Two Dimensional Clustering of Swift/BAT and Fermi/GBM Gamma-ray Bursts
Abstract
:1. Introduction
Study | Method | Parameters | Components |
---|---|---|---|
BATSE | |||
Horváth [27] | Fit (Gaussian) | T | 3 |
Mukherjee et al. [41] | Clustering (Hierarchical) | T, HR, PF, S | 3 |
Hakkila et al. [48] | Supervised pattern recognition | T, HR, PF, S, E, , | 2 |
Balastegui et al. [47] | Clustering (Hierarchical), PCA, Neural Network | T, PF, S | 3 |
Horváth [60] | Fit (log-normal) | T | 3 |
Rajaniemi and Mähönen [50] | Self-Organising Maps | T, HR, S | 2 |
Hakkila et al. [49] | Clustering (k-means), Neural Network | T, HR, S | 2 |
Chattopadhyay et al. [42] | Clustering (k-means, Dirichlet mixture) | T, HR, PF, S | 3 |
Zitouni et al. [32] | Fit (Gaussian) | T | 2 |
Zhang et al. [61] | Fit (Gaussian) | T | 2 |
Bhave et al. [54] | Clustering (Gaussian Mixture-Model) | T, HR | 2 |
Chattopadhyay and Maitra [44] | Clustering (k-means, Gaussian Mixture-Model) | T, HR, PF, S | 5 |
Swift | |||
Kulkarni and Desai [35] | Fit (log-normal) | T | 2 |
Chattopadhyay and Maitra [45] | Clustering (Ellipsoidal Gaussian, t-mixture) | T, PF, S | 5 |
Tarnopolski [51] | Fit (Skewed bi-variate) | T, HR | 2 |
Tarnopolski [52] | Fit (Skewed bi-variate) | T, HR | 2 |
Tóth et al. [46] | Clustering (Gaussian Mixture-Model) | T, HR, PF, S | 5 |
Modak [43] | Clustering (Fuzzy) | T, HR, PF, S | 3 |
Horváth et al. [62] | Fit (log-normal) | T | 3 |
Zhang and Choi [63] | Fit (log-normal) | T | 2 |
Zhang and Choi [63] * | Fit (log-normal) | T | 2 |
Huja et al. [30] | Fit (Gaussian) | T | 3 |
Huja et al. [30] * | Fit (Gaussian) | T | 1 |
Horváth et al. [64] | Fit (Gaussian) | T, HR | 3 |
Veres et al. [53] | Clustering (Hierarchical, k-means) | T, HR | 3 |
Koen and Bere [31] | Clustering (Gaussian) | T, HR | 3 |
Tsutsui and Shigeyama [55] | Clustering (Gaussian) | Light curve shape indicators | 3 |
Zitouni et al. [32] | Fit (Gaussian) | T | 3 |
Zitouni et al. [32] * | Fit (Gaussian) | T | 3 |
Horváth and Tóth [33] | Fit (log-normal) | T | 3 |
Tarnopolski [34] | Fit (Skew-normal) | T | 3 |
Tarnopolski [34] * | Fit (Skew-normal) | T | 1 |
Yang et al. [65] * | Clustering (Gaussian Mixture-Model) | T, HR | 2 |
Zhang et al. [61] | Fit (Gaussian) | T | 3 |
Zhang et al. [61] * | Fit (Gaussian) | T | 2 |
Bhave et al. [54] | Clustering (Gaussian Mixture-Model) | T, HR | 3 |
Bhave et al. [54] * | Clustering (Gaussian Mixture-Model) | T, HR | 3 |
Kulkarni and Desai [35] | Fit (log-normal) | T | 3 |
Kulkarni and Desai [35] * | Fit (log-normal) | T | 2 |
Fermi | |||
Zhang et al. [61] | Fit (Gaussian) | T | 2 |
Bhave et al. [54] | Clustering (Gaussian Mixture-Model) | T, HR | 2 |
Kulkarni and Desai [35] | Fit (log-normal) | T | 2 |
Acuner and Ryde [57] | Clustering (Gaussian Mixture-Model) | T, S, E, , | 5 |
Horváth et al. [56] | Clustering (Gaussian Mixture-Model) | T, HR | 3 |
Zitouni et al. [66] | Fit (Gaussian) | T | 2 |
Zitouni et al. [66] * | Fit (Gaussian) | T | 2 |
Horváth et al. [58] | Principal Component Analysis | T, PF, S, E, , | 3 |
Tarnopolski [51] | Fit (skewed bivariate) | T, HR | 2 |
BeppoSAX | |||
Horváth [28] | Fit (log-normal) | T | 3 |
Kulkarni and Desai [35] | Fit (log-normal) | T | 2 |
RHESSI | |||
Řípa et al. [29] | Fit (log-normal) | T | 2 |
Řípa et al. [29] | Fit (log-normal) | T, HR | 3 |
Řípa et al. [67] | Clustering (Gaussian Mixture-Model, k-means) | T, HR | 3 |
INTEGRAL | |||
