P450 Pharmacogenetics in Indigenous North American Populations
Abstract
:1. Introduction
2. Methods
3. Results
3.1. CYP1A1
3.2. CYP1A2
3.3. CYP2A6
3.4. CYP2B6
3.5. CYP2C9
3.6. CYP2C19
3.7. CYP2D6
3.8. CYP2E1
3.9. CYP3A4 and CYP3A5
3.10. CYP4F2
4. Discussion
Acknowledgments
Conflicts of Interest
References
- Relling, M.V.; Evans, W.E. Pharmacogenomics in the clinic. Nature 2015, 526, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Popejoy, A.B.; Fullerton, S.M. Genomics is failing on diversity. Nature 2016, 538, 161–164. [Google Scholar] [CrossRef] [PubMed]
- Collins, F.S.; Varmus, H. A new initiative on precision medicine. N. Engl. J. Med. 2015, 372, 793–795. [Google Scholar] [CrossRef] [PubMed]
- Aboriginal Peoples in Canada: First Nations People, Métis and Inuit, National Household Survey; Statistics Canada: Ottawa, QC, Canada, 2011.
- Norris, T.; Vines, P.L.; Hoeffel, E.M. The American Indian and Alaska Native Population: 2010. In 2010 Census Briefs; U.S. Department of Commerce Economics and Statistics Administration U.S. CENSUS BUREAU: Suitland, MD, USA, 2012. [Google Scholar]
- INEGI. Instituto Nacional de Estadística Geografía e Informática. Mexico. 2010. Available online: http://www.inegi.gob.mx (accessed on 30 October 2017).
- INALI. Instituto Nacional de Lenguas Indígenas. Mexico. 2008. Available online: http://www.inali.gob.mx (accessed on 30 October 2017).
- Sosa-Macías, M.; Llerena, A. Cytochrome P450 genetic polymorphisms of Mexican indigenous populations. Drug Metabol. Drug Interact. 2013, 28, 193–208. [Google Scholar] [CrossRef] [PubMed]
- Jaja, C.; Burke, W.; Thummel, K.; Edwards, K.; Veenstra, D.L. Cytochrome p450 enzyme polymorphism frequency in indigenous and Native American populations: A systematic review. Community Genet. 2008, 11, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Boyer, B.B.; Dillard, D.; Woodahl, E.L.; Whitener, R.; Thummel, K.E.; Burke, W. Ethical issues in developing pharmacogenetic research partnerships with American Indigenous communities. Clin. Pharmacol. Ther. 2011, 89, 343–345. [Google Scholar] [CrossRef] [PubMed]
- Drabiak-Syed, K. Lessons from Havasupai Tribe v. Arizona State University Board of Regents: Recognizing group, cultural, and dignitary harms as legitimate risks warranting integration into research practice. J. Health Biomed. Law 2010, 6, 175–226. [Google Scholar]
- Harmon, A. Indian Tribe Wins Fight to Limit Research of Its DNA, The New York Times: New York, NY, USA, 2010.
- Foulks, E.F. Misalliances in the Barrow Alcohol Study. Am. Indian Alsk. Nativ. Ment. Health Res. 1989, 2, 7–17. [Google Scholar] [CrossRef]
- Wiwchar, D. Nuu-Chah-Nulth Blood Returns to West Coast, Ha-Shilth-Sa: Port Alberni, BC, Canada, 2004.
- Zanger, U.M.; Turpeinen, M.; Klein, K.; Schwab, M. Functional pharmacogenetics/genomics of human cytochromes P450 involved in drug biotransformation. Anal. Bioanal. Chem. 2008, 392, 1093–1108. [Google Scholar] [CrossRef] [PubMed]
- Guengerich, F.P. Cytochrome p450 and chemical toxicology. Chem. Res. Toxicol. 2008, 21, 70–83. [Google Scholar] [CrossRef] [PubMed]
- Zanger, U.M.; Schwab, M. Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol. Ther. 2013, 138, 103–141. [Google Scholar] [CrossRef] [PubMed]
- Wienkers, L.C.; Heath, T.G. Predicting in vivo drug interactions from in vitro drug discovery data. Nat. Rev. Drug Discov. 2005, 4, 825–833. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.F.; Liu, J.P.; Chowbay, B. Polymorphism of human cytochrome P450 enzymes and its clinical impact. Drug Metab. Rev. 2009, 41, 89–295. [Google Scholar] [CrossRef] [PubMed]
- Consortium, G.P.; Auton, A.; Brooks, L.D.; Durbin, R.M.; Garrison, E.P.; Kang, H.M.; Korbel, J.O.; Marchini, J.L.; McCarthy, S.; McVean, G.A.; et al. A global reference for human genetic variation. Nature 2015, 526, 68–74. [Google Scholar][Green Version]
- Zhou, Y.; Ingelman-Sundberg, M.; Lauschke, V.M. Worldwide Distribution of Cytochrome P450 Alleles: A Meta-analysis of Population-scale Sequencing Projects. Clin. Pharmacol. Ther. 2017, 102, 688–700. [Google Scholar] [CrossRef] [PubMed]
- Fragoso, J.M.; Juárez-Cedillo, T.; Hernández-Pacheco, G.; Ramírez, E.; Zuñiga, J.; Izaguirre, R.; de la Peña, A.; Granados, J.; Vargas-Alarcón, G. Cytochrome P4501A1 polymorphisms in the Amerindian and Mestizo populations of Mexico. Cell Biochem. Funct. 2005, 23, 189–193. [Google Scholar] [CrossRef] [PubMed]
- De Andrés, F.; Sosa-Macías, M.; Ramos, B.P.L.; Naranjo, M.G.; LLerena, A. CYP450 Genotype/Phenotype Concordance in Mexican Amerindian Indigenous Populations-Where to from Here for Global Precision Medicine? OMICS 2017, 21, 509–519. [Google Scholar] [CrossRef] [PubMed]
- Binnington, M.J.; Zhu, A.Z.; Renner, C.C.; Lanier, A.P.; Hatsukami, D.K.; Benowitz, N.L.; Tyndale, R.F. CYP2A6 and CYP2B6 genetic variation and its association with nicotine metabolism in South Western Alaska Native people. Pharmacogenet. Genom. 2012, 22, 429–440. [Google Scholar] [CrossRef] [PubMed]
- Tanner, J.A.; Henderson, J.A.; Buchwald, D.; Howard, B.V.; Nez Henderson, P.; Tyndale, R.F. Variation in CYP2A6 and nicotine metabolism among two American Indian tribal groups differing in smoking patterns and risk for tobacco-related cancer. Pharmacogenet. Genom. 2017, 27, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Nowak, M.P.; Sellers, E.M.; Tyndale, R.F. Canadian Native Indians exhibit unique CYP2A6 and CYP2C19 Mutant allele frequencies. Clin. Pharmacol. Ther. 1998, 64, 378–383. [Google Scholar] [CrossRef]
- Schoedel, K.A.; Hoffmann, E.B.; Rao, Y.; Sellers, E.M.; Tyndale, R.F. Ethnic variation in CYP2A6 and association of genetically slow nicotine metabolism and smoking in adult Caucasians. Pharmacogenetics 2004, 14, 615–626. [Google Scholar] [CrossRef] [PubMed]
- Gaedigk, A.; Casley, W.L.; Tyndale, R.F.; Sellers, E.M.; Jurima-Romet, M.; Leeder, J.S. Cytochrome P4502C9 (CYP2C9) allele frequencies in Canadian Native Indian and Inuit populations. Can. J. Physiol. Pharmacol. 2001, 79, 841–847. [Google Scholar] [CrossRef] [PubMed]
- Dorado, P.; Sosa-Macias, M.G.; Peñas-Lledó, E.M.; Alanis-Bañuelos, R.E.; Wong, M.L.; Licinio, J.; Lares-Asseff, I.; Llerena, A. CYP2C9 allele frequency differences between populations of Mexican-Mestizo, Mexican-Tepehuano, and Spaniards. Pharmacogenom. J. 2011, 11, 108–112. [Google Scholar] [CrossRef] [PubMed]
- Sosa-Macías, M.; Lazalde-Ramos, B.P.; Galaviz-Hernández, C.; Rangel-Villalobos, H.; Salazar-Flores, J.; Martínez-Sevilla, V.M.; Martínez-Fierro, M.L.; Dorado, P.; Wong, M.L.; Licinio, J.; et al. Influence of admixture components on CYP2C9*2 allele frequency in eight indigenous populations from Northwest Mexico. Pharmacogenom. J. 2013, 13, 567–572. [Google Scholar] [CrossRef] [PubMed]
