Gravitational Waves from a Core-Collapse Supernova: Perspectives with Detectors in the Late 2020s and Early 2030s
Abstract
:1. Introduction
2. Methodology
2.1. GW Detectors
2.2. Coherent WaveBurst
2.3. CCSNe and GW Signals
3. Results
3.1. Detection Range
3.2. Sky Localization
3.3. Reconstruction Accuracy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abbott, B.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 2016, 116, 61102. [Google Scholar] [CrossRef] [PubMed]
- Abbott, B.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett. 2017, 119, 161101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, A.; Adams, C.; Adhikari, R.X.; Adya, V.B.; Affeldt, C. et al. Observation of gravitational waves from two neutron star-black hole coalescences. Astrophys. J. Lett. 2021, 915, L5. [Google Scholar] [CrossRef]
- Aasi, J.; Abbott, B.; Abbott, R.; Abbott, T.; Abernathy, M.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; et al. Advanced LIGO. Class. Quant. Grav. 2015, 32, 74001. [Google Scholar] [CrossRef]
- Acernese, F.; Agathos, M.; Agatsuma, K.; Aisa, D.; Allemandou, N.; Allocca, A.; Amarni, J.; Astone, P.; Balestri, G.; Ballardin, F.; et al. Advanced Virgo: A second-generation interferometric gravitational wave detector. Class. Quant. Grav. 2015, 32, 24001. [Google Scholar] [CrossRef] [Green Version]
- Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, A.; Adams, C.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; et al. GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs. Phys. Rev. X 2019, 9, 31040. [Google Scholar] [CrossRef] [Green Version]
- Abbott, R.; Agelova, S.V.; Gier, G.; Hill, P.; Reid, S.; Wallace, G.S. GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo During the First Half of the Third Observing Run. arXiv 2021, arXiv:2010.14527. [Google Scholar] [CrossRef]
- Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, A.; Adams, C.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; et al. GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. arXiv 2021, arXiv:2111.03606. [Google Scholar]
- Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, A.; Adams, C.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; et al. Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO, Advanced Virgo and KA GRA. Living Rev. Rel. 2018, 21, 3. [Google Scholar] [CrossRef] [Green Version]
- Adhikari, R.X.; Arai, K.; Brooks, A.F.; Wipf, C.; Aguiar, O.; Altin, P.; Barr, B.; Barsotti, L.; Bassiri, R.; Bell, A. A cryogenic silicon interferometer for gravitational-wave detection. Class. Quant. Grav. 2020, 37, 165003. [Google Scholar] [CrossRef]
- Unnikrishnan, C.S. IndI GO and LIGO-India: Scope and plans for gravitational wave research and precision metrology in India. Int. J. Mod. Phys. D 2013, 22, 1341010. [Google Scholar] [CrossRef] [Green Version]
- Ackley, K.; Adya, V.B.; Agrawal, P.; Altin, P.; Ashton, G.; Bailes, M.; Baltinas, E.; Barbuio, A.; Beniwal, D.; Blair, C.; et al. Neutron Star Extreme Matter Observatory: A kilohertz-band gravitational-wave detector in the global network. Publ. Astron. Soc. Austral. 2020, 37, e047. [Google Scholar] [CrossRef]
- Bailes, M.; Berger, B.K.; Brady, P.R.; Branchesi, M.; Danzmann, K.; Evans, M.; Holley-Bockelmann, K.; Iyer, B.R.; Kajita, T.; Katasanevas, S.; et al. Gravitational-wave physics and astronomy in the 2020s and 2030s. Nat. Rev. Phys. 2021, 3, 344–366. [Google Scholar] [CrossRef]