Minaev et al. [68] | Fit (log-normal) | T | 2 |
Konus-Wind | |||
Svinkin et al. [69] | Fit (log-normal) | T | 2 |
Svinkin et al. [69] | Clustering (Gaussian Mixture Model) | T, HR | 3 |
Multiple samples | |||
Minaev and Pozanenko [70] * | Fit (Skew-normal) | T, E, E | 2 |
2. Datasets and Data Preparation
2.1. Swift/BAT
2.2. Fermi/GBM
3. Clustering Methods
3.1. GMM Clustering
3.2. Combination of Gaussian Components
4. Results
4.1. Swift/BAT
4.2. Fermi/GBM
5. Discussion
5.1. Swift/BAT
5.2. Fermi/GBM
5.3. Comparison to GRB Subclasses
5.4. Selection Effects
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | https://swift.gsfc.nasa.gov/results/batgrbcat/, (accessed on 16 June 2022). |
References
- Kouveliotou, C.; Meegan, C.A.; Fishman, G.J.; Bhat, N.P.; Briggs, M.S.; Koshut, T.M.; Paciesas, W.S.; Pendleton, G.N. Identification of Two Classes of Gamma-ray Bursts. Astrophys. J. 1993, 413, L101. [Google Scholar] [CrossRef]
- Perley, D.A.; Niino, Y.; Tanvir, N.R.; Vergani, S.D.; Fynbo, J.P.U. Long-Duration Gamma-ray Burst Host Galaxies in Emission and Absorption. Space Sci. Rev. 2016, 202, 111–142. [Google Scholar] [CrossRef] [Green Version]
- Galama, T.J.; Vreeswijk, P.M.; van Paradijs, J.; Kouveliotou, C.; Augusteijn, T.; Böhnhardt, H.; Brewer, J.P.; Doublier, V.; Gonzalez, J.F.; Leibundgut, B.; et al. An unusual supernova in the error box of the γ-ray burst of 25 April 1998. Nature 1998, 395, 670–672. [Google Scholar] [CrossRef]
- Woosley, S.E.; Bloom, J.S. The Supernova Gamma-ray Burst Connection. Annu. Rev. Astron. Astrophys. 2006, 44, 507–556. [Google Scholar] [CrossRef] [Green Version]
- Cano, Z.; Wang, S.Q.; Dai, Z.G.; Wu, X.F. The Observer’s Guide to the Gamma-ray Burst Supernova Connection. Adv. Astron. 2017, 2017, 8929054. [Google Scholar] [CrossRef]
- MacFadyen, A.I.; Woosley, S.E. Collapsars: Gamma-ray Bursts and Explosions in “Failed Supernovae”. Astrophys. J. 1999, 524, 262–289. [Google Scholar] [CrossRef] [Green Version]
- Eichler, D.; Livio, M.; Piran, T.; Schramm, D.N. Nucleosynthesis, neutrino bursts and γ-rays from coalescing neutron stars. Nature 1989, 340, 126–128. [Google Scholar] [CrossRef]
- Narayan, R.; Paczynski, B.; Piran, T. Gamma-ray Bursts as the Death Throes of Massive Binary Stars. Astrophys. J. 1992, 395, L83. [Google Scholar] [CrossRef] [Green Version]
- Berger, E. A Short Gamma-ray Burst “No-host” Problem? Investigating Large Progenitor Offsets for Short GRBs with Optical Afterglows. Astrophys. J. 2010, 722, 1946–1961. [Google Scholar] [CrossRef] [Green Version]
- Tunnicliffe, R.L.; Levan, A.J.; Tanvir, N.R.; Rowlinson, A.; Perley, D.A.; Bloom, J.S.; Cenko, S.B.; O’Brien, P.T.; Cobb, B.E.; Wiersema, K.; et al. On the nature of the ‘hostless’ short GRBs. Mon. Not. R. Astron. Soc. 2014, 437, 1495–1510. [Google Scholar] [CrossRef] [Green Version]
- Berger, E. Short-Duration Gamma-ray Bursts. Annu. Rev. Astron. Astrophys. 2014, 52, 43–105. [Google Scholar] [CrossRef] [Green Version]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. Multi-messenger Observations of a Binary Neutron Star Merger. Astrophys. J. 2017, 848, L12. [Google Scholar] [CrossRef]
- Goldstein, A.; Veres, P.; Burns, E.; Briggs, M.S.; Hamburg, R.; Kocevski, D.; Wilson-Hodge, C.A.; Preece, R.D.; Poolakkil, S.; Roberts, O.J.; et al. An Ordinary Short Gamma-ray Burst with Extraordinary Implications: Fermi-GBM Detection of GRB 170817A. Astrophys. J. 2017, 848, L14. [Google Scholar] [CrossRef] [Green Version]