- Castelán-Martínez, O.D.; Hoyo-Vadillo, C.; Sandoval-García, E.; Sandoval-Ramírez, L.; González-Ibarra, M.; Solano-Solano, G.; Gómez-Díaz, R.A.; Parra, E.J.; Cruz, M.; Valladares-Salgado, A. Allele frequency distribution of CYP2C9*2 and CYP2C9*3 polymorphisms in six Mexican populations. Gene 2013, 523, 167–172. [Google Scholar] [CrossRef] [PubMed]
- Fohner, A.; Muzquiz, L.I.; Austin, M.A.; Gaedigk, A.; Gordon, A.; Thornton, T.; Rieder, M.J.; Pershouse, M.A.; Putnam, E.A.; Howlett, K.; et al. Pharmacogenetics in American Indian populations: Analysis of CYP2D6, CYP3A4, CYP3A5, and CYP2C9 in the Confederated Salish and Kootenai Tribes. Pharmacogenet. Genom. 2013, 23, 403–414. [Google Scholar] [CrossRef] [PubMed]
- Fohner, A.E.; Robinson, R.; Yracheta, J.; Dillard, D.A.; Schilling, B.; Khan, B.; Hopkins, S.; Boyer, B.; Black, J.; Wiener, H.; et al. Variation in genes controlling warfarin disposition and response in American Indian and Alaska Native people: CYP2C9, VKORC1, CYP4F2, CYP4F11, GGCX. Pharmacogenet. Genom. 2015, 25, 343–353. [Google Scholar] [CrossRef] [PubMed]
- McGrane, I.R.; Loveland, J.G. Pharmacogenetics of Cytochrome P450 Enzymes in American Indian and Caucasian Children Admitted to a Psychiatric Hospital. J. Child Adolesc. Psychopharmacol. 2016, 26, 395–399. [Google Scholar] [CrossRef] [PubMed]
- Jurima-Romet, M.; Goldstein, J.A.; LeBelle, M.; Aubin, R.A.; Foster, B.C.; Walop, W.; Rode, A. CYP2C19 genotyping and associated mephenytoin hydroxylation polymorphism in a Canadian Inuit population. Pharmacogenetics 1996, 6, 329–339. [Google Scholar] [CrossRef] [PubMed]
- Oestreich, J.H.; Best, L.G.; Dobesh, P.P. Prevalence of CYP2C19 variant alleles and pharmacodynamic variability of aspirin and clopidogrel in Native Americans. Am. Heart J. 2014, 167, 413–418. [Google Scholar] [CrossRef] [PubMed]
- Salazar-Flores, J.; Torres-Reyes, L.A.; Martínez-Cortés, G.; Rubi-Castellanos, R.; Sosa-Macías, M.; Muñoz-Valle, J.F.; González-González, C.; Ramírez, A.; Román, R.; Méndez, J.L.; et al. Distribution of CYP2D6 and CYP2C19 polymorphisms associated with poor metabolizer phenotype in five Amerindian groups and western Mestizos from Mexico. Genet. Test. Mol. Biomark. 2012, 16, 1098–1104. [Google Scholar] [CrossRef] [PubMed]
- Jurima-Romet, M.; Foster, B.C.; Casley, W.L.; Rode, A.; Vloshinsky, P.; Huang, H.S.; Geertsen, S. CYP2D6-related oxidation polymorphism in a Canadian Inuit population. Can. J. Physiol. Pharmacol. 1997, 75, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Nowak, M.P.; Tyndale, R.F.; Sellers, E.M. CYP2D6 phenotype and genotype in a Canadian Native Indian population. Pharmacogenetics 1997, 7, 145–148. [Google Scholar] [CrossRef] [PubMed]
- Lares-Asseff, I.; Sosa-Macías, M.; Elizondo-Azuela, G.; Flores-Pérez, C.; Flores-Pérez, J.; Bradley-Alvarez, F. Phenotypical expression of CYP2D6 in Amerindians of Tepehuano origin from Durango, Mexico. Proc. West. Pharmacol. Soc. 2005, 48, 102–107. [Google Scholar] [PubMed]
- Sosa-Macías, M.; Elizondo, G.; Flores-Pérez, C.; Flores-Pérez, J.; Bradley-Alvarez, F.; Alanis-Bañuelos, R.E.; Lares-Asseff, I. CYP2D6 genotype and phenotype in Amerindians of Tepehuano origin and Mestizos of Durango, Mexico. J. Clin. Pharmacol. 2006, 46, 527–536. [Google Scholar] [CrossRef] [PubMed]
- Sosa-Macías, M.; Dorado, P.; Alanis-Bañuelos, R.E.; Llerena, A.; Lares-Asseff, I. Influence of CYP2D6 deletion, multiplication, −1584C-->G, 31G-->A and 2988G-->A gene polymorphisms on dextromethorphan metabolism among Mexican Tepehuanos and mestizos. Pharmacology 2010, 86, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Lazalde-Ramos, B.P.; Martínez-Fierro, M.L.; Galaviz-Hernández, C.; Garza-Veloz, I.; Naranjo, M.E.; Sosa-Macías, M.; Llerena, A. CYP2D6 gene polymorphisms and predicted phenotypes in eight indigenous groups from Northwestern Mexico. Pharmacogenomics 2014, 15, 339–348. [Google Scholar] [CrossRef] [PubMed]
- López-López, M.; Peñas-Lledó, E.; Dorado, P.; Ortega, A.; Corona, T.; Ochoa, A.; Yescas, P.; Alonso, E.; LLerena, A. CYP2D6 genetic polymorphisms in Southern Mexican Mayan Lacandones and Mestizos from Chiapas. Pharmacogenomics 2014, 15, 1859–1865. [Google Scholar] [CrossRef] [PubMed]
- Perez-Paramo, Y.X.; Hernandez-Cabrera, F.; Dorado, P.; Llerena, A.; Muñoz-Jimenez, S.; Ortiz-Lopez, R.; Rojas-Martinez, A. Interethnic relationships of CYP2D6 variants in Native and Mestizo populations sharing the same ecosystem. Pharmacogenomics 2015, 16, 703–712. [Google Scholar] [CrossRef] [PubMed]
- Howard, L.A.; Ahluwalia, J.S.; Lin, S.K.; Sellers, E.M.; Tyndale, R.F. CYP2E1*1D regulatory polymorphism: Association with alcohol and nicotine dependence. Pharmacogenetics 2003, 13, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Gordillo-Bastidas, E.; Panduro, A.; Gordillo-Bastidas, D.; Zepeda-Carrillo, E.A.; García-Bañuelos, J.J.; Muñoz-Valle, J.F.; Bastidas-Ramírez, B.E. Polymorphisms of alcohol metabolizing enzymes in indigenous Mexican population: Unusual high frequency of CYP2E1*c2 allele. Alcohol. Clin. Exp. Res. 2010, 34, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Hernández, O.D.; Lares-Asseff, I.; Sosa-Macias, M.; Vega, L.; Albores, A.; Elizondo, G. A comparative study of CYP3A4 polymorphisms in Mexican Amerindian and Mestizo populations. Pharmacology 2008, 81, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Eugster, H.P.; Probst, M.; Würgler, F.E.; Sengstag, C. Caffeine, estradiol, and progesterone interact with human CYP1A1 and CYP1A2. Evidence from cDNA-directed expression in Saccharomyces cerevisiae. Drug Metab. Dispos. 1993, 21, 43–49. [Google Scholar] [PubMed]
- Indulski, J.A.; Lutz, W. Metabolic genotype in relation to individual susceptibility to environmental carcinogens. Int. Arch. Occup. Environ. Health 2000, 73, 71–85. [Google Scholar] [CrossRef] [PubMed]
- Spurr, N.K.; Gough, A.C.; Stevenson, K.; Wolf, C.R. Msp-1 polymorphism detected with a cDNA probe for the P-450 I family on chromosome 15. Nucleic Acids Res. 1987, 15, 5901. [Google Scholar] [CrossRef] [PubMed]
- Cosma, G.; Crofts, F.; Taioli, E.; Toniolo, P.; Garte, S. Relationship between genotype and function of the human CYP1A1 gene. J. Toxicol. Environ. Health 1993, 40, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Crofts, F.; Taioli, E.; Trachman, J.; Cosma, G.N.; Currie, D.; Toniolo, P.; Garte, S.J. Functional significance of different human CYP1A1 genotypes. Carcinogenesis 1994, 15, 2961–2963. [Google Scholar] [CrossRef] [PubMed]
