Research Facilities for Europe’s Next Generation Gravitational-Wave Detector Einstein Telescope
Abstract
:1. Introduction
1.1. Science Case for Detector Sensitivity Improvements below 10 Hz
1.2. The Challenges for ET at Low-Frequency
2. Amaldi Research Center (ARC)
2.1. State of the Art: Lessons Learned from Current GW Detectors
2.1.1. Advanced Virgo Suspension System
2.1.2. KAGRA’S Cryogenic Suspension System
2.2. Payload Development at ARC
- Defining a reasonable size for the inner shield of the cryostat (see Section 2.3), mainly the height while also paying attention to the horizontal section.
- Designing a feasible configuration for the prototype, accounting realistic prediction of thermal noise and seismic noise through the cooling system [62].
2.3. Cryostat and Cryogenic Cooling System
- Test of the pulse tube cooling station (equipped with two Cryomech PT400) under construction.
- Payload design followed by one-by-one tests on crucial parts and then by prototype construction.
- Cryostat design driven by the overall suspension structure and cooling procedure.
- Test of the payload prototype in clean room at room temperature and study of the characteristic frequencies with their dissipation at high and low frequency.
- Cryostat construction followed by cryogenic tests.
- Payload integration and test of the integrated system.
3. Etpathfinder
3.1. Introduction
3.2. Key Technologies
3.2.1. Layout of ETpathfinder
3.2.2. Silicon Mirror-Suspensions
3.2.3. Cryogenics
3.3. Status and Future Plans
4. Sargrav Laboratory
4.1. Sos-Enattos Site
4.2. Archimedes, the First Experiment in the SarGrav Surface Laboratories
4.2.1. Aim of the Experiment
4.2.2. The Balance Prototype and the Final Setup
Mechanics
Optical Readout
Actuation and Control
4.3. Archimedes Prototype as Tiltmeter
First Tilt Measurements at Virgo and Sos-Enattos
5. Einstein Telescope EMR Site and Technology (E-TEST)
5.1. Introduction and Objectives
- characterisation of the ambient seismic field in the region to optimally select the location of the corner points and to guide the seismic isolation system design; and
- characterisation of the subsurface geology in terms of material properties to guide the geotechnical engineering efforts of such underground infrastructure.
- ultra-cold vibration control, which includes vacuum and cryogenics, active vibration isolation and the design of a seismic isolation system; and
- optical engineering, which includes silicon mirror manufacture and test, laser and optics at 2 microns wavelength and assembly and validation of the whole setup.
5.2. Design of the Cryogenic Suspension Prototype
5.2.1. Optical Engineering
5.3. Site Characterization
5.3.1. Noise at the Surface vs. Noise at Depth
5.3.2. Spectral Peaks Associated with the Wind Turbines
5.3.3. Geological Characterisation
6. Summary
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Buikema, A.; Cahillane, C.; Mansell, G.L.; Blair, C.D.; Abbott, R.; Adams, C.; Adhikari, R.X.; Ananyeva, A.; Appert, S.; Arai, K.; et al. Sensitivity and performance of the Advanced LIGO detectors in the third observing run. Phys. Rev. D 2020, 102, 062003. [Google Scholar] [CrossRef]
- Acernese, F. et al. [Virgo Collaboration]. Increasing the Astrophysical Reach of the Advanced Virgo Detector via the Application of Squeezed Vacuum States of Light. Phys. Rev. Lett. 2019, 123, 231108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akutsu, T. et al. [KAGRA Collaboration]. Overview of KAGRA: Detector Design and Construction History. Prog. Theor. Exp. Phys. 2020, 2021, 05A101. [Google Scholar] [CrossRef]
- Lough, J.; Schreiber, E.; Bergamin, F.; Grote, H.; Mehmet, M.; Vahlbruch, H.; Affeldt, C.; Brinkmann, M.; Bisht, A.; Kringel, V.; et al. First Demonstration of 6 dB Quantum Noise Reduction in a Kilometer Scale Gravitational Wave Observatory. Phys. Rev. Lett. 2021, 126, 041102. [Google Scholar] [CrossRef]
- Abbott, B.P. et al. [LIGO Scientific Collaboration and Virgo Collaboration]. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 2016, 116, 061102. [Google Scholar] [CrossRef]
- Abbott, B.P. et al. [LIGO Scientific Collaboration and Virgo Collaboration]. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett. 2017, 119, 161101. [Google Scholar] [CrossRef] [Green Version]
- Abbott, B.P. et al. [LIGO Scientific Collaboration and Virgo Collaboration]. GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs. Phys. Rev. X 2019, 9, 031040. [Google Scholar] [CrossRef] [Green Version]
- Abbott, R. et al. [LIGO Scientific Collaboration and Virgo Collaboration]. GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run. Phys. Rev. X 2021, 11, 021053. [Google Scholar] [CrossRef]