- Savchenko, V.; Ferrigno, C.; Kuulkers, E.; Bazzano, A.; Bozzo, E.; Brandt, S.; Chenevez, J.; Courvoisier, T.L.; Diehl, R.; Domingo, A.; et al. INTEGRAL detection of the first prompt gamma-ray signal coincident with the gravitational-wave event GW170817. Astrophys. J. 2017, 848, L15. [Google Scholar] [CrossRef] [Green Version]
- Qin, B.; Wu, X.P.; Chu, M.C.; Fang, L.Z.; Hu, J.Y. The Collapse of Neutron Stars in High-Mass Binaries as the Energy Source for the Gamma-ray Bursts. Astrophys. J. 1998, 494, L57–L59. [Google Scholar] [CrossRef] [Green Version]
- Levan, A.J.; Wynn, G.A.; Chapman, R.; Davies, M.B.; King, A.R.; Priddey, R.S.; Tanvir, N.R. Short gamma-ray bursts in old populations: Magnetars from white dwarf-white dwarf mergers. Mon. Not. R. Astron. Soc. Lett. 2006, 368, L1–L5. [Google Scholar] [CrossRef] [Green Version]
- Metzger, B.D.; Quataert, E.; Thompson, T.A. Short-duration gamma-ray bursts with extended emission from protomagnetar spin-down. Mon. Not. R. Astron. Soc. Lett. 2008, 385, 1455–1460. [Google Scholar] [CrossRef] [Green Version]
- Ahumada, T.; Singer, L.P.; Anand, S.; Coughlin, M.W.; Kasliwal, M.M.; Ryan, G.; Andreoni, I.; Cenko, S.B.; Fremling, C.; Kumar, H.; et al. Discovery and confirmation of the shortest gamma ray burst from a collapsar. arXiv 2021, arXiv:2105.05067. [Google Scholar] [CrossRef]
- Rossi, A.; Rothberg, B.; Palazzi, E.; Kann, D.A.; D’Avanzo, P.; Klose, S.; Perego, A.; Pian, E.; Savaglio, S.; Stratta, G.; et al. The peculiar short-duration GRB 200826A and its supernova. arXiv 2021, arXiv:2105.03829. [Google Scholar] [CrossRef]
- Zhang, B.B.; Liu, Z.K.; Peng, Z.K.; Li, Y.; Lü, H.J.; Yang, J.; Yang, Y.S.; Yang, Y.H.; Meng, Y.Z.; Zou, J.H.; et al. A Peculiarly Short-duration Gamma-ray Burst from Massive Star Core Collapse. arXiv 2021, arXiv:2105.05021. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, B.B.; Liang, E.W.; Gehrels, N.; Burrows, D.N.; Mészáros, P. Making a Short Gamma-ray Burst from a Long One: Implications for the Nature of GRB 060614. Astrophys. J. 2007, 655, L25–L28. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Zhang, B.B.; Virgili, F.J.; Liang, E.W.; Kann, D.A.; Wu, X.F.; Proga, D.; Lv, H.J.; Toma, K.; Mészáros, P.; et al. Discerning the Physical Origins of Cosmological Gamma-ray Bursts Based on Multiple Observational Criteria: The Cases of z = 6.7 GRB 080913, z = 8.2 GRB 090423, and Some Short/Hard GRBs. Astrophys. J. 2009, 703, 1696–1724. [Google Scholar] [CrossRef] [Green Version]
- Hjorth, J.; Bloom, J.S. The Gamma-ray Burst—Supernova Connection. In Gamma-Ray Bursts; Cambridge University Press: Cambridge, MA, USA, 2012; Chapter 9; pp. 169–190. [Google Scholar]
- Li, Y.; Zhang, B.; Yuan, Q. A Comparative Study of Long and Short GRBs. II. A Multiwavelength Method to Distinguish Type II (Massive Star) and Type I (Compact Star) GRBs. Astrophys. J. 2020, 897, 154. [Google Scholar] [CrossRef]
- Lü, H.J.; Liang, E.W.; Zhang, B.B.; Zhang, B. A New Classification Method for Gamma-ray Bursts. Astrophys. J. 2010, 725, 1965–1970. [Google Scholar] [CrossRef] [Green Version]
- Donaghy, T.Q.; Lamb, D.Q.; Sakamoto, T.; Norris, J.P.; Nakagawa, Y.; Villasenor, J.; Atteia, J.L.; Vanderspek, R.; Graziani, C.; Kawai, N.; et al. HETE-2 Localizations and Observations of Four Short Gamma-ray Bursts: GRBs 010326B, 040802, 051211 and 060121. arXiv 2006, arXiv:astro-ph/0605570. [Google Scholar]