- Bertilsson, L.; Carrillo, J.A.; Dahl, M.L.; Llerena, A.; Alm, C.; Bondesson, U.; Lindström, L.; Rodriguez de la Rubia, I.; Ramos, S.; Benitez, J. Clozapine disposition covaries with CYP1A2 activity determined by a caffeine test. Br. J. Clin. Pharmacol. 1994, 38, 471–473. [Google Scholar] [CrossRef] [PubMed]
- Störmer, E.; von Moltke, L.L.; Shader, R.I.; Greenblatt, D.J. Metabolism of the antidepressant mirtazapine in vitro: Contribution of cytochromes P-450 1A2, 2D6, and 3A4. Drug Metab. Dispos. 2000, 28, 1168–1175. [Google Scholar] [PubMed]
- Ha, H.R.; Chen, J.; Freiburghaus, A.U.; Follath, F. Metabolism of theophylline by cDNA-expressed human cytochromes P-450. Br. J. Clin. Pharmacol. 1995, 39, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Granfors, M.T.; Backman, J.T.; Laitila, J.; Neuvonen, P.J. Tizanidine is mainly metabolized by cytochrome p450 1A2 in vitro. Br. J. Clin. Pharmacol. 2004, 57, 349–353. [Google Scholar] [CrossRef] [PubMed]
- Fuhr, U.; Kober, S.; Zaigler, M.; Mutschler, E.; Spahn-Langguth, H. Rate-limiting biotransformation of triamterene is mediated by CYP1A2. Int. J. Clin. Pharmacol. Ther. 2005, 43, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Djordjevic, N.; Ghotbi, R.; Bertilsson, L.; Jankovic, S.; Aklillu, E. Induction of CYP1A2 by heavy coffee consumption in Serbs and Swedes. Eur. J. Clin. Pharmacol. 2008, 64, 381–385. [Google Scholar] [CrossRef] [PubMed]
- Ghotbi, R.; Christensen, M.; Roh, H.K.; Ingelman-Sundberg, M.; Aklillu, E.; Bertilsson, L. Comparisons of CYP1A2 genetic polymorphisms, enzyme activity and the genotype-phenotype relationship in Swedes and Koreans. Eur. J. Clin. Pharmacol. 2007, 63, 537–546. [Google Scholar] [CrossRef] [PubMed]
- Djordjevic, N.; Ghotbi, R.; Jankovic, S.; Aklillu, E. Induction of CYP1A2 by heavy coffee consumption is associated with the CYP1A2 −163C>A polymorphism. Eur. J. Clin. Pharmacol. 2010, 66, 697–703. [Google Scholar] [CrossRef] [PubMed]
- Hukkanen, J.; Jacob, P.; Benowitz, N.L. Metabolism and disposition kinetics of nicotine. Pharmacol. Rev. 2005, 57, 79–115. [Google Scholar] [CrossRef] [PubMed]
- Komatsu, T.; Yamazaki, H.; Shimada, N.; Nakajima, M.; Yokoi, T. Roles of cytochromes P450 1A2, 2A6, and 2C8 in 5-fluorouracil formation from Tegafur, an anticancer prodrug, in human liver microsomes. Drug Metab. Dispos. 2000, 28, 1457–1463. [Google Scholar] [PubMed]
- Kiang, T.K.; Ho, P.C.; Anari, M.R.; Tong, V.; Abbott, F.S.; Chang, T.K. Contribution of CYP2C9, CYP2A6, and CYP2B6 to Valproic acid metabolism in hepatic Microsomes from individuals with the CYP2C9*1/*1 genotype. Toxicol. Sci. 2006, 94, 261–271. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.; Yu, J.T.; Sun, Y.P.; Ou, J.R.; Song, J.H.; Yu, Y. The influence of cytochrome oxidase CYP2A6, CYP2B6, and CYP2C9 polymorphisms on the plasma concentrations of Valproic acid in epileptic patients. Clin. Neurol. Neurosurg. 2010, 112, 320–323. [Google Scholar] [CrossRef] [PubMed]
- Miles, J.S.; McLaren, A.W.; Forrester, L.M.; Glancey, M.J.; Lang, M.A.; Wolf, C.R. Identification of the human liver cytochrome P-450 responsible for Coumarin 7-hydroxylase activity. Biochem. J. 1990, 267, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Sellers, E.M.; Ramamoorthy, Y.; Zeman, M.V.; Djordjevic, M.V.; Tyndale, R.F. The effect of methoxsalen on nicotine and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) metabolism in vivo. Nicot. Tob. Res. 2003, 5, 891–899. [Google Scholar] [CrossRef] [PubMed]
- Fujita, K.; Kamataki, T. Predicting the mutagenicity of tobacco-related N-nitrosamines in humans using 11 strains of Salmonella typhimurium YG7108, each coexpressing a form of human cytochrome P450 along with NADPH-cytochrome P450 reductase. Environ. Mol. Mutagen. 2001, 38, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Ray, R.; Tyndale, R.F.; Lerman, C. Nicotine dependence pharmacogenetics: Role of genetic variation in nicotine-metabolizing enzymes. J. Neurogenet. 2009, 23, 252–261. [Google Scholar] [CrossRef] [PubMed]
- Benowitz, N.L.; Swan, G.E.; Jacob, P.; Lessov-Schlaggar, C.N.; Tyndale, R.F. CYP2A6 genotype and the metabolism and disposition kinetics of nicotine. Clin. Pharmacol. Ther. 2006, 80, 457–467. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, M.; Yamamoto, T.; Nunoya, K.; Yokoi, T.; Nagashima, K.; Inoue, K.; Funae, Y.; Shimada, N.; Kamataki, T.; Kuroiwa, Y. Characterization of CYP2A6 involved in 3′-hydroxylation of cotinine in human liver microsomes. J. Pharmacol. Exp. Ther. 1996, 277, 1010–1015. [Google Scholar] [PubMed]
- Dempsey, D.; Tutka, P.; Jacob, P.; Allen, F.; Schoedel, K.; Tyndale, R.F.; Benowitz, N.L. Nicotine metabolite ratio as an index of cytochrome P450 2A6 metabolic activity. Clin. Pharmacol. Ther. 2004, 76, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Tanner, J.A.; Chenoweth, M.J.; Tyndale, R.F. Pharmacogenetics of nicotine and associated smoking behaviors. Curr. Top. Behav. Neurosci. 2015, 23, 37–86. [Google Scholar] [PubMed]
- Lerman, C.; Tyndale, R.; Patterson, F.; Wileyto, E.P.; Shields, P.G.; Pinto, A.; Benowitz, N. Nicotine metabolite ratio predicts efficacy of transdermal nicotine for smoking cessation. Clin. Pharmacol. Ther. 2006, 79, 600–608. [Google Scholar] [CrossRef] [PubMed]
- Schnoll, R.A.; Patterson, F.; Wileyto, E.P.; Tyndale, R.F.; Benowitz, N.; Lerman, C. Nicotine metabolic rate predicts successful smoking cessation with transdermal nicotine: A validation study. Pharmacol. Biochem. Behav. 2009, 92, 6–11. [Google Scholar] [CrossRef] [PubMed]
- Lerman, C.; Jepson, C.; Wileyto, E.P.; Patterson, F.; Schnoll, R.; Mroziewicz, M.; Benowitz, N.; Tyndale, R.F. Genetic variation in nicotine metabolism predicts the efficacy of extended-duration transdermal nicotine therapy. Clin. Pharmacol. Ther. 2010, 87, 553–557. [Google Scholar] [CrossRef] [PubMed]
- Lerman, C.; Schnoll, R.A.; Hawk, L.W.; Cinciripini, P.; George, T.P.; Wileyto, E.P.; Swan, G.E.; Benowitz, N.L.; Heitjan, D.F.; Tyndale, R.F.; et al. Use of the nicotine metabolite ratio as a genetically informed biomarker of response to nicotine patch or varenicline for smoking cessation: A randomised, double-blind placebo-controlled trial. Lancet Respir. Med. 2015, 3, 131–138. [Google Scholar] [CrossRef]
- Chenoweth, M.J.; Tyndale, R.F. Pharmacogenetic Optimization of Smoking Cessation Treatment. Trends Pharmacol. Sci. 2017, 38, 55–66. [Google Scholar] [CrossRef] [PubMed]