- Punturo, M.; Abernathy, M.; Acernese, F.; Allen, B.; Andersson, N.; Arun, K.; Barone, F.; Barr, B.; Barsuglia, M.; Beker, M. The Einstein Telescope: A third-generation gravitational wave observatory. Class. Quantum Gravity 2010, 27, 194002. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Ackley, K.; Adams, C.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; Affeldt, C. Exploring the Sensitivity of Next Generation Gravitational Wave Detectors. Class. Quant. Grav. 2017, 34, 44001. [Google Scholar] [CrossRef] [Green Version]
- Szczepanczyk, M.; Antelis, J.M.; Benjamin, M.; Cavaglia, M.; Gondek-Rosińska, D.; Hansen, T.; Klimenko, S.; Morales, M.D.; Moreno, C.; Mukherjee, S.; et al. Detecting and reconstructing gravitational waves from the next galactic core-collapse supernova in the advanced detector era. Phys. Rev. D 2021, 104, 102002. [Google Scholar] [CrossRef]
- Gossan, S.E.; Sutton, P.; Stuver, A.; Zanolin, M.; Gill, K.; Ott, C.D. Observing Gravitational Waves from Core-Collapse Supernovae in the Advanced Detector Era. Phys. Rev. D 2016, 93, 42002. [Google Scholar] [CrossRef] [Green Version]
- Evans, M.; Sturani, R.; Vitali, S.; Hall, E. Unofficial Sensitivity Curves (ASD) for aLIGO, Kagra, Virgo, Voyager, Cosmic Explorer, and Einstein Telescope; Technical Report LIGO-T1500293; LIGO Document Control Center: Washington, DC, USA, 2020. [Google Scholar]
- Shoemaker, D. Gravitational wave astronomy with LIGO and similar detectors in the next decade. arXiv 2019, arXiv:1904.03187. [Google Scholar]
- Abbott, B.P. Noise Curves Used for Simulations in the Update of the Observing Scenarios Paper; Technical Report LIGO-T2000012; LIGO Document Control Center: Washington, DC, USA, 2020. [Google Scholar]
- McClelland, D.E.; Scott, S.M.; Gray, M.B.; Shaddock, D.A.; Slagmolen, B.J.; Searle, A.; Blair, D.G.; Ju, L.; Winterflood, J.; Benabid, F.; et al. Second-generation laser interferometry for gravitational wave detection: ACI GA progress. Class. Quantum Gravity 2001, 18, 4121–4126. [Google Scholar] [CrossRef]
- Klimenko, S.; Vedovato, G.; Drago, M.; Salemi, F.; Tiwari, V.; Prodi, G.A.; Lazzaro, C.; Ackley, K.; Tiwari, S.; Da Silva, C.F.; et al. Method for detection and reconstruction of gravitational wave transients with networks of advanced detectors. Phys. Rev. D 2016, 93, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Necula, V.; Klimenko, S.; Mitselmakher, G. Transient analysis with fast Wilson-Daubechies time-frequency transform. J. Phys. Conf. Ser. 2012, 363, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; et al. All-sky search for short gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run. Phys. Rev. D 2021, 104, 122004. [Google Scholar] [CrossRef]
- Janka, H.T. Explosion Mechanisms of Core-Collapse Supernovae. Ann. Rev. Nucl. Part. Sci. 2012, 62, 407–451. [Google Scholar] [CrossRef] [Green Version]
- Mezzacappa, A.; Endeve, E.; Messer, O.E.B.; Bruenn, S.W. Physical, numerical, and computational challenges of modeling neutrino transport in core-collapse supernovae. arXiv 2020, arXiv:2010.09013. [Google Scholar] [CrossRef]
- Mezzacappa, A.; Marronetti, P.; Landfield, R.E.; Lentz, E.J.; Yakunin, K.N.; Bruenn, S.W.; Hix, W.R.; Messer, O.E.B.; Endeve, E.; Blondin, J.M.; et al. Gravitational-wave signal of a core-collapse supernova explosion of a 15 M⊙ star. Phys. Rev. D 2020, 102, 23027. [Google Scholar] [CrossRef]