- Horváth, I. A Third Class of Gamma-ray Bursts? Astrophys. J. 1998, 508, 757–759. [Google Scholar] [CrossRef] [Green Version]
- Horváth, I. Classification of BeppoSAX’s gamma-ray bursts. Astrophys. Space Sci. 2009, 323, 83–86. [Google Scholar] [CrossRef] [Green Version]
- Řípa, J.; Wigger, C.; Huja, D.; Hudec, R. Gamma-ray Burst Classes Found in the Rhessi Data Sample. Baltic Astron. 2009, 18, 305–310. [Google Scholar]
- Huja, D.; Mészáros, A.; Řípa, J. A comparison of the gamma-ray bursts detected by BATSE and Swift. Astron. Astrophys. 2009, 504, 67–71. [Google Scholar] [CrossRef] [Green Version]
- Koen, C.; Bere, A. On multiple classes of gamma-ray bursts, as deduced from autocorrelation functions or bivariate duration/hardness ratio distributions. Mon. Not. R. Astron. Soc. Lett. 2012, 420, 405–415. [Google Scholar] [CrossRef] [Green Version]
- Zitouni, H.; Guessoum, N.; Azzam, W.J.; Mochkovitch, R. Statistical study of observed and intrinsic durations among BATSE and Swift/BAT GRBs. Astrophys. Space Sci. 2015, 357, 7. [Google Scholar] [CrossRef] [Green Version]
- Horváth, I.; Tóth, B.G. The duration distribution of Swift Gamma-ray Bursts. Astrophys. Space Sci. 2016, 361, 155. [Google Scholar] [CrossRef] [Green Version]
- Tarnopolski, M. Analysis of the observed and intrinsic durations of gamma-ray bursts with known redshift. Astrophys. Space Sci. 2016, 361, 125. [Google Scholar] [CrossRef] [Green Version]
- Kulkarni, S.; Desai, S. Classification of gamma-ray burst durations using robust model-comparison techniques. Astrophys. Space Sci. 2017, 362, 70. [Google Scholar] [CrossRef] [Green Version]
- Tarnopolski, M. Distinguishing short and long Fermi gamma-ray bursts. Mon. Not. R. Astron. Soc. Lett. 2015, 454, 1132–1139. [Google Scholar] [CrossRef] [Green Version]
- Tarnopolski, M. Analysis of gamma-ray burst duration distribution using mixtures of skewed distributions. Mon. Not. R. Astron. Soc. 2016, 458, 2024–2031. [Google Scholar] [CrossRef] [Green Version]
- Band, D.L. Gamma-ray Burst Spectral Evolution through Cross-Correlations of Discriminator Light Curves. Astrophys. J. 1997, 486, 928–937. [Google Scholar] [CrossRef]
- Von Kienlin, A.; Meegan, C.A.; Paciesas, W.S.; Bhat, P.N.; Bissaldi, E.; Briggs, M.S.; Burns, E.; Cleveland, W.H.; Gibby, M.H.; Giles, M.M.; et al. The Fourth Fermi-GBM Gamma-ray Burst Catalog: A Decade of Data. Astrophys. J. 2020, 893, 46. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, A.; Cleveland, W.H.; Kocevski, D. Fermi GBM Data Tools: v1.1.1. 2020. Available online: https://fermi.gsfc.nasa.gov/ssc/data/analysis/gbm (accessed on 17 June 2022).
- Mukherjee, S.; Feigelson, E.D.; Jogesh Babu, G.; Murtagh, F.; Fraley, C.; Raftery, A. Three Types of Gamma-ray Bursts. Astrophys. J. 1998, 508, 314–327. [Google Scholar] [CrossRef] [Green Version]
- Chattopadhyay, T.; Misra, R.; Chattopadhyay, A.K.; Naskar, M. Statistical Evidence for Three Classes of Gamma-ray Bursts. Astrophys. J. 2007, 667, 1017–1023. [Google Scholar] [CrossRef] [Green Version]
- Modak, S. Distinction of groups of gamma-ray bursts in the BATSE catalog through fuzzy clustering. Astron. Comput. 2021, 34, 100441. [Google Scholar] [CrossRef]
- Chattopadhyay, S.; Maitra, R. Gaussian-mixture-model-based cluster analysis finds five kinds of gamma-ray bursts in the BATSE catalogue. Mon. Not. R. Astron. Soc. Lett. 2017, 469, 3374–3389. [Google Scholar] [CrossRef] [Green Version]