- Abbott, R. et al. [LIGO Scientific Collaboration, Virgo Collaboration and KAGRA Collaboration]. GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. arXiv 2021, arXiv:2111.03606. [Google Scholar]
- Abbott, R. et al. [LIGO Scientific Collaboration, Virgo Collaboration and KAGRA Collaboration]. The population of merging compact binaries inferred using gravitational waves through GWTC-3. arXiv 2021, arXiv:2111.03634. [Google Scholar]
- Abbott, R. et al. [LIGO Scientific Collaboration, Virgo Collaboration and KAGRA Collaboration]. Constraints on the cosmic expansion history from GWTC-3. arXiv 2021, arXiv:2111.03604. [Google Scholar]
- Matichard, F.; Lantz, B.; Mittleman, R.; Mason, K.; Kissel, J.; Abbott, B.; Biscans, S.; McIver, J.; Abbott, R.; Abbott, S.; et al. Seismic isolation of Advanced LIGO: Review of strategy, instrumentation and performance. Class. Quantum Gravity 2015, 32, 185003. [Google Scholar] [CrossRef]
- Acernese, F.; Antonucci, F.; Aoudia, S.; Arun, K.G.; Astone, P.; Ballardin, G.; Sturani, R. Measurements of Superattenuator seismic isolation by Virgo interferometer. Astropart. Phys. 2010, 33, 8. [Google Scholar] [CrossRef] [Green Version]
- Ushiba, T.; Akutsu, T.; Araki, S.; Bajpai, R.; Chen, D.; Craig, K.; Enomoto, Y.; Hagiwara, A.; Haino, S.; Inoue, Y.; et al. Cryogenic suspension design for a kilometer-scale gravitational-wave detector. Class. Quantum Gravity 2021, 38, 085013. [Google Scholar] [CrossRef]
- Evans, M.; Adhikari, R.X.; Afle, C.; Ballmer, S.W.; Biscoveanu, S.; Borhanian, S.; Weiss, R. A Horizon Study for Cosmic Explorer Science, Observatories, and Community. Tech. Rep. CE DCC Number P2100003. 2021. Available online: https://dcc.cosmicexplorer.org/CE-P2100003 (accessed on 12 November 2021).
- ET Steering Committee. ET Design Report Update 2020 (Einstein Telescope Collaboration, 2020). 2020. Available online: https://apps.et-gw.eu/tds/ql/?c=15418 (accessed on 6 January 2022).
- Abbott, B.P.; Abbott, R.; Abbott, T.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, C.; Adya, V.; Affeldt, C.; Agathos, M.; et al. Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Rev. Relativ. 2018, 24, 1–69. [Google Scholar] [CrossRef] [Green Version]
- Maggiore, M.; Broeck, C.V.D.; Bartolo, N.; Belgacem, E.; Bertacca, D.; Bizouard, M.A.; Branchesi, M.; Clesse, S.; Foffa, S.; García-Bellido, J.; et al. Science case for the Einstein telescope. J. Cosmol. Astropart. Phys. 2020, 2020, 50. [Google Scholar] [CrossRef] [Green Version]
- Zaroubi, S. The epoch of reionization. First Galaxies 2013, 396, 45–101. [Google Scholar]
- Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, N.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; Agarwal, D.; et al. All-sky search for short gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run. Phys. Rev. D 2021, 104, 122004. [Google Scholar] [CrossRef]
- Maggiore, M. Gravitational Waves: Volume 1: Theory and Experiments; Oxford University Press: Oxford, UK, 2008; Volume 1. [Google Scholar]
- Abbott, R. et al. [The LIGO Scientific Collaboration, the Virgo Collaboration and the KAGRA Collaboration]. Tests of General Relativity with GWTC-3. arXiv 2021, arXiv:gr-qc/2112.06861. [Google Scholar]
- Hinderer, T.; Lackey, B.D.; Lang, R.N.; Read, J.S. Tidal deformability of neutron stars with realistic equations of state and their gravitational wave signatures in binary inspiral. Phys. Rev. D 2010, 81, 123016. [Google Scholar] [CrossRef] [Green Version]
- Broeck, C.V.D. Astrophysics, cosmology, and fundamental physics with compact binary coalescence and the Einstein Telescope. J. Phys. Conf. Ser. 2014, 484, 012008. [Google Scholar] [CrossRef] [Green Version]
- Lackey, B.D.; Kyutoku, K.; Shibata, M.; Brady, P.R.; Friedman, J.L. Extracting equation of state parameters from black hole-neutron star mergers: Nonspinning black holes. Phys. Rev. D 2012, 85, 044061. [Google Scholar] [CrossRef] [Green Version]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. GW170817: Measurements of Neutron Star Radii and Equation of State. Phys. Rev. Lett. 2018, 121, 161101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; et al. GW190425: Observation of a Compact Binary Coalescence with Total Mass∼3.4 M⊙. Astrophys. J. Lett. 2020, 892, L3. [Google Scholar] [CrossRef]
- Abernathy, M.; Acernese, F.; Ajith, P.; Allen, B.; Amaro Seoane, P.; Andersson, N.; Aoudia, S.; Astone, P.; Krishnan, B.; Barack, L.; et al. Einstein Gravitational Wave Telescope Conceptual Design Study. 2011. Available online: https://tds.virgo-gw.eu/?call_file=ET-0106C-10.pdf (accessed on 4 January 2022).