- Wassenaar, C.A.; Dong, Q.; Wei, Q.; Amos, C.I.; Spitz, M.R.; Tyndale, R.F. Relationship between CYP2A6 and CHRNA5-CHRNA3-CHRNB4 variation and smoking behaviors and lung cancer risk. J. Natl. Cancer Inst. 2011, 103, 1342–1346. [Google Scholar] [CrossRef] [PubMed]
- Lek, M.; Karczewski, K.J.; Minikel, E.V.; Samocha, K.E.; Banks, E.; Fennell, T.; O’Donnell-Luria, A.H.; Ware, J.S.; Hill, A.J.; Cummings, B.B.; et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 2016, 536, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Machiela, M.J.; Chanock, S.J. LDlink: A web-based application for exploring population-specific haplotype structure and linking correlated alleles of possible functional variants. Bioinformatics 2015, 31, 3555–3557. [Google Scholar] [CrossRef] [PubMed]
- Faucette, S.R.; Hawke, R.L.; Lecluyse, E.L.; Shord, S.S.; Yan, B.; Laethem, R.M.; Lindley, C.M. Validation of bupropion hydroxylation as a selective marker of human cytochrome P450 2B6 catalytic activity. Drug Metab. Dispos. 2000, 28, 1222–1230. [Google Scholar] [PubMed]
- Hesse, L.M.; He, P.; Krishnaswamy, S.; Hao, Q.; Hogan, K.; von Moltke, L.L.; Greenblatt, D.J.; Court, M.H. Pharmacogenetic determinants of Interindividual variability in bupropion hydroxylation by cytochrome P450 2B6 in human liver microsomes. Pharmacogenetics 2004, 14, 225–238. [Google Scholar] [CrossRef] [PubMed]
- Chang, T.K.; Weber, G.F.; Crespi, C.L.; Waxman, D.J. Differential activation of cyclophosphamide and inofosphamide by cytochromes P-450 2B and 3A in human liver microsomes. Cancer Res. 1993, 53, 5629–5637. [Google Scholar] [PubMed]
- Ward, B.A.; Gorski, J.C.; Jones, D.R.; Hall, S.D.; Flockhart, D.A.; Desta, Z. The cytochrome P450 2B6 (CYP2B6) is the main catalyst of efavirenz primary and secondary metabolism: Implication for HIV/AIDS therapy and utility of Efavirenz as a substrate marker of CYP2B6 catalytic activity. J. Pharmacol. Exp. Ther. 2003, 306, 287–300. [Google Scholar] [CrossRef] [PubMed]
- Hijazi, Y.; Boulieu, R. Contribution of CYP3A4, CYP2B6, and CYP2C9 isoforms to N-demethylation of ketamine in human liver microsomes. Drug Metab. Dispos. 2002, 30, 853–858. [Google Scholar] [CrossRef] [PubMed]
- Yanagihara, Y.; Kariya, S.; Ohtani, M.; Uchino, K.; Aoyama, T.; Yamamura, Y.; Iga, T. Involvement of CYP2B6 in n-demethylation of ketamine in human liver microsomes. Drug Metab. Dispos. 2001, 29, 887–890. [Google Scholar] [PubMed]
- Totah, R.A.; Sheffels, P.; Roberts, T.; Whittington, D.; Thummel, K.; Kharasch, E.D. Role of CYP2B6 in stereoselective human methadone metabolism. Anesthesiology 2008, 108, 363–374. [Google Scholar] [CrossRef] [PubMed]
- Yamanaka, H.; Nakajima, M.; Nishimura, K.; Yoshida, R.; Fukami, T.; Katoh, M.; Yokoi, T. Metabolic profile of nicotine in subjects whose CYP2A6 gene is deleted. Eur. J. Pharm. Sci. 2004, 22, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Ray, R.; Schnoll, R.A.; Lerman, C. Nicotine dependence: Biology, behavior, and treatment. Annu. Rev. Med. 2009, 60, 247–260. [Google Scholar] [CrossRef] [PubMed]
- Johnstone, E.; Benowitz, N.; Cargill, A.; Jacob, R.; Hinks, L.; Day, I.; Murphy, M.; Walton, R. Determinants of the rate of nicotine metabolism and effects on smoking behavior. Clin. Pharmacol. Ther. 2006, 80, 319–330. [Google Scholar] [CrossRef] [PubMed]
- Haberl, M.; Anwald, B.; Klein, K.; Weil, R.; Fuss, C.; Gepdiremen, A.; Zanger, U.M.; Meyer, U.A.; Wojnowski, L. Three haplotypes associated with CYP2A6 phenotypes in Caucasians. Pharmacogenet. Genom. 2005, 15, 609–624. [Google Scholar] [CrossRef]
- Miners, J.O.; Birkett, D.J. Cytochrome P4502C9: An enzyme of major importance in human drug metabolism. Br. J. Clin. Pharmacol. 1998, 45, 525–538. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, H.; Inoue, K.; Chiba, K.; Ozawa, N.; Kawai, T.; Suzuki, Y.; Goldstein, J.A.; Guengerich, F.P.; Shimada, T. Comparative studies on the catalytic roles of cytochrome P450 2C9 and its Cys- and Leu-variants in the oxidation of warfarin, flurbiprofen, and diclofenac by human liver microsomes. Biochem. Pharmacol. 1998, 56, 243–251. [Google Scholar] [CrossRef]
- Tracy, T.S.; Rosenbluth, B.W.; Wrighton, S.A.; Gonzalez, F.J.; Korzekwa, K.R. Role of cytochrome P450 2C9 and an allelic variant in the 4′-hydroxylation of (R)- and (S)-flurbiprofen. Biochem. Pharmacol. 1995, 49, 1269–1275. [Google Scholar] [CrossRef]
- Hamman, M.A.; Thompson, G.A.; Hall, S.D. Regioselective and stereoselective metabolism of ibuprofen by human cytochrome P450 2C. Biochem. Pharmacol. 1997, 54, 33–41. [Google Scholar] [CrossRef]
- Miners, J.O.; Coulter, S.; Tukey, R.H.; Veronese, M.E.; Birkett, D.J. Cytochromes P450, 1A2, and 2C9 are responsible for the human hepatic O-demethylation of R- and S-naproxen. Biochem. Pharmacol. 1996, 51, 1003–1008. [Google Scholar] [CrossRef]
- Stearns, R.A.; Chakravarty, P.K.; Chen, R.; Chiu, S.H. Biotransformation of losartan to its active carboxylic acid metabolite in human liver microsomes. Role of cytochrome P4502C and 3A subfamily members. Drug Metab. Dispos. 1995, 23, 207–215. [Google Scholar] [PubMed]
- Rettie, A.E.; Korzekwa, K.R.; Kunze, K.L.; Lawrence, R.F.; Eddy, A.C.; Aoyama, T.; Gelboin, H.V.; Gonzalez, F.J.; Trager, W.F. Hydroxylation of warfarin by human cDNA-expressed cytochrome P-450: A role for P-4502C9 in the etiology of (S)-warfarin-drug interactions. Chem. Res. Toxicol. 1992, 5, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Miners, J.O.; Birkett, D.J. Use of tolbutamide as a substrate probe for human hepatic cytochrome P450 2C9. Methods Enzymol. 1996, 272, 139–145. [Google Scholar] [PubMed]
- Giancarlo, G.M.; Venkatakrishnan, K.; Granda, B.W.; von Moltke, L.L.; Greenblatt, D.J. Relative contributions of CYP2C9 and 2C19 to phenytoin 4-hydroxylation in vitro: Inhibition by sulfaphenazole, omeprazole, and ticlopidine. Eur. J. Clin. Pharmacol. 2001, 57, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Schilling, B. Anticoagulation Care for Alaska Native Customer-Owners within the Nuka Model of Care, 7th ed.; Dawn AC Anticoagulation Management Software North American User Group Meeting: La Jolla, CA, USA, 2013. [Google Scholar]
- Johnson, J.A.; Caudle, K.E.; Gong, L.; Whirl-Carrillo, M.; Stein, C.M.; Scott, S.A.; Lee, M.T.; Gage, B.F.; Kimmel, S.E.; Perera, M.A.; et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for pharmacogenetics-guided warfarin dosing: 2017 Update. Clin. Pharmacol. Ther. 2017, 102, 397–404. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.L.; Horne, B.D.; Stevens, S.M.; Grove, A.S.; Barton, S.; Nicholas, Z.P.; Kahn, S.F.; May, H.T.; Samuelson, K.M.; Muhlestein, J.B.; et al. Randomized trial of genotype-guided versus standard warfarin dosing in patients initiating oral anticoagulation. Circulation 2007, 116, 2563–2570. [Google Scholar] [CrossRef] [PubMed]