- Chattopadhyay, S.; Maitra, R. Multivariate t-mixture-model-based cluster analysis of BATSE catalogue establishes importance of all observed parameters, confirms five distinct ellipsoidal sub-populations of gamma-ray bursts. Mon. Not. R. Astron. Soc. Lett. 2018, 481, 3196–3209. [Google Scholar] [CrossRef]
- Tóth, B.G.; Rácz, I.I.; Horváth, I. Gaussian-mixture-model-based cluster analysis of gamma-ray bursts in the BATSE catalog. Mon. Not. R. Astron. Soc. Lett. 2019, 486, 4823–4828. [Google Scholar] [CrossRef] [Green Version]
- Balastegui, A.; Ruiz-Lapuente, P.; Canal, R. Reclassification of gamma-ray bursts. Mon. Not. R. Astron. Soc. Lett. 2001, 328, 283–290. [Google Scholar] [CrossRef] [Green Version]
- Hakkila, J.; Haglin, D.J.; Pendleton, G.N.; Mallozzi, R.S.; Meegan, C.A.; Roiger, R.J. Gamma-ray Burst Class Properties. Astrophys. J. 2000, 538, 165–180. [Google Scholar] [CrossRef]
- Hakkila, J.; Giblin, T.W.; Roiger, R.J.; Haglin, D.J.; Paciesas, W.S.; Meegan, C.A. How Sample Completeness Affects Gamma-ray Burst Classification. Astrophys. J. 2003, 582, 320–329. [Google Scholar] [CrossRef]
- Rajaniemi, H.; Mähönen, P. Classifying gamma-ray bursts using self-organizing maps. Astrophys. J. 2002, 566, 202. [Google Scholar] [CrossRef]
- Tarnopolski, M. Analysis of the Duration-Hardness Ratio Plane of Gamma-ray Bursts Using Skewed Distributions. Astrophys. J. 2019, 870, 105. [Google Scholar] [CrossRef]
- Tarnopolski, M. Multivariate Analysis of BATSE Gamma-ray Burst Properties Using Skewed Distributions. Astrophys. J. 2019, 887, 97. [Google Scholar] [CrossRef] [Green Version]
- Veres, P.; Bagoly, Z.; Horváth, I.; Mészáros, A.; Balázs, L.G. A Distinct Peak-flux Distribution of the Third Class of Gamma-ray Bursts: A Possible Signature of X-ray Flashes? Astrophys. J. 2010, 725, 1955–1964. [Google Scholar] [CrossRef] [Green Version]
- Bhave, A.; Kulkarni, S.; Desai, S.; Srijith, P.K. Two Dimensional Clustering of Gamma-ray Bursts using durations and hardness. arXiv 2017, arXiv:1708.05668. [Google Scholar] [CrossRef]
- Tsutsui, R.; Shigeyama, T. On the subclasses in Swift long gamma-ray bursts: A clue to different central engines. Publ. Astron. Soc. Jpn. 2014, 66, 42. [Google Scholar] [CrossRef] [Green Version]
- Horváth, I.; Tóth, B.G.; Hakkila, J.; Tóth, L.V.; Balázs, L.G.; Rácz, I.I.; Pintér, S.; Bagoly, Z. Classifying GRB 170817A/GW170817 in a Fermi duration-hardness plane. Astrophys. Space Sci. 2018, 363, 53. [Google Scholar] [CrossRef] [Green Version]
- Acuner, Z.; Ryde, F. Clustering of gamma-ray burst types in the Fermi GBM catalogue: Indications of photosphere and synchrotron emissions during the prompt phase. Mon. Not. R. Astron. Soc. Lett. 2018, 475, 1708–1724. [Google Scholar] [CrossRef]
- Horváth, I.; Hakkila, J.; Bagoly, Z.; Tóth, L.V.; Rácz, I.I.; Pintér, S.; Tóth, B.G. Multidimensional analysis of Fermi GBM gamma-ray bursts. Astrophys. Space Sci. 2019, 364, 105. [Google Scholar] [CrossRef] [Green Version]
- Modak, S.; Chattopadhyay, A.K.; Chattopadhyay, T. Clustering of Gamma-ray bursts through kernel principal component analysis. arXiv 2017, arXiv:1703.05532. [Google Scholar] [CrossRef] [Green Version]
- Horváth, I. A further study of the BATSE Gamma-ray Burst duration distribution. Astron. Astrophys. 2002, 392, 791–793. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.B.; Yang, E.B.; Choi, C.S.; Chang, H.Y. Classifying gamma-ray bursts with Gaussian Mixture Model. Mon. Not. R. Astron. Soc. Lett. 2016, 462, 3243–3254. [Google Scholar] [CrossRef]