- Abbott, R. et al. [The LIGO Scientific Collaboration, the Virgo Collaboration and the KAGRA Collaboration]. Searches for Gravitational Waves from Known Pulsars at Two Harmonics in the Second and Third LIGO-Virgo Observing Runs. arXiv 2021, arXiv:astro-ph.HE/2111.13106. [Google Scholar]
- Johnson-McDaniel, N.K.; Owen, B.J. Maximum elastic deformations of relativistic stars. Phys. Rev. D 2013, 88, 044004. [Google Scholar] [CrossRef] [Green Version]
- Brito, R.; Ghosh, S.; Barausse, E.; Berti, E.; Cardoso, V.; Dvorkin, I.; Klein, A.; Pani, P. Gravitational wave searches for ultralight bosons with LIGO and LISA. Phys. Rev. D 2017, 96, 064050. [Google Scholar] [CrossRef] [Green Version]
- Abbott, R.; Abe, H.; Acernese, F.; Ackley, K.; Adhikari, N.; Adhikari, R.; Adkins, V.; Adya, V.; Affeldt, C.; Agarwal, D.; et al. All-sky search for gravitational wave emission from scalar boson clouds around spinning black holes in LIGO O3 data. arXiv 2021, arXiv:2111.15507. [Google Scholar]
- Brito, R.; Cardoso, V.; Pani, P. Superradiance: New Frontiers in Black Hole Physics; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar] [CrossRef]
- Dall’Osso, S.; Stella, L. Millisecond Magnetars. arXiv 2021, arXiv:astro-ph.HE/2103.10878. [Google Scholar]
- Cardoso, V.; Franzin, E.; Maselli, A.; Pani, P.; Raposo, G. Testing strong-field gravity with tidal Love numbers. Phys. Rev. D 2017, 95, 084014. [Google Scholar] [CrossRef] [Green Version]
- Agullo, I.; Cardoso, V.; del Rio, A.; Maggiore, M.; Pullin, J. Potential Gravitational Wave Signatures of Quantum Gravity. Phys. Rev. Lett. 2021, 126, 041302. [Google Scholar] [CrossRef] [PubMed]
- Pinard, L.; Michel, C.; Sassolas, B.; Balzarini, L.; Degallaix, J.; Dolique, V.; Flaminio, R.; Forest, D.; Granata, M.; Lagrange, B.; et al. Mirrors used in the LIGO interferometers for first detection of gravitational waves. Appl. Opt. 2017, 56, C11–C15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schroeter, A.; Nawrodt, R.; Schnabel, R.; Reid, S.; Martin, I.W.; Rowan, S.; Schwarz, C.; Koettig, T.; Neubert, R.; Thurk, M.; et al. On the mechanical quality factors of cryogenic test masses from fused silica and crystalline quartz. arXiv 2007, arXiv:0709.4359. [Google Scholar]
- Adhikari, R.X.; Arai, K.; Brooks, A.F.; Wipf, C.; Aguiar, O.; Altin, P.; Barr, B.; Barsotti, L.; Bassiri, R.; Bell, A.; et al. A cryogenic silicon interferometer for gravitational-wave detection. Class. Quantum Gravity 2020, 37, 165003. [Google Scholar] [CrossRef]
- Lyon, K.; Salinger, G.; Swenson, C.; White, G. Linear thermal expansion measurements on silicon from 6 to 340 K. J. Appl. Phys. 1977, 48, 865–868. [Google Scholar] [CrossRef]
- McGuigan, D.; Lam, C.; Gram, R.; Hoffman, A.W.; Douglass, D.H.; Gutche, H.W. Measurements of the mechanical Q of single-crystal silicon at low temperatures. J. Low Temp. Phys. 1978, 30, 621–629. [Google Scholar] [CrossRef]
- Theuerer, H.C. Method of Processing Semiconductive Materials. U.S. Patent 3060123A, 23 October 1962. [Google Scholar]
- Lin, W.; Huff, H. Handbook of Semiconductor Manufacturing Technology; Doering, R., Nishi, Y., Eds.; CRC Press: Boca Raton, FL, USA, 2008; Chapter 8. [Google Scholar]
