, Z.; Chatterjee, S.; Fragione, G.; Lamberts, A.; Martinez, M.A.S.; Rasio, F.A.; Weatherford, N.; et al. GW190412 as a Third-generation Black Hole Merger from a Super Star Cluster. Astrophys. J. 2020, 896, L10. [Google Scholar] [CrossRef]
- Gerosa, D.; Vitale, S.; Berti, E. Astrophysical Implications of GW190412 as a Remnant of a Previous Black-Hole Merger. Phys. Rev. Lett. 2020, 125, 101103. [Google Scholar] [CrossRef]
- Miller, M.C.; Lauburg, V.M. Mergers of Stellar-Mass Black Holes in Nuclear Star Clusters. Astrophys. J. 2009, 692, 917–923. [Google Scholar] [CrossRef]
- Kimball, C.; Talbot, C.; Berry, C.P.L.; Carney, M.; Zevin, M.; Thrane, E.; Kalogera, V. Black Hole Genealogy: Identifying Hierarchical Mergers with Gravitational Waves. Astrophys. J. 2020, 900, 177. [Google Scholar] [CrossRef]
- Hamers, A.S.; Safarzadeh, M. Was GW190412 Born from a Hierarchical 3 + 1 Quadruple Configuration? Astrophys. J. 2020, 898, 99. [Google Scholar] [CrossRef]
- Mandel, I.; Smith, R.J.E. GW200115: A Nonspinning Black Hole-Neutron Star Merger. Astrophys. J. 2021, 922, L14. [Google Scholar] [CrossRef]
- Fragione, G. Black-hole-Neutron-star Mergers Are Unlikely Multimessenger Sources. Astrophys. J. 2021, 923, L2. [Google Scholar] [CrossRef]
- Hu, R.C.; Zhu, J.P.; Qin, Y.; Zhang, B.; Liang, E.W.; Shao, Y. A Channel to Form Fast-spinning Black Hole–Neutron Star Binary Mergers as Multi-messenger Sources. arXiv 2022, arXiv:2201.09549. [Google Scholar]
- D’Orazio, D.J.; Haiman, Z.; Levin, J.; Samsing, J.; Vigna-Gomez, A. Multi-Messenger Constraints on Magnetic Fields in Merging Black Hole-Neutron Star Binaries. arXiv 2021, arXiv:2112.01979. [Google Scholar]
- Sipior, M.S.; Sigurdsson, S. Nova Scorpii and Coalescing Low-Mass Black Hole Binaries as LIGO Sources. Astrophys. J. 2002, 572, 962–970. [Google Scholar] [CrossRef]
- Belczynski, K.; Perna, R.; Bulik, T.; Kalogera, V.; Ivanova, N.; Lamb, D.Q. A Study of Compact Object Mergers as Short Gamma-Ray Burst Progenitors. Astrophys. J. 2006, 648, 1110–1116. [Google Scholar] [CrossRef] [Green Version]
- Belczynski, K.; Repetto, S.; Holz, D.E.; O’Shaughnessy, R.; Bulik, T.; Berti, E.; Fryer, C.; Dominik, M. Compact Binary Merger Rates: Comparison with LIGO/Virgo Upper Limits. Astrophys. J. 2016, 819, 108. [Google Scholar] [CrossRef] [Green Version]
- Santoliquido, F.; Mapelli, M.; Giacobbo, N.; Bouffanais, Y.; Artale, M.C. The cosmic merger rate density of compact objects: Impact of star formation, metallicity, initial mass function, and binary evolution. Mon. Not. R. Astron. Soc. 2021, 502, 4877–4889. [Google Scholar] [CrossRef]
- Broekgaarden, F.S.; Berger, E. Formation of the First Two Black Hole-Neutron Star Mergers (GW200115 and GW200105) from Isolated Binary Evolution. Astrophys. J. 2021, 920, L13. [Google Scholar] [CrossRef]
- Kinugawa, T.; Nakamura, T.; Nakano, H. Neutron star black hole binaries in LIGO/Virgo O3b run were formed from Population I/II binaries. arXiv 2022, arXiv:2201.06713. [Google Scholar]
- Belczynski, K.; Romagnolo, A.; Olejak, A.; Klencki, J.; Chattopadhyay, D.; Stevenson, S.; Coleman Miller, M.; Lasota, J.P.; Crowther, P.A. The Uncertain Future of Massive Binaries Obscures the Origin of LIGO/Virgo Sources. Astrophys. J. 2022, 925, 69. [Google Scholar] [CrossRef]
- Zhu, J.P.; Wu, S.; Qin, Y.; Zhang, B.; Gao, H.; Cao, Z. Population Properties of Gravitational-Wave Neutron Star–Black Hole Mergers. arXiv 2021, arXiv:2112.02605. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Rev. Relativ. 2018, 21, 3. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spera, M.; Trani, A.A.; Mencagli, M. Compact Binary Coalescences: Astrophysical Processes and Lessons Learned. Galaxies 2022, 10, 76. https://doi.org/10.3390/galaxies10040076
Spera M, Trani AA, Mencagli M. Compact Binary Coalescences: Astrophysical Processes and Lessons Learned. Galaxies. 2022; 10(4):76. https://doi.org/10.3390/galaxies10040076
Chicago/Turabian StyleSpera, Mario, Alessandro Alberto Trani, and Mattia Mencagli. 2022. "Compact Binary Coalescences: Astrophysical Processes and Lessons Learned" Galaxies 10, no. 4: 76. https://doi.org/10.3390/galaxies10040076
APA StyleSpera, M., Trani, A. A., & Mencagli, M. (2022). Compact Binary Coalescences: Astrophysical Processes and Lessons Learned. Galaxies, 10(4), 76. https://doi.org/10.3390/galaxies10040076