- Horváth, I.; Balázs, L.G.; Bagoly, Z.; Veres, P. Classification of Swift’s gamma-ray bursts. Astron. Astrophys. 2008, 489, L1–L4. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.B.; Choi, C.S. An analysis of the durations of Swift gamma-ray bursts. Astron. Astrophys. 2008, 484, 293–297. [Google Scholar] [CrossRef] [Green Version]
- Horváth, I.; Bagoly, Z.; Balázs, L.G.; de Ugarte Postigo, A.; Veres, P.; Mészáros, A. Detailed Classification of Swift’s Gamma-ray Bursts. Astrophys. J. 2010, 713, 552–557. [Google Scholar] [CrossRef] [Green Version]
- Yang, E.B.; Zhang, Z.B.; Jiang, X.X. Two dimensional classification of the Swift/BAT GRBs. Astrophys. Space Sci. 2016, 361, 257. [Google Scholar] [CrossRef] [Green Version]
- Zitouni, H.; Guessoum, N.; AlQassimi, K.M.; Alaryani, O. Distributions of pseudo-redshifts and durations (observed and intrinsic) of Fermi GRBs. Astrophys. Space Sci. 2018, 363, 223. [Google Scholar] [CrossRef] [Green Version]
- Řípa, J.; Mészáros, A.; Veres, P.; Park, I.H. On the Spectral Lags and Peak Counts of the Gamma-ray Bursts Detected by the RHESSI Satellite. Astrophys. J. 2012, 756, 44. [Google Scholar] [CrossRef] [Green Version]
- Minaev, P.Y.; Pozanenko, A.S.; Loznikov, V.M. Short gamma-ray bursts in the SPI-ACS INTEGRAL experiment. Astrophys. Bull. 2010, 65, 326–333. [Google Scholar] [CrossRef]
- Svinkin, D.S.; Aptekar, R.L.; Golenetskii, S.V.; Frederiks, D.D.; Ulanov, M.V.; Tsvetkova, A.E. Classification of gamma-ray bursts observed with Konus-Wind. J. Phys. Conf. Ser. 2019, 1400, 022010. [Google Scholar] [CrossRef]
- Minaev, P.Y.; Pozanenko, A.S. The Ep,I-Eiso correlation: Type I gamma-ray bursts and the new classification method. Mon. Not. R. Astron. Soc. Lett. 2020, 492, 1919–1936. [Google Scholar] [CrossRef] [Green Version]
- Lü, H.J.; Zhang, B.; Liang, E.W.; Zhang, B.B.; Sakamoto, T. The ‘amplitude’ parameter of gamma-ray bursts and its implications for GRB classification. Mon. Not. R. Astron. Soc. Lett. 2014, 442, 1922–1929. [Google Scholar] [CrossRef] [Green Version]
- Tarnopolski, M. How does the shape of gamma-ray bursts’ pulses affect the duration distribution? Mon. Not. R. Astron. Soc. 2021, 507, 1450–1457. [Google Scholar] [CrossRef]
- Tarnopolski, M. Can the Cosmological Dilation Explain the Skewness in the Gamma-ray Burst Duration Distribution? Astrophys. J. 2020, 897, 77. [Google Scholar] [CrossRef]
- Baudry, J.P.; Raftery, A.E.; Celeux, G.; Lo, K.; Gottardo, R. Combining Mixture Components for Clustering. J. Comput. Graph. Stat. 2010, 19, 332–353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuhn, M.A.; Hillenbrand, L.A.; Carpenter, J.M.; Avelar Menendez, A.R. The Formation of a Stellar Association in the NGC 7000/IC 5070 Complex: Results from Kinematic Analysis of Stars and Gas. Astrophys. J. 2020, 899, 128. [Google Scholar] [CrossRef]
- Lien, A.; Sakamoto, T.; Barthelmy, S.D.; Baumgartner, W.H.; Cannizzo, J.K.; Chen, K.; Collins, N.R.; Cummings, J.R.; Gehrels, N.; Krimm, H.A.; et al. The Third Swift Burst Alert Telescope Gamma-ray Burst Catalog. Astrophys. J. 2016, 829, 7. [Google Scholar] [CrossRef] [Green Version]
- Fraley, C. HDoutliers: Leland Wilkinson’s Algorithm for Detecting Multidimensional Outliers, R Package Version 1.0.2. 2020. Available online: https://CRAN.R-project.org/package=HDoutliers (accessed on 17 June 2022).