- Goodman, W.A.; Goorsky, M.S. Reduction of the bulk absorption coefficient in silicon optics for high-energy lasers through defect engineering. Appl. Opt. 1995, 34, 3367–3373. [Google Scholar] [CrossRef]
- Kwee, P.; Bogan, C.; Danzmann, K.; Frede, M.; Kim, H.; King, P.; Pöld, J.; Puncken, O.; Savage, R.L.; Seifert, F.; et al. Stabilized high-power laser system for the gravitational wave detector advanced LIGO. Opt. Express 2012, 20, 10617–10634. [Google Scholar] [CrossRef] [Green Version]
- Valeria, S.; Matteo, B.; Mateusz, B.; Marco, B.; Giacomo, C.; Livia, C.; Beatrice, D.; Martina, D.L.; Sibilla, D.P.; Viviana, F.; et al. EPR experiment for a broadband quantum noise reduction in gravitational wave detectors. In Proceeding of the GRAvitational-Waves Science & technology Symposium (GRASS) 2019, Padova, Italy, 24–25 October 2019. [Google Scholar] [CrossRef]
- Sibilla, D.P.; Luca, N.; Ettore, M.; Laura, G.; Paola, P.; Fulvio, R.; Piero, R.; Maurizio, P.; Martina, D.L.; Enrico, C.; et al. Small scale Suspended Interferometer for Ponderomotive Squeezing (SIPS) as test bench of the EPR squeezer for Advanced Virgo. In Proceeding of the GRAvitational-Waves Science & Technology Symposium (GRASS) 2019, Padova, Italy, 24–25 October 2019. [Google Scholar] [CrossRef]
- Di Pace, S.; Naticchioni, L.; De Laurentis, M.; Travasso, F. Thermal noise study of a radiation pressure noise limited optical cavity with fused silica mirror suspensions. Eur. Phys. J. D 2020, 74, 227. [Google Scholar] [CrossRef]
- Giacoppo, L.; Majorana, E.; Di Pace, S.; Naticchioni, L.; De Laurentis, M.; Sequino, V.; Basti, A. Towards ponderomotive squeezing with SIPS experiment. Phys. Scr. 2021, 96, 114007. [Google Scholar] [CrossRef]
- Amaldi Research Center Webpage. Available online: https://www.phys.uniroma1.it/fisica/arc_amaldi_research_center (accessed on 6 January 2022).
- Amaldi Research Center Webpage. Research Activities at ARC. Available online: https://www.phys.uniroma1.it/fisica/arc_research_activities (accessed on 6 January 2022).
- Acernese, F.A.; Agathos, M.; Agatsuma, K.; Aisa, D.; Allemandou, N.; Allocca, A.; Meidam, J. Advanced Virgo: A second-generation interferometric gravitational wave detector. Class. Quantum Gravity 2015, 32, 024001. [Google Scholar] [CrossRef] [Green Version]
- [The Virgo Collaboration]. Advanced Virgo Technical Design Report Technical Report VIR-0128A-12, Virgo Collaboration. 2012. Available online: https://tds.virgo-gw.eu/ql/?c=8940 (accessed on 6 January 2022).
- Braccini, S.; Barsotti, L.; Bradaschia, C.; Cella, G.; Di Virgilio, A.; Ferrante, I.; Vinet, J.Y. Measurement of the seismic attenuation performance of the VIRGO Superattenuator. Astropart. Phys. J. 2005, 23, 557–565. [Google Scholar] [CrossRef]
- Naticchioni, L.; on behalf of the Virgo Collaboration. The payloads of Advanced Virgo: Current status and upgrades. J. Phys. Conf. Ser. 2018, 957, 012002. [Google Scholar] [CrossRef]
- [The Virgo Collaboration]. Virgo Suspensions and Payloads. Public Media. Available online: http://public.virgo-gw.eu/index.php?gmedia=zK53B&t=g (accessed on 6 January 2022).