- Starita, L.M.; Ahituv, N.; Dunham, M.J.; Kitzman, J.O.; Roth, F.P.; Seelig, G.; Shendure, J.; Fowler, D.M. Variant interpretation: Functional assays to the rescue. Am. J. Hum. Genet. 2017, 101, 315–325. [Google Scholar] [CrossRef] [PubMed]
- Kazui, M.; Nishiya, Y.; Ishizuka, T.; Hagihara, K.; Farid, N.A.; Okazaki, O.; Ikeda, T.; Kurihara, A. Identification of the human cytochrome P450 enzymes involved in the two oxidative steps in the bioactivation of clopidogrel to its pharmacologically active metabolite. Drug Metab. Dispos. 2010, 38, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Andersson, T.; Regårdh, C.G.; Dahl-Puustinen, M.L.; Bertilsson, L. Slow omeprazole metabolizers are also poor S-mephenytoin hydroxylators. Ther. Drug Monit. 1990, 12, 415–416. [Google Scholar] [CrossRef] [PubMed]
- Olesen, O.V.; Linnet, K. Metabolism of the tricyclic antidepressant amitriptyline by cDNA-expressed human cytochrome P450 enzymes. Pharmacology 1997, 55, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Skjelbo, E.; Brøsen, K.; Hallas, J.; Gram, L.F. The mephenytoin oxidation polymorphism is partially responsible for the N-demethylation of imipramine. Clin. Pharmacol. Ther. 1991, 49, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, K.; Chiba, K.; Yagi, T.; Shimada, N.; Taniguchi, T.; Horie, T.; Tani, M.; Yamamoto, T.; Ishizaki, T.; Kuroiwa, Y. Identification of cytochrome P450 isoforms involved in citalopram N-demethylation by human liver microsomes. J. Pharmacol. Exp. Ther. 1997, 280, 927–933. [Google Scholar] [PubMed]
- Olesen, O.V.; Linnet, K. Studies on the stereoselective metabolism of citalopram by human liver microsomes and cDNA-expressed cytochrome P450 enzymes. Pharmacology 1999, 59, 298–309. [Google Scholar] [CrossRef] [PubMed]
- von Moltke, L.L.; Greenblatt, D.J.; Duan, S.X.; Schmider, J.; Wright, C.E.; Harmatz, J.S.; Shader, R.I. Human cytochromes mediating N-demethylation of fluoxetine in vitro. Psychopharmacology 1997, 132, 402–407. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.H.; Wang, W.; Zhao, X.J.; Huang, S.L.; Zhu, B.; He, N.; Shu, Y.; Liu, Z.Q.; Zhou, H.H. Evidence for involvement of polymorphic CYP2C19 and 2C9 in the N-demethylation of sertraline in human liver microsomes. Br. J. Clin. Pharmacol. 1999, 48, 416–423. [Google Scholar] [CrossRef] [PubMed]
- Andersson, T.; Miners, J.O.; Veronese, M.E.; Birkett, D.J. Diazepam metabolism by human liver microsomes is mediated by both S-mephenytoin hydroxylase and CYP3A isoforms. Br. J. Clin. Pharmacol. 1994, 38, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Sim, S.C.; Risinger, C.; Dahl, M.L.; Aklillu, E.; Christensen, M.; Bertilsson, L.; Ingelman-Sundberg, M. A common novel CYP2C19 gene variant causes ultrarapid drug metabolism relevant for the drug response to proton pump inhibitors and antidepressants. Clin. Pharmacol. Ther. 2006, 79, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, J.A.; Faletto, M.B.; Romkes-Sparks, M.; Sullivan, T.; Kitareewan, S.; Raucy, J.L.; Lasker, J.M.; Ghanayem, B.I. Evidence that CYP2C19 is the major (S)-mephenytoin 4′-hydroxylase in humans. Biochemistry 1994, 33, 1743–1752. [Google Scholar] [CrossRef] [PubMed]
- Wrighton, S.A.; Stevens, J.C.; Becker, G.W.; VandenBranden, M. Isolation and characterization of human liver cytochrome P450 2C19: Correlation between 2C19 and S-mephenytoin 4′-hydroxylation. Arch. Biochem. Biophys. 1993, 306, 240–245. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, J.A.; de Morais, S.M. Biochemistry and molecular biology of the human CYP2C subfamily. Pharmacogenetics 1994, 4, 285–299. [Google Scholar] [CrossRef] [PubMed]
- Wedlund, P.J.; Aslanian, W.S.; McAllister, C.B.; Wilkinson, G.R.; Branch, R.A. Mephenytoin hydroxylation deficiency in Caucasians: Frequency of a new oxidative drug metabolism polymorphism. Clin. Pharmacol. Ther. 1984, 36, 773–780. [Google Scholar] [CrossRef] [PubMed]
- Dahl, M.L.; Gunes, A. Implications of Inter-Individual Differences in Clopidogrel Metabolism, with Focus on Pharmacogenetics. Pharmaceuticals 2010, 3, 782–794. [Google Scholar] [CrossRef] [PubMed]
- Poulsen, L.; Brøsen, K.; Arendt-Nielsen, L.; Gram, L.F.; Elbaek, K.; Sindrup, S.H. Codeine and morphine in extensive and poor metabolizers of sparteine: Pharmacokinetics, analgesic effect and side effects. Eur. J. Clin. Pharmacol. 1996, 51, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Otton, S.V.; Schadel, M.; Cheung, S.W.; Kaplan, H.L.; Busto, U.E.; Sellers, E.M. CYP2D6 phenotype determines the metabolic conversion of hydrocodone to hydromorphone. Clin. Pharmacol. Ther. 1993, 54, 463–472. [Google Scholar] [CrossRef] [PubMed]
- Olesen, O.V.; Linnet, K. Hydroxylation and demethylation of the tricyclic antidepressant nortriptyline by cDNA-expressed human cytochrome P-450 isozymes. Drug Metab. Dispos. 1997, 25, 740–744. [Google Scholar] [PubMed]
- Fogelman, S.M.; Schmider, J.; Venkatakrishnan, K.; von Moltke, L.L.; Harmatz, J.S.; Shader, R.I.; Greenblatt, D.J. O- and N-demethylation of venlafaxine in vitro by human liver microsomes and by microsomes from cDNA-transfected cells: Effect of metabolic inhibitors and SSRI antidepressants. Neuropsychopharmacology 1999, 20, 480–490. [Google Scholar] [CrossRef]
- Yasui-Furukori, N.; Hidestrand, M.; Spina, E.; Facciolá, G.; Scordo, M.G.; Tybring, G. Different enantioselective 9-hydroxylation of risperidone by the two human CYP2D6 and CYP3A4 enzymes. Drug Metab. Dispos. 2001, 29, 1263–1268. [Google Scholar] [PubMed]
- Muralidharan, G.; Cooper, J.K.; Hawes, E.M.; Korchinski, E.D.; Midha, K.K. Quinidine inhibits the 7-hydroxylation of chlorpromazine in extensive metabolisers of debrisoquine. Eur. J. Clin. Pharmacol. 1996, 50, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Lennard, M.S.; Silas, J.H.; Freestone, S.; Trevethick, J. Defective metabolism of metoprolol in poor hydroxylators of debrisoquine. Br. J. Clin. Pharmacol. 1982, 14, 301–303. [Google Scholar] [CrossRef] [PubMed]
- Ward, S.A.; Walle, T.; Walle, U.K.; Wilkinson, G.R.; Branch, R.A. Propranolol’s metabolism is determined by both mephenytoin and debrisoquin hydroxylase activities. Clin. Pharmacol. Ther. 1989, 45, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Oldham, H.G.; Clarke, S.E. In vitro identification of the human cytochrome P450 enzymes involved in the metabolism of R(+)- and S(−)-carvedilol. Drug Metab. Dispos. 1997, 25, 970–977. [Google Scholar] [PubMed]