- Powell, J.; Müller, B. Gravitational Wave Emission from 3D Explosion Models of Core-Collapse Supernovae with Low and Normal Explosion Energies. Mon. Not. Roy. Astron. Soc. 2019, 487, 1178–1190. [Google Scholar] [CrossRef]
- Radice, D.; Morozova, V.; Burrows, A.; Vartanyan, D.; Nagakura, H. Characterizing the Gravitational Wave Signal from Core-collapse Supernovae. Astrophys. J. 2019, 876, L9. [Google Scholar] [CrossRef] [Green Version]
- Andresen, H.; Muller, E.; Janka, H.T.; Summa, A.; Gill, K.; Zanolin, M. Gravitational waves from 3D core-collapse supernova models: The impact of moderate progenitor rotation. Mon. Not. R. Astron. Soc. 2019, 486, 2238–2253. [Google Scholar] [CrossRef] [Green Version]
- O’Connor, E.P.; Couch, S.M. Exploring Fundamentally Three-dimensional Phenomena in High-fidelity Simulations of Core-collapse Supernovae. Astrophys. J. 2018, 865, 81. [Google Scholar] [CrossRef]
- Kuroda, T.; Kotake, K.; Hayama, K.; Takiwaki, T. Correlated Signatures of Gravitational-wave and Neutrino Emission in Three-dimensional General-relativistic Core-collapse Supernova Simulations. Astrophys. J. 2017, 851, 62. [Google Scholar] [CrossRef]
- Janka, H.T. Neutrino-driven Explosions. arXiv 2017, arXiv:1702.08825. [Google Scholar]
- Blondin, J.M.; Mezzacappa, A.; DeMarino, C. Stability of Standing Accretion Shocks, with an Eye toward Core-Collapse Supernovae. Astrophys. J. 2003, 584, 971–980. [Google Scholar] [CrossRef]
- Richers, S.; Ott, C.D.; Abdikamalov, E.; O’Connor, E.; Sullivan, C. Equation of state effects on gravitational waves from rotating core collapse. Phys. Rev. D 2017, 95, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Obergaulinger, M.; Aloy, M.A. Magnetorotational core collapse of possible GRB progenitors. III. Three-dimensional models. arXiv 2020, arXiv:2008.07205. [Google Scholar] [CrossRef]
- Cerdá-Durán, P.; DeBrye, N.; Aloy, M.A.; Font, J.A.; Obergaulinger, M. Gravitational wave signatures in black hole forming core collapse. Astrophys. J. Lett. 2013, 779, L18. [Google Scholar] [CrossRef]
- Kuroda, T.; Kotake, K.; Takiwaki, T.; Thielemann, F.K. A full general relativistic neutrino radiation-hydrodynamics simulation of a collapsing very massive star and the formation of a black hole. Mon. Not. R. Astron. Soc. Lett. 2018, 84, 80–84. [Google Scholar] [CrossRef] [Green Version]
- Pan, K.C.; Liebendorfer, M.; Couch, S.; Thielemann, F.K. Stellar Mass Black Hole Formation and Multi-messenger Signals from Three Dimensional Rotating Core-Collapse Supernova Simulations. Astrophys. J. 2020, 894, 4. [Google Scholar]
- Colgate, S.A.; White, R.H. The Hydrodynamic Behavior of Supernovae Explosions. Astrophys. J. 1966, 143, 626. [Google Scholar] [CrossRef]
- Kuroda, T.; Kotake, K.; Takiwaki, T. A New Gravitational-Wave Signature From Standing Accretion Shock Instability in Supernovae. Astrophys. J. 2016, 829, L14. [Google Scholar] [CrossRef]
- Abadie, J.; Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Affeldt, C.; et al. First Low-Latency LIGO + Virgo Search for Binary Inspirals and their Electromagnetic Counterparts. Astron. Astrophys. 2012, 541, A155. [Google Scholar] [CrossRef]
- Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, A.; Adams, C.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; et al. GW190521: A Binary Black Hole Merger with a Total Mass of 150 M⊙. Phys. Rev. Lett. 2020, 125, 101102. [Google Scholar] [CrossRef] [PubMed]