- Haughian, K.; Chen, D.; Cunningham, L.; Hofmann, G.; Hough, J.; Murray, P.; Nawrodt, R.; Rowan, S.; van Veggel, A.; Yamamoto, K. Mechanical loss of a hydroxide catalysis bond between sapphire substrates and its effect on the sensitivity of future gravitational wave detectors. Phys. Rev. D 2016, 94, 082003. [Google Scholar] [CrossRef] [Green Version]
- Sakakibara, Y. A Study of Cryogenic Techniques for Gravitational Wave Detection. Ph.D. Thesis, University of Tokyo, Tokyo, Japan, 2014. [Google Scholar]
- Kumar, R.; Chen, D.; Hagiwara, A.; Kajita, T.; Miyamoto, T.; Suzuki, T.; Sakakibara, Y.; Tanaka, H.; Yamamoto, K.; Tomaru, T. Status of the cryogenic payload system for the KAGRA detector. J. Phys. Conf. Ser. 2016, 716, 012017. [Google Scholar] [CrossRef]
- Basti, F.; Frasconi, F.; Majorana, E.; Naticchioni, L.; Perciballi, M.; Puppo, P.; Rapagnani, P.; Ricci, F. A cryogenic payload for the third generation of gravitational wave interferometers. Astropart. Phys. 2011, 35, 67–75. [Google Scholar] [CrossRef] [Green Version]
- Somiya, K. Detector configuration of KAGRA—The Japanese cryogenic gravitational-wave detector. Class. Quantum Gravity 2012, 29, 12. [Google Scholar] [CrossRef] [Green Version]
- Majorana, E. Outline of Cryogenic Payload Compliance with Einstein Telescope LF. GWADW2021 Gravitational Wave Advanced Detector Workshop, 17–21 May 2021. Available online: https://agenda.infn.it/event/26121/contributions/136321/attachments/81472/106807/GWDAW21_majorana_1.pdf (accessed on 6 January 2022).
- Bouaita, R.; Alombert-Goget, G.; Ghezal, E.; Nehari, A.; Benamara, O.; Benchiheub, M.; Cagnoli, G.; Yamamoto, K.; Xu, X.; Motto-Ros, V.; et al. Seed orientation and pulling rate effects on bubbles and strain distribution on a sapphire crystal grown by the micro-pulling down method. CrystEngComm 2019, 21, 4200–4211. [Google Scholar] [CrossRef]
- Yamada, T.; Tomaru, T.; Suzuki, T.; Ushiba, T.; Kimura, N.; Takada, S.; Inoue, Y.; Kajita, T. High performance thermal link with small spring constant for cryogenic applications. Cryogenics 2021, 116, 103280. [Google Scholar] [CrossRef]
- Douglas, R.; Van Veggel, A.; Cunningham, L.; Haughian, K.; Hough, J.; Rowan, S. Cryogenic and room temperature strength of sapphire jointed by hydroxide-catalysis bonding. Class. Quantum Gravity 2014, 31, 045001. [Google Scholar] [CrossRef]
- Tokoku, C.; Kimura, N.; Koike, S.; Kume, T.; Sakakibara, Y.; Suzuki, T.; Kuroda, K. Cryogenic System for the Interferometric Cryogenic Gravitational Wave Telescope, KAGRA-Design, Fabrication, and Performance Test. AIP Conf. Proc. 2014, 1573, 1254–1261. [Google Scholar] [CrossRef] [Green Version]
- Yamada, T. Low-Vibration Conductive Cooling of KAGRA Cryogenic Mirror Suspension. Ph.D. thesis, University of Tokyo, Tokyo, Japan, 2020. [Google Scholar]
- Arnaboldi, C.; Avignone, F.T., III; Beeman, J.; Barucci, M.; Balata, M.; Brofferio, C.; Vanzini, M. Physics potential and prospects for the CUORICINO and CUORE experiments. Astropart. Phys. 2003, 20, 91–110. [Google Scholar] [CrossRef] [Green Version]
- Rapagnani, P. Cryogenics for the Einstein Telescope. GWADW2019-Gravitational-Wave Advanced Detector Workshop—From Advanced Interferometers to Third Generation Observatories, 19–25 May 2019. Available online: https://agenda.infn.it/event/15928/contributions/89753/ (accessed on 6 January 2022).