- Gasche, Y.; Daali, Y.; Fathi, M.; Chiappe, A.; Cottini, S.; Dayer, P.; Desmeules, J. Codeine intoxication associated with ultrarapid CYP2D6 metabolism. N. Engl. J. Med. 2004, 351, 2827–2831. [Google Scholar] [CrossRef] [PubMed]
- Kelly, L.E.; Rieder, M.; van den Anker, J.; Malkin, B.; Ross, C.; Neely, M.N.; Carleton, B.; Hayden, M.R.; Madadi, P.; Koren, G. More codeine fatalities after tonsillectomy in North American children. Pediatrics 2012, 129, e1343–e1347. [Google Scholar] [CrossRef] [PubMed]
- Schmid, B.; Bircher, J.; Preisig, R.; Küpfer, A. Polymorphic dextromethorphan metabolism: Co-segregation of oxidative O-demethylation with debrisoquin hydroxylation. Clin. Pharmacol. Ther. 1985, 38, 618–624. [Google Scholar] [CrossRef] [PubMed]
- Küpfer, A.; Schmid, B.; Pfaff, G. Pharmacogenetics of dextromethorphan O-demethylation in man. Xenobiotica 1986, 16, 421–433. [Google Scholar] [CrossRef] [PubMed]
- Broly, F.; Gaedigk, A.; Heim, M.; Eichelbaum, M.; Morike, K.; Meyer, U.A. Debrisoquine/sparteine hydroxylation genotype and phenotype: Analysis of common mutations and alleles of CYP2D6 in a European population. DNA Cell Biol. 1991, 10, 545–558. [Google Scholar] [CrossRef] [PubMed]
- Evans, W.E.; Relling, M.V.; Rahman, A.; McLeod, H.L.; Scott, E.P.; Lin, J.S. Genetic basis for a lower prevalence of deficient CYP2D6 oxidative drug metabolism phenotypes in black Americans. J. Clin. Investig. 1993, 91, 2150–2154. [Google Scholar] [CrossRef] [PubMed]
- Dahl, M.L.; Yue, Q.Y.; Roh, H.K.; Johansson, I.; Säwe, J.; Sjöqvist, F.; Bertilsson, L. Genetic analysis of the CYP2D locus in relation to debrisoquine hydroxylation capacity in Korean, Japanese and Chinese subjects. Pharmacogenetics 1995, 5, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.L.; Huang, J.D.; Lai, M.D.; Liu, B.H.; Lai, M.L. Molecular basis of genetic variation in debrisoquin hydroxylation in Chinese subjects: Polymorphism in RFLP and DNA sequence of CYP2D6. Clin. Pharmacol. Ther. 1993, 53, 410–418. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Otton, S.V.; Sproule, B.A.; Busto, U.; Inaba, T.; Kalow, W.; Sellers, E.M. Inhibition of human cytochrome P450 2D6 (CYP2D6) by methadone. Br. J. Clin. Pharmacol. 1993, 35, 30–34. [Google Scholar] [CrossRef] [PubMed]
- Borges, S.; Desta, Z.; Li, L.; Skaar, T.C.; Ward, B.A.; Nguyen, A.; Jin, Y.; Storniolo, A.M.; Nikoloff, D.M.; Wu, L.; et al. Quantitative effect of CYP2D6 genotype and inhibitors on tamoxifen metabolism: Implication for optimization of breast cancer treatment. Clin. Pharmacol. Ther. 2006, 80, 61–74. [Google Scholar] [CrossRef] [PubMed]
- Goetz, M.P.; Kamal, A.; Ames, M.M. Tamoxifen pharmacogenomics: The role of CYP2D6 as a predictor of drug response. Clin. Pharmacol. Ther. 2008, 83, 160–166. [Google Scholar] [CrossRef] [PubMed]
- Ullrich, V.; Weber, P.; Wollenberg, P. Tetrahydrofurane—An inhibitor for ethanol-induced liver microsomal cytochrome P450. Biochem. Biophys. Res. Commun. 1975, 64, 808–813. [Google Scholar] [CrossRef]
- Ohnishi, K.; Lieber, C.S. Reconstitution of the microsomal ethanol-oxidizing system. Qualitative and quantitative changes of cytochrome P-450 after chronic ethanol consumption. J. Biol. Chem. 1977, 252, 7124–7131. [Google Scholar] [PubMed]
- Lasker, J.M.; Raucy, J.; Kubota, S.; Bloswick, B.P.; Black, M.; Lieber, C.S. Purification and characterization of human liver cytochrome P-450-ALC. Biochem. Biophys. Res. Commun. 1987, 148, 232–238. [Google Scholar] [CrossRef]
- Yang, C.S.; Tu, Y.Y.; Koop, D.R.; Coon, M.J. Metabolism of nitrosamines by purified rabbit liver cytochrome P-450 isozymes. Cancer Res. 1985, 45, 1140–1145. [Google Scholar] [PubMed]
- Morgan, E.T.; Koop, D.R.; Coon, M.J. Comparison of six rabbit liver cytochrome P-450 isozymes in formation of a reactive metabolite of acetaminophen. Biochem. Biophys. Res. Commun. 1983, 112, 8–13. [Google Scholar] [CrossRef]
- Lieber, C.S. Cytochrome P-4502E1: Its physiological and pathological role. Physiol. Rev. 1997, 77, 517–544. [Google Scholar] [CrossRef] [PubMed]
- Tsutsumi, M.; Lasker, J.M.; Shimizu, M.; Rosman, A.S.; Lieber, C.S. The intralobular distribution of ethanol-inducible P450IIE1 in rat and human liver. Hepatology 1989, 10, 437–446. [Google Scholar] [CrossRef] [PubMed]
- Koop, D.R.; Chernosky, A.; Brass, E.P. Identification and induction of cytochrome P450 2E1 in rat Kupffer cells. J. Pharmacol. Exp. Ther. 1991, 258, 1072–1076. [Google Scholar] [PubMed]
- McCarver, D.G.; Byun, R.; Hines, R.N.; Hichme, M.; Wegenek, W. A genetic polymorphism in the regulatory sequences of human CYP2E1: Association with increased chlorzoxazone hydroxylation in the presence of obesity and ethanol intake. Toxicol. Appl. Pharmacol. 1998, 152, 276–281. [Google Scholar] [CrossRef] [PubMed]
- Ueno, Y.; Adachi, J.; Imamichi, H.; Nishimura, A.; Tatsuno, Y. Effect of the cytochrome P-450IIE1 genotype on ethanol elimination rate in alcoholics and control subjects. Alcohol. Clin. Exp. Res. 1996, 20, 17A–21A. [Google Scholar] [CrossRef] [PubMed]
- Ueshima, Y.; Tsutsumi, M.; Takase, S.; Matsuda, Y.; Kawahara, H. Acetaminophen metabolism in patients with different cytochrome P-4502E1 genotypes. Alcohol. Clin. Exp. Res. 1996, 20, 25A–28A. [Google Scholar] [CrossRef] [PubMed]
- Grove, J.; Brown, A.S.; Daly, A.K.; Bassendine, M.F.; James, O.F.; Day, C.P. The RsaI polymorphism of CYP2E1 and susceptibility to alcoholic liver disease in Caucasians: Effect on age of presentation and dependence on alcohol dehydrogenase genotype. Pharmacogenetics 1998, 8, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Lamba, J.K.; Lin, Y.S.; Schuetz, E.G.; Thummel, K.E. Genetic contribution to variable human CYP3A-mediated metabolism. Adv. Drug Deliv. Rev. 2002, 54, 1271–1294. [Google Scholar] [CrossRef]
- Hustert, E.; Haberl, M.; Burk, O.; Wolbold, R.; He, Y.Q.; Klein, K.; Nuessler, A.C.; Neuhaus, P.; Klattig, J.; Eiselt, R.; et al. The genetic determinants of the CYP3A5 polymorphism. Pharmacogenetics 2001, 11, 773–779. [Google Scholar] [CrossRef] [PubMed]
- Kuehl, P.; Zhang, J.; Lin, Y.; Lamba, J.; Assem, M.; Schuetz, J.; Watkins, P.B.; Daly, A.; Wrighton, S.A.; Hall, S.D.; et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat. Genet. 2001, 27, 383–391. [Google Scholar] [CrossRef] [PubMed]
- Okubo, M.; Murayama, N.; Shimizu, M.; Shimada, T.; Guengerich, F.P.; Yamazaki, H. CYP3A4 intron 6 C>T polymorphism (CYP3A4*22) is associated with reduced CYP3A4 protein level and function in human liver microsomes. J. Toxicol. Sci. 2013, 38, 349–354. [Google Scholar] [CrossRef] [PubMed]