Network | Distance at 10%/50%/90% Efficiency (kpc) | ||||||
---|---|---|---|---|---|---|---|
m15nr | SFHx | C15-3D | mesa20 | SR | s13 | A467w0.50_SFHx | |
LHVKAN | 8.6/5.5/- | 75.4/45.1/ 4.9 | 24.1/13.9/- | 7.5/0.4/- | 165.3/ 50.3/- | 5.3/3.1/- | 360.9/156.2/- |
LHVKA | 7.7/5.3/3.3 | 62.3/38.9/23.4 | 18.2/11.4/- | 4.9/3.2/- | 212.7/105.6/43.7 | 5.1/3.2/1.8 | 346.5/149.0/- |
LHVK | 7.8/5.0/2.3 | 60.2/36.9/19.3 | 17.6/10.7/1.2 | 4.6/2.8/1.3 | 210.6/109.1/32.7 | 5.2/2.9/1.5 | 354.2/122.8/- |
LHV | 8.3/5.1/1.2 | 60.5/37.0/18.0 | 18.8/11.2/1.7 | 4.9/2.9/1.1 | 215.4/113.4/27.5 | 5.3/2.9/1.1 | 366.0/120.0/- |
LHA | 8.4/5.2/2.4 | 60.8/37.9/21.1 | 19.3/11.9/1.8 | 5.4/3.3/1.5 | 218.2/110.9/27.8 | 5.5/3.0/1.6 | 360.6/130.6/- |
LHK | 8.0/5.0/0.7 | 58.8/35.7/11.4 | 18.2/10.5/0.7 | 4.5/2.6/0.2 | 213.4/113.0/14.7 | 5.1/2.8/0.2 | 352.5/106.0/- |
LHN | 9.1/5.7/1.9 | 70.8/42.6/20.9 | 26.6/12.9/1.3 | 8.3/4.8/0.5 | 183.6/ 48.2/ 8.5 | 5.6/3.0/1.2 | 378.3/130.2/- |
VKA | 3.8/2.2/0.5 | 25.8/15.9/ 6.4 | 9.2/ 2.6/0.9 | 2.9/1.6/0.3 | 63.5/ 30.5/ 9.5 | 2.1/1.3/0.3 | 123.8/ 45.3/- |
LH | 8.5/5.1/1.0 | 58.7/34.8/12.1 | 18.5/10.7/0.7 | 4.8/2.7/0.5 | 220.6/112.7/16.7 | 5.3/2.9/0.2 | 370.0/104.7/- |
Waveform | Network | Area at 0.1/0.5/0.9 (deg) |
---|---|---|
m15nr | LHVK | 0.6/ 29.6/ 2050.7 |
SFHx | LHVK | 2.0/ 97.9/ 1289.3 |
C15-3D | LHVK | 0.5/ 43.4/23727.8 |
mesa20 | LHVK | 0.7/ 33.8/ 8294.6 |
SR | LHVK | 4.1/100.5/ 2582.5 |
s13 | LHVKAN | 0.2/ 1.0/ 22.5 |
s13 | LHVKA | 0.4/ 6.0/ 209.0 |
s13 | LHVK | 0.8/ 27.8/ 348.4 |
s13 | LHV | 1.1/ 39.8/ 338.1 |
s13 | LHV | 10.5/ 81.6/ 445.0 |
s13 | VKA | 0.8/ 31.2/ 1827.9 |
A467w0.50_SFHx | LHVK | 1.3/ 50.9/ 477.7 |
Waveform | Network | Mis-Recon. | O for Full/HF/LF Waveform (O > 0.2) | |
---|---|---|---|---|
O < 0.2 | SNR = 20 | SNR = 40 | ||
m15nr | LHVK | 16% | 0.56/0.47/0.38 | 0.80/0.65/0.40 |
SFHx | LHVK | 29% | 0.61/0.73/0.74 | 0.87/0.53/0.68 |
C15-3D | LHVK | 18% | 0.36/0.40/0.22 | 0.64/0.57/0.23 |
mesa20 | LHVK | 20% | 0.43/0.48/0.51 | 0.62/0.57/0.38 |
SR | LHVK | 56% | 0.57/0.27/0.31 | 0.77/0.45/0.33 |
s13 | LHVKAN | 24% | 0.60/0.59/0.39 | 0.73/0.72/0.37 |
s13 | LHVKA | 23% | 0.66/0.67/0.39 | 0.81/0.82/0.40 |
s13 | LHVK | 23% | 0.69/0.69/0.39 | 0.83/0.76/0.43 |
s13 | LHV | 10% | 0.70/0.70/0.38 | 0.82/0.83/0.43 |
s13 | LH | 7% | 0.73/0.73/0.39 | 0.86/0.81/0.44 |
s13 | VKA | 28% | 0.59/0.61/0.34 | 0.65/0.40/ - |
A467w0.50_SFHx | LHVK | 16% | 0.81/0.61/0.60 | 0.81/0.72/0.69 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szczepańczyk, M.; Zanolin, M. Gravitational Waves from a Core-Collapse Supernova: Perspectives with Detectors in the Late 2020s and Early 2030s. Galaxies 2022, 10, 70. https://doi.org/10.3390/galaxies10030070
Szczepańczyk M, Zanolin M. Gravitational Waves from a Core-Collapse Supernova: Perspectives with Detectors in the Late 2020s and Early 2030s. Galaxies. 2022; 10(3):70. https://doi.org/10.3390/galaxies10030070
Chicago/Turabian StyleSzczepańczyk, Marek, and Michele Zanolin. 2022. "Gravitational Waves from a Core-Collapse Supernova: Perspectives with Detectors in the Late 2020s and Early 2030s" Galaxies 10, no. 3: 70. https://doi.org/10.3390/galaxies10030070
APA StyleSzczepańczyk, M., & Zanolin, M. (2022). Gravitational Waves from a Core-Collapse Supernova: Perspectives with Detectors in the Late 2020s and Early 2030s. Galaxies, 10(3), 70. https://doi.org/10.3390/galaxies10030070