- Rapagnani, P. The Amaldi Research Center ET Cryogenic Lab in Rome. GWADW2021 Gravitational Wave Advanced Detector Workshop, 17–21 May 2021. Available online: https://agenda.infn.it/event/26121/timetable/?view=standard (accessed on 6 January 2022).
- [The ETpathfinder Collaboration]. ETpathfinder Design Report. ET TDS 2020, ET-0011A-20. Available online: https://apps.et-gw.eu/tds/ql/?c=15645 (accessed on 20 January 2022).
- Untina, A.; Amato, A.; Arends, J.; Arina, C.; Baars, M.; Baer, P.; Beaumont, W.; Bertolini, A.; Biersteker, S.; Binetti, A.; et al. ETpathfinder: A cryogenic testbed for interferometric gravitational-wave detectors. 2022, in preparation. 2022; in preparation. [Google Scholar]
- Meylahn, F.; Willke, B. Stabilized laser systems at 1550nm wavelength for future gravitational wave detectors. arXiv 2021, arXiv:physics.optics/2112.03792. [Google Scholar]
- Hasegawa, K.; Akutsu, T.; Kimura, N.; Saito, Y.; Suzuki, T.; Tomaru, T.; Ueda, A.; Miyoki, S. Molecular adsorbed layer formation on cooled mirrors and its impacts on cryogenic gravitational wave telescopes. Phys. Rev. D 2019, 99, 022003. [Google Scholar] [CrossRef] [Green Version]
- McCuller, L.; Whittle, C.; Ganapathy, D.; Komori, K.; Tse, M.; Fernandez-Galiana, A.; Barsotti, L.; Fritschel, P.; MacInnis, M.; Matichard, F.; et al. Frequency-Dependent Squeezing for Advanced LIGO. Phys. Rev. Lett. 2020, 124, 171102. [Google Scholar] [CrossRef]
- Danilishin, S.L.; Knyazev, E.; Voronchev, N.V.; Khalili, F.Y.; Gräf, C.; Steinlechner, S.; Hennig, J.S.; Hild, S. A new quantum speed-meter interferometer: Measuring speed to search for intermediate mass black holes. Light. Sci. Appl. 2018, 7, 11. [Google Scholar] [CrossRef] [Green Version]
- Alexandrovski, A.; Fejer, M.; Markosian, A.; Route, R. Photothermal common-path interferometry (PCI): New developments. In Solid State Lasers XVIII: Technology and Devices; Clarkson, W.A., Hodgson, N., Shori, R.K., Eds.; International Society for Optics and Photonics: Bellingham, WA, USA, 2009; Volume 7193, pp. 79–91. [Google Scholar] [CrossRef]
- Cumming, A.V.; Bell, A.S.; Barsotti, L.; Barton, M.A.; Cagnoli, G.; Cook, D.; Cunningham, L.; Evans, M.; Hammond, G.D.; Harry, G.M.; et al. Design and development of the advanced LIGO monolithic fused silica suspension. Class. Quantum Gravity 2012, 29, 035003. [Google Scholar] [CrossRef]
- Cesarini, E.; Lorenzini, M.; Campagna, E.; Martelli, F.; Piergiovanni, F.; Vetrano, F.; Losurdo, G.; Cagnoli, G. A “gentle” nodal suspension for measurements of the acoustic attenuation in materials. Rev. Sci. Instrum. 2009, 80, 053904. [Google Scholar] [CrossRef]
- Di Giovanni, M.; Giunchi, C.; Saccorotti, G.; Berbellini, A.; Boschi, L.; Olivieri, M.; De Rosa, R.; Naticchioni, L.; Oggiano, G.; Carpinelli, M.; et al. A Seismological Study of the Sos Enattos Area—The Sardinia Candidate Site for the Einstein Telescope. Seismol. Res. Lett. 2020, 92, 352–364. [Google Scholar] [CrossRef]
- McNamara, D.E.; Buland, R.P. Ambient Noise Levels in the Continental United States. Bull. Seismol. Soc. Am. 2004, 94, 1517–1527. [Google Scholar] [CrossRef]
- Obspy: A Python Framework for Processing Seismological Data. Available online: https://docs.obspy.org/ (accessed on 15 December 2021).