- Scrucca, L.; Fop, M.; Murphy, T.B.; Raftery, A.E. mclust 5: Clustering, classification and density estimation using Gaussian finite mixture models. R J. 2016, 8, 289–317. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, G. Estimating the dimension of a model. Ann. Stat. 1978, 6, 461–464. [Google Scholar] [CrossRef]
- Kass, R.E.; Raftery, A.E. Bayes Factors. J. Am. Stat. Assoc. 1995, 90, 773–795. [Google Scholar] [CrossRef]
- Wang, N.; Raftery, A.E. Nearest-neighbor variance estimation (NNVE) robust covariance estimation via nearest-neighbor cleaning. J. Am. Stat. Assoc. 2002, 97, 994–1019. [Google Scholar] [CrossRef]
- Walther, G. Detecting the presence of mixing with multiscale maximum likelihood. J. Am. Stat. Assoc. 2002, 97, 508–513. [Google Scholar] [CrossRef] [Green Version]
- Li, J. Clustering based on a multilayer mixture model. J. Comput. Graph. Stat. 2005, 14, 547–568. [Google Scholar] [CrossRef]
- Tantrum, J.; Murua, A.; Stuetzle, W. Assessment and pruning of hierarchical model based clustering. In Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, 24–27 August 2003; pp. 197–205. [Google Scholar]
- Sakamoto, T.; Barthelmy, S.D.; Baumgartner, W.H.; Cummings, J.R.; Fenimore, E.E.; Gehrels, N.; Krimm, H.A.; Markwardt, C.B.; Palmer, D.M.; Parsons, A.M.; et al. The Second Swift Burst Alert Telescope Gamma-ray Burst Catalog. Astrophys. J. Suppl. Ser. 2011, 195, 2. [Google Scholar] [CrossRef] [Green Version]
- Bromberg, O.; Nakar, E.; Piran, T.; Sari, R. Short versus Long and Collapsars versus Non-collapsars: A Quantitative Classification of Gamma-ray Bursts. Astrophys. J. 2013, 764, 179. [Google Scholar] [CrossRef] [Green Version]
- Bhat, P.N.; Meegan, C.A.; von Kienlin, A.; Paciesas, W.S.; Briggs, M.S.; Burgess, J.M.; Burns, E.; Chaplin, V.; Cleveland, W.H.; Collazzi, A.C.; et al. The Third Fermi GBM Gamma-ray Burst Catalog: The First Six Years. Astrophys. J. Suppl. Ser. 2016, 223, 28. [Google Scholar] [CrossRef] [Green Version]
- Dainotti, M.G.; Lenart, A.Ł.; Sarracino, G.; Nagataki, S.; Capozziello, S.; Fraija, N. The X-Ray Fundamental Plane of the Platinum Sample, the Kilonovae, and the SNe Ib/c Associated with GRBs. Astrophys. J. 2020, 904, 97. [Google Scholar] [CrossRef]
- Dainotti, M.G.; Livermore, S.; Kann, D.A.; Li, L.; Oates, S.; Yi, S.; Zhang, B.; Gendre, B.; Cenko, B.; Fraija, N. The Optical Luminosity-Time Correlation for More than 100 Gamma-ray Burst Afterglows. Astrophys. J. 2020, 905, L26. [Google Scholar] [CrossRef]
- Dainotti, M.G.; Nagataki, S.; Maeda, K.; Postnikov, S.; Pian, E. A study of gamma ray bursts with afterglow plateau phases associated with supernovae. Astron. Astrophys. 2017, 600, A98. [Google Scholar] [CrossRef]
- Gendre, B.; Joyce, Q.T.; Orange, N.B.; Stratta, G.; Atteia, J.L.; Boër, M. Can we quickly flag ultra-long gamma-ray bursts? Mon. Not. R. Astron. Soc. Lett. 2019, 486, 2471–2476. [Google Scholar] [CrossRef]
- Gibson, S.L.; Wynn, G.A.; Gompertz, B.P.; O’Brien, P.T. Fallback accretion on to a newborn magnetar: Short GRBs with extended emission. Mon. Not. R. Astron. Soc. Lett. 2017, 470, 4925–4940. [Google Scholar] [CrossRef] [Green Version]
- Kaneko, Y.; Bostancı, Z.F.; Göğüs, E.; Lin, L. Short gamma-ray bursts with extended emission observed with Swift/BAT and Fermi/GBM. Mon. Not. R. Astron. Soc. Lett. 2015, 452, 824–837. [Google Scholar] [CrossRef] [Green Version]
- Gompertz, B.P.; O’Brien, P.T.; Wynn, G.A.; Rowlinson, A. Can magnetar spin-down power extended emission in some short GRBs? Mon. Not. R. Astron. Soc. Lett. 2013, 431, 1745–1751. [Google Scholar] [CrossRef] [Green Version]
- Gompertz, B.P.; O’Brien, P.T.; Wynn, G.A. Magnetar powered GRBs: Explaining the extended emission and X-ray plateau of short GRB light curves. Mon. Not. R. Astron. Soc. Lett. 2014, 438, 240–250. [Google Scholar] [CrossRef]