- Elens, L.; Becker, M.L.; Haufroid, V.; Hofman, A.; Visser, L.E.; Uitterlinden, A.G.; Stricker, B.C.H.; van Schaik, R.H. Novel CYP3A4 intron 6 single nucleotide polymorphism is associated with simvastatin-mediated cholesterol reduction in the Rotterdam Study. Pharmacogenet. Genom. 2011, 21, 861–866. [Google Scholar] [CrossRef] [PubMed]
- Elens, L.; Bouamar, R.; Hesselink, D.A.; Haufroid, V.; van Gelder, T.; van Schaik, R.H. The new CYP3A4 intron 6 C>T polymorphism (CYP3A4*22) is associated with an increased risk of delayed graft function and worse renal function in cyclosporine-treated kidney transplant patients. Pharmacogenet. Genom. 2012, 22, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Klein, K.; Zanger, U.M. Pharmacogenomics of Cytochrome P450 3A4: Recent Progress toward the “Missing Heritability” Problem. Front. Genet. 2013, 4, 12. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Sadee, W. CYP3A4 intronic SNP rs35599367 (CYP3A4*22) alters RNA splicing. Pharmacogenet. Genom. 2016, 26, 40–43. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Chen, M.; Wang, X.; Yu, S. Patients with CYP3A4*1G genetic polymorphism consumed significantly lower amount of sufentanil in general anesthesia during lung resection. Medicine 2017, 96, e6013. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Chang, Y.Z.; Kan, Q.C.; Zhang, L.R.; Li, Z.S.; Lu, H.; Wang, Z.Y.; Chu, Q.J.; Zhang, J. CYP3A4*1G genetic polymorphism influences CYP3A activity and response to fentanyl in Chinese gynecologic patients. Eur. J. Clin. Pharmacol. 2010, 66, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Jacqz-Aigrain, E.; Funck-Brentano, C.; Cresteil, T. CYP2D6- and CYP3A-dependent metabolism of dextromethorphan in humans. Pharmacogenetics 1993, 3, 197–204. [Google Scholar] [CrossRef] [PubMed]
- McDonald, M.G.; Rieder, M.J.; Nakano, M.; Hsia, C.K.; Rettie, A.E. CYP4F2 is a vitamin K1 oxidase: An explanation for altered warfarin dose in carriers of the V433M variant. Mol. Pharmacol. 2009, 75, 1337–1346. [Google Scholar] [CrossRef] [PubMed]
- Danese, E.; Montagnana, M.; Johnson, J.A.; Rettie, A.E.; Zambon, C.F.; Lubitz, S.A.; Suarez-Kurtz, G.; Cavallari, L.H.; Zhao, L.; Huang, M.; et al. Impact of the CYP4F2 p.V433M polymorphism on Coumarin dose requirement: Systematic review and meta-analysis. Clin. Pharmacol. Ther. 2012, 92, 746–756. [Google Scholar] [CrossRef] [PubMed]
- Alsmadi, O.; John, S.E.; Thareja, G.; Hebbar, P.; Antony, D.; Behbehani, K.; Thanaraj, T.A. Genome at juncture of early human migration: A systematic analysis of two whole genomes and thirteen exomes from Kuwaiti population subgroup of inferred Saudi Arabian tribe ancestry. PLoS ONE 2014, 9, e99069. [Google Scholar] [CrossRef] [PubMed]
- Au, N.T.; Reyes, M.; Boyer, B.B.; Hopkins, S.E.; Black, J.; O’Brien, D.; Fohner, A.E.; Yracheta, J.; Thornton, T.; Austin, M.A.; et al. Dietary and genetic influences on hemostasis in a Yup’ik Alaska Native population. PLoS ONE 2017, 12, e0173616. [Google Scholar] [CrossRef] [PubMed]
- Au, N.T.; Ryman, T.; Rettie, A.E.; Hopkins, S.E.; Boyer, B.B.; Black, J.; Philip, J.; Yracheta, J.; Fohner, A.E.; Reyes, M.; et al. Dietary Vitamin K and Association with Hepatic Vitamin K Status in a Yup’ik Study Population from Southwestern Alaska. Mol. Nutr. Food Res. 2017. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.A.; Cavallari, L.H. Warfarin pharmacogenetics. Trends Cardiovasc. Med. 2015, 25, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Fullerton, S.M.; Yu, J.H.; Crouch, J.; Fryer-Edwards, K.; Burke, W. Population description and its role in the interpretation of genetic association. Hum. Genet. 2010, 127, 563–572. [Google Scholar] [CrossRef] [PubMed]
- Woodahl, E.L.; Lesko, L.J.; Hopkins, S.; Robinson, R.F.; Thummel, K.E.; Burke, W. Pharmacogenetic research in partnership with American Indian and Alaska Native communities. Pharmacogenomics 2014, 15, 1235–1241. [Google Scholar] [CrossRef] [PubMed]
- Shaw, J.L.; Robinson, R.; Starks, H.; Burke, W.; Dillard, D.A. Risk, reward, and the double-edged sword: Perspectives on pharmacogenetic research and clinical testing among Alaska Native people. Am. J. Public Health 2013, 103, 2220–2225. [Google Scholar] [CrossRef] [PubMed]
- Morales, C.T.; Muzquiz, L.I.; Howlett, K.; Azure, B.; Bodnar, B.; Finley, V.; Incashola, T.; Mathias, C.; Laukes, C.; Beatty, P.; et al. Partnership with the Confederated Salish and Kootenai Tribes: Establishing an Advisory Committee for Pharmacogenetic Research. Prog. Community Health Partnersh. 2016, 10, 173–183. [Google Scholar] [CrossRef] [PubMed]
Reference | Genes | Population (Tribal Group or Affiliation) | Genotyping/Phenotyping Method and Study Conclusion |
---|---|---|---|
Fragoso, 2005 [22] | CYP1A1 | 106 Amerindian (Teenek and Mayo) | Genotype was determined by allele-specific PCR. The frequency of CYP1A1 variants is distinct for Amerindian and Mestizo populations of Mexico. |
de Andrés, 2017 [23] | CYP1A2 CYP2C9 CYP2C19 CYP2D6 CYP3A4 | 450 Amerindian (Tarahumara, Tepehuano, Mexicanera, Huichol, Cora, Seri, Mayo and Guarijío) | Genotype was determined by RT-PCR and then compared to phenotype, which was determined by a probe substrate cocktail approach using caffeine for CYP1A2, losartan for CYP2C9, omeprazole for CYP2C19, followed by dextromethorphan for CYP2D6 and CYP3A4. Further studies are needed to identify and characterize rare variants in the Amerindian population to improve genotype-phenotype predictions. |
Binnington, 2012 [24] | CYP2A6 CYP2B6 | 400 AN (Yup’ik) | Genotype was determined by two-step allele-specific PCR. Study found an association between nicotine metabolism and CYP2A6 genotype. High CYP2A6 activity may contribute to the high risk of tobacco-related diseases in the Yup’ik AN population. |
Tanner, 2017 [25] | CYP2A6 | 636 AI (Northern Plains and Southwest tribes) | Genotype was determined by two-step allele-specific PCR and RT-PCR. The Northern Plains and Southwest AI populations have unique profiles of CYP2A6 genetic variation that contributes to differences in nicotine metabolism and tobacco-related disease risks. |
Nowak, 1998 [26] | CYP2A6 CYP2C19 | 159 FN | Genotype was determined by PCR-RFLP. FN people have distinct frequencies of variant alleles in CYP2A6 and CYP2C19 compared to European and Asian populations. |
Schoedel, 2004 [27] | CYP2A6 | 101 FN | Genotype was determined by two-step allele-specific PCR. CYP2A6 allele frequencies were markedly different between FN and other ethnic groups, suggesting differences in nicotine metabolism. |