- Konno, K.; Ohmachi, T. Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor. Bull. Seismol. Soc. Am. 1998, 88, 228–241. [Google Scholar] [CrossRef]
- Peterson, J. Observations and Modeling of Seismic Background Noise; Open-File Report 93-322; U.S. Geological Survey: Denver, CO, USA, 1993. [CrossRef]
- Naticchioni, L.; Saccorotti, G.; Giunchi, C.; D’Orso, D. Seismometer Installation in Two Boreholes for the Sardinia Site Characterisation; Internal Note–Technical Report-ET-0426A-21. Available online: https://apps.et-gw.eu/tds/ql/?c=16147 (accessed on 4 October 2021).
- Naticchioni, L.; Boschi, V.; Calloni, E.; Capello, M.; Cardini, A.; Carpinelli, M.; Cuccuru, S.; D’Ambrosio, M.; de Rosa, R.; Giovanni, M.D.; et al. Characterization of the Sos Enattos site for the Einstein Telescope. J. Phys. 2020, 1468, 012242. [Google Scholar] [CrossRef]
- Bimonte, G.; Calloni, E.; Esposito, G.; Rosa, L. Energy-momentum tensor for a Casimir apparatus in a weak gravitational field. Phys. Rev. D 2006, 74, 085011. [Google Scholar] [CrossRef] [Green Version]
- Calloni, E.; De Laurentis, M.; De Rosa, R.; Garufi, F.; Rosa, L.; Di Fiore, L.; Esposito, G.; Rovelli, C.; Ruggi, P.; Tafuri, F. Towards weighing the condensation energy to ascertain the Archimedes force of vacuum. Phys. Rev. D 2014, 90, 022002. [Google Scholar] [CrossRef] [Green Version]
- Avino, S.; Calloni, E.; Caprara, S.; De Laurentis, M.; De Rosa, R.; Di Girolamo, T.; Errico, L.; Gagliardi, G.; Grilli, M.; Mangano, V.; et al. Progress in a Vacuum Weight Search Experiment. Physics 2020, 2, 1. [Google Scholar] [CrossRef] [Green Version]
- Allocca, A.; Avino, S.; Calloni, E.; Archimedes Collaboration. Picoradiant tiltmeter and direct ground tilt measurements at the Sos Enattos site. Eur. Phys. J. Plus 2021, 136, 1069. [Google Scholar] [CrossRef]
- Enrico, C. Archimedes Collaboration and Virgo Collaboration High-bandwidth beam balance for vacuum-weight experiment and Newtonian noise subtraction. Eur. Phys. J. Plus 2021, 136, 335. [Google Scholar] [CrossRef]
- Coughlin, M.W.; Harms, J.; Driggers, J.; McManus, D.J.; Mukund, N.; Ross, M.P.; Slagmolen, B.J.J.; Venkateswara, K. Implications of Dedicated Seismometer Measurements on Newtonian-Noise Cancellation for Advanced LIGO. Phys. Rev. Lett. 2018, 121, 221104. [Google Scholar] [CrossRef] [Green Version]
- Singha, A.; Hild, S.; Harms, J.; Tringali, M.C.; Fiori, I.; Paoletti, F.; Bulik, T.; Idzkowski, B.; Bertolini, A.; Calloni, E.; et al. Characterization of the seismic field at Virgo and improved estimates of Newtonian-noise suppression by recesses. Class. Quantum Gravity 2021, 38, 245007. [Google Scholar] [CrossRef]
- Accadia, T.; Acernese, F.; Antonucci, F.; Astone, P.; Ballardin, G.; Barone, F.; Barsuglia, M.; Bauer, T.S.; Beker, M.; Belletoile, A.; et al. The seismic Superattenuators of the Virgo gravitational waves interferometer. J. Low Freq. Noise Vib. Act. Control 2011, 30, 63–79. [Google Scholar] [CrossRef] [Green Version]
- Peña Arellano, F.E.; Sekiguchi, T.; Fujii, Y.; Takahashi, R.; Barton, M.; Hirata, N.; Shoda, A.; van Heijningen, J.; Flaminio, R.; DeSalvo, R.; et al. Characterization of the room temperature payload prototype for the cryogenic interferometric gravitational wave detector KAGRA. Rev. Sci. Instrum. 2016, 87, 034501. [Google Scholar] [CrossRef] [PubMed]
- Okutomi, K. Development of 13.5-Meter-Tall Vibration Isolation System for the Main Mirrors in KAGRA. Ph.D. Thesis, University of Tokyo, Tokyo, Japan, 2019. [Google Scholar]
- Takamori, A. Low Frequency Seismic Isolation for Gravitational Wave Detectors. Ph.D. Thesis, University of Tokyo, Tokyo, Japan, 2002. [Google Scholar]
- van Heijningen, J.V. A fifty-fold improvement of thermal noise limited inertial sensitivity by operating at cryogenic temperatures. J. Instrum. 2020, 15, P06034. [Google Scholar] [CrossRef]
- Ferreira, E.; Bocchese, F.; Badaracco, F.; van Heijningen, J.; Lucas, S.; Perali, A. Superconducting thin film spiral coils as low-noise cryogenic actuators. J. Phys. Conf. Ser. 2021, 2156, 012080. [Google Scholar] [CrossRef]
- Komma, J.; Schwarz, C.; Hofmann, G.; Heinert, D.; Nawrodt, R. hermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures. Appl. Phys. Lett. 2012, 101, 041905. [Google Scholar] [CrossRef] [Green Version]
- Badaracco, F.; van Heijningen, J.V.; Ferreira, E.C.; Perali, A. A cryogenic and superconducting inertial sensor for the Lunar Gravitational–Wave Antenna, the Einstein Telescope and Selene-physics. arXiv 2022, arXiv:2204.04150. Available online: https://arxiv.org/abs/2204.04150 (accessed on 15 October 2021).