- Ashall, C.; Mazzali, P.A.; Pian, E.; Woosley, S.E.; Palazzi, E.; Prentice, S.J.; Kobayashi, S.; Holmbo, S.; Levan, A.; Perley, D.; et al. GRB 161219B/SN 2016jca: A powerful stellar collapse. Mon. Not. R. Astron. Soc. Lett. 2019, 487, 5824–5839. [Google Scholar] [CrossRef]
- Melandri, A.; Malesani, D.B.; Izzo, L.; Japelj, J.; Vergani, S.D.; Schady, P.; Sagués Carracedo, A.; de Ugarte Postigo, A.; Anderson, J.P.; Barbarino, C.; et al. GRB 171010A/SN 2017htp: A GRB-SN at z = 0.33. Mon. Not. R. Astron. Soc. Lett. 2019, 490, 5366–5374. [Google Scholar] [CrossRef] [Green Version]
- Izzo, L.; Rossi, A.; Malesani, D.; Heintz, K.; Selsing, J.; Schady, P.; Starling, R.; Sollerman, J.; Leloudas, G.; Cano, Z.; et al. GRB 180728A: Discovery of the associated supernova. GRB Coord. Netw. 2018, 23142, 1. [Google Scholar]
- Selsing, J.; Izzo, L.; Rossi, A.; Malesani, D.; Heintz, K.; Schady, P.; Starling, R.; Sollerman, J.; Leloudas, G.; Cano, Z.; et al. GRB 180728A: Classification of the associated SN 2018fip. GRB Coord. Netw. 2018, 23181, 1. [Google Scholar]
- Hu, Y.D.; Castro-Tirado, A.J.; Kumar, A.; Gupta, R.; Valeev, A.F.; Pandey, S.B.; Kann, D.A.; Castellón, A.; Agudo, I.; Aryan, A.; et al. 10.4 m GTC observations of the nearby VHE-detected GRB 190829A/SN 2019oyw. Astron. Astrophys. 2021, 646, A50. [Google Scholar] [CrossRef]
- Jespersen, C.K.; Severin, J.B.; Steinhardt, C.L.; Vinther, J.; Fynbo, J.P.U.; Selsing, J.; Watson, D. An Unambiguous Separation of Gamma-ray Bursts into Two Classes from Prompt Emission Alone. Astrophys. J. 2020, 896, L20. [Google Scholar] [CrossRef]
- Salmon, L.; Martin-Carrillo, A.; Hanlon, L. Two Classes of Gamma-ray Bursts Distinguished within the First Second of Their Prompt Emission. Galaxies 2022. submitted. [Google Scholar] [CrossRef]
- Harris, C.R.; Millman, K.J.; van der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith, N.J.; et al. Array programming with NumPy. Nature 2020, 585, 357–362. [Google Scholar] [CrossRef]
- Hunter, J.D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
- Pandas Development Team. Pandas-Dev/pandas, Pandas-v1.4.2. 2020. Available online: https://doi.org/10.5281/zenodo.3509134 (accessed on 17 June 2022).
- Wes McKinney. Data Structures for Statistical Computing in Python. In Proceedings of the 9th Python in Science Conference, Austin, TX, USA, 28 June–3 July 2010; van der Walt, S., Millman, J., Eds.; SciPy: Austin, TX, USA, 2010; pp. 56–61. [Google Scholar] [CrossRef] [Green Version]
Initial mclust Fit | clustCombi Fit | |||||
---|---|---|---|---|---|---|
Model | K | BIC | K | # Short | # Long | |
Swift/BAT | VEI | 3 | −720 | 2 | 85 | 1231 |
Fermi/GBM | VEI | 3 | −3970 | 2 | 295 | 2338 |
Short | Long | |||||
---|---|---|---|---|---|---|
Median | Median | |||||
T (s) | 0.39 | 0.29 | 0.30 | 79.8 | 101.0 | 47.7 |
HR | 2.02 | 0.46 | 1.96 | 1.31 | 0.32 | 1.28 |
Short | Long | |||||
---|---|---|---|---|---|---|
Median | Median | |||||
T (s) | 0.64 | 0.65 | 0.45 | 38.6 | 23.4 | 45.4 |
HR | 1.99 | 1.53 | 1.96 | 0.78 | 1.49 | 0.77 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salmon, L.; Hanlon, L.; Martin-Carrillo, A. Two Dimensional Clustering of Swift/BAT and Fermi/GBM Gamma-ray Bursts. Galaxies 2022, 10, 77. https://doi.org/10.3390/galaxies10040077
Salmon L, Hanlon L, Martin-Carrillo A. Two Dimensional Clustering of Swift/BAT and Fermi/GBM Gamma-ray Bursts. Galaxies. 2022; 10(4):77. https://doi.org/10.3390/galaxies10040077
Chicago/Turabian StyleSalmon, Lána, Lorraine Hanlon, and Antonio Martin-Carrillo. 2022. "Two Dimensional Clustering of Swift/BAT and Fermi/GBM Gamma-ray Bursts" Galaxies 10, no. 4: 77. https://doi.org/10.3390/galaxies10040077
APA StyleSalmon, L., Hanlon, L., & Martin-Carrillo, A. (2022). Two Dimensional Clustering of Swift/BAT and Fermi/GBM Gamma-ray Bursts. Galaxies, 10(4), 77. https://doi.org/10.3390/galaxies10040077