- Shani-Kadmiel, S.; Linde, F.; Evers, L.; Vin, B. Einstein Telescope Seismic Campaigns. [Data Set]. Royal Netherlands Meteorological Institute (KNMI). 2020. Available online: https://www.fdsn.org/networks/detail/3T_2020/ (accessed on 15 October 2021). [CrossRef]
Research Line | ARC | ETpf | SarGrav | E-TEST |
---|---|---|---|---|
Seismic study | - | - | yes | yes |
Hydrogeology | - | - | - | yes |
Tilt measurement | - | - | yes | - |
Magnetic study | - | - | yes | - |
290 K suspension | - | double inverted pendulum | - | active/passive combination |
Mirror | sapphire/silicon 130 kg | silicon phase 1: 3 kg phase 2: 100 kg | - | silicon >100 kg |
Cryo-suspension | sapphire/silicon | silicon | - | silicon |
Temperature | 10K | 120 K 15 K | - | 20 K |
Cooling | low-vibration cold link | 120 K radiative 15 K conductive & “jellyfish” | - | suspended cryostat with radiative link |
Coating testing | yes | yes | - | yes |
Optical technology | - | 1550 nm 2090 nm | - | 2090 nm |
Quantum noise reduction | EPR and ponderomotive | yes | - | - |
Photodiodes | - | yes | - | yes |
Inertial sensor development | - | - | yes | yes |
Superconducting technology | - | - | yes | yes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Pace, S.; Mangano, V.; Pierini, L.; Rezaei, A.; Hennig, J.-S.; Hennig, M.; Pascucci, D.; Allocca, A.; Tosta e Melo, I.; Nair, V.G.; et al. Research Facilities for Europe’s Next Generation Gravitational-Wave Detector Einstein Telescope. Galaxies 2022, 10, 65. https://doi.org/10.3390/galaxies10030065
Di Pace S, Mangano V, Pierini L, Rezaei A, Hennig J-S, Hennig M, Pascucci D, Allocca A, Tosta e Melo I, Nair VG, et al. Research Facilities for Europe’s Next Generation Gravitational-Wave Detector Einstein Telescope. Galaxies. 2022; 10(3):65. https://doi.org/10.3390/galaxies10030065
Chicago/Turabian StyleDi Pace, Sibilla, Valentina Mangano, Lorenzo Pierini, Amirsajjad Rezaei, Jan-Simon Hennig, Margot Hennig, Daniela Pascucci, Annalisa Allocca, Iara Tosta e Melo, Vishnu G. Nair, and et al. 2022. "Research Facilities for Europe’s Next Generation Gravitational-Wave Detector Einstein Telescope" Galaxies 10, no. 3: 65. https://doi.org/10.3390/galaxies10030065
APA StyleDi Pace, S., Mangano, V., Pierini, L., Rezaei, A., Hennig, J. -S., Hennig, M., Pascucci, D., Allocca, A., Tosta e Melo, I., Nair, V. G., Orban, P., Sider, A., Shani-Kadmiel, S., & van Heijningen, J. (2022). Research Facilities for Europe’s Next Generation Gravitational-Wave Detector Einstein Telescope. Galaxies, 10(3), 65. https://doi.org/10.3390/galaxies10030065