Gaedigk, 2001 [28] | CYP2C9 | 153 FN 151 Inuit | Genotype was determined by PCR-RFLP. The CYP2C9 allele frequencies in the FN and Inuit populations differ from the European and Asian reference populations, likely as a result of genetic drift and selective pressures |
Dorado, 2011 [29] | CYP2C9 | 99 Amerindian (Tepehuano) | Genotype was determined by RT-PCR. CYP2C9 variation in Tepehuanos and Mestizos was found to be distinct compared to that reported in Mexican Americans and Spaniards |
Sosa-Macías, 2013 [30] | CYP2C9 | 505 Amerindian (Tepehuano, Mexicanera, Huichol, Seri, Guarijío, Mayo, Cora and Tarahumara) | Genotype was determined by RT-PCR. The allele frequencies for CYP2C9 variants that confer PM phenotype were determined in eight Amerindian groups of Northwest Mexico. |
Castelán-Martínez, 2013 [31] | CYP2C9 | 483 Amerindian (Nahua, Teenek, Tarahumara, Purepecha and Huichol) | Genotype was determined by RT-PCR. Two PM conferring CYP2C9 variants were investigated in five Amerindian populations and compared to other reports of CYP2C9 variation in Amerindians and Mestizos. |
Fohner, 2013 [32] | CYP2C9 CYP2D6 CYP3A4 CYP3A5 | 94–187 AI (Salish, Pend d’Oreille and Kootenai) | CYP2D6 was completely resequenced, while exons, adjacent introns and flanking regions were resequenced for CYP3A4, CYP3A5 and CYP2C9. Sanger sequencing was used for resequencing and CYP2D6 copy number was determined by PCR. Findings from pharmacogenetic studies conducted in European populations do not necessarily apply to AIAN populations. Particularly with CYP3A4 allele frequency, the Confederated Salish and Kootenai Tribes have unique allelic variation distinct from European Americans. |
Fohner, 2015 [33] | CYP2C9 CYP4F2 | 380 AIAN (multiple AN sub-cultures and aggregate of AI tribes) 350 AN (Yup’ik) | Allele frequencies of novel and previously known variants in warfarin pharmacogenes were determined by Sanger resequencing, followed by targeting genotyping, using the Fluidigm platform, in AN and AI populations. |
McGrane and Loveland, 2016 [34] | CYP2C9 CYP2C19 CYP2D6 | 123 AI (Northwest) | Genotype was determined by qPCR. Study identified differences in genetic polymorphism frequencies in AI and European American youth in the US Northwest. |
Jurima-Romet, 1996 [35] | CYP2C19 | 155 Inuit | Genotype results for CYP2C19, determined by allele-specific PCR, were found to be concordant with phenotype results, using R/S mephenytoin enantiomeric ratio. The CYP2C19 PM variant allele frequencies in the Inuit population appear to be more similar to the European, rather than Asian, population. |
Oestreich 2014, [36] | CYP2C19 | 100 AI (Sioux) | Genotype was determined by RT-PCR. The prevalence of CYP2C19 PM conferring variants was determined to be lower or similar to Europeans. No significant association was observed between genotype and a marker for clopidogrel effectiveness. |
Salazar-Flores, 2012 [37] | CYP2C19 CYP2D6 | 365 Amerindian (Tarahumara, Purepecha, Tojolabal, Tzotzil and Tzeltal) | Genotype was determined by SNapShot multiplex PCR. With the exception of the Tarahumaras, the frequency of CYP2C19 variants that confer PM phenotype was low. The frequency of CYP2D6 PMs is also expected to be low in these Amerindian populations. |
Jurima-Romet, 1997 [38] | CYP2D6 | 155 Inuit | Genotype was determined by PCR-RFLP and dextromethorphan was used as a probe for CYP2D6 phenotype. Genotype results for CYP2D6 were found to be concordant with phenotype results. The Inuit population had unique CYP2D6 variation, distinct from European or Asian populations. |
Nowak, 1997 [39] | CYP2D6 | 156 FN | Genotype was determined by mutation-specific PCR and dextromethorphan was used as a probe for CYP2D6 phenotype. The FN population had a low frequency of CYP2D6 variants that result in decreased metabolic activity, compared to European and Asian populations. |
Lares-Asseff, 2005 [40] | CYP2D6 | 55 Amerindian (Tepehuano) | All Tepehuanos included in this study were found to be CYP2D6 EMs by phenotyping with dextromethorphan. |
Sosa-Macías, 2006 [41] | CYP2D6 | 101 Amerindian (Tepehuano) | Genotype was determined by PCR-RFLP and dextromethorphan was used as a probe for CYP2D6 phenotype. The distribution of CYP2D6 variant alleles was markedly different between Tepehuano Amerindians and Mestizos; no Tepehuanos were classified as CYP2D6 PMs. |
Sosa-Macías, 2010 [42] | CYP2D6 | 99 Amerindian (Tepehuano) | This study expanded upon Sosa-Macías et al. 2006 by genotyping for additional CYP2D6 variants, which had different frequencies than that observed in Mestizos. RT-PCR and XL-PCR were used to determine genotype. |
Lazalde-Ramos, 2014 [43] | CYP2D6 | 508 Amerindian (Tarahumara, Tepehuano, Huichol, Mexicanera, Cora, Seri, Guarijío and Mayo) | Genotype was determined by XL-PCR and copy number was evaluated by RT-PCR. The Amerindian populations included in this study had a lower frequency of CYP2D6 PM conferring variants but a higher frequency of gene duplication conferring UM phenotype, compared to the Mestizo population. |
López-López, 2014 [44] | CYP2D6 | 154 Amerindian (Mayan Lacandon) | Genotype was determined by XL-PCR. The Amerindian population had a low frequency of CYP2D6 low or null activity alleles, compared to Mestizos. The frequency UM genotypes, determined by PCR-RFLP, were similar between Mayan Lacandones and Mestizos. |
Perez-Paramo, 2015 [45] | CYP2D6 | 110 Amerindian (Tzotzil and Tzeltal) | Genotype was determined by XL-PCR. The CYP2D6 alleles that confer low or null activity, as well as the gene duplication that confers UM phenotype, had lower frequencies in the Amerindian population compared to the Mestizo population. |
Howard, 2003 [46] | CYP2E1 | 114 FN | PCR based genotyping and size discrimination by agarose gel were used to determine genotype. Compared to Canadian Europeans, the FN population had a significantly higher frequency of a CYP2E1 variant associated with greater enzyme induction. |
Gordillo-Bastidas, 2010 [47] | CYP2E1 | 101 Amerindian (Huichol) | Genotype was determined by PCR-RFLP. Compared to other world populations, the Huichol population had a high frequency of a CYP2E1 variant associated with higher enzyme activity. |
Reyes-Hernández, 2008 [48] | CYP3A4 | 100 Amerindian (Tepehuano) | Genotype was determined by PCR-RFLP. CYP3A4 variation was not significantly different between the Tepehuano and Mestizo populations. |
Country | Population | N | CYP1A1 MAF (%) | Refs. | |
---|---|---|---|---|---|
*2A rs4646903 | *2C rs1048943 | ||||
Mexico | Mayo | 108 | 46.9 | 54.6 | [22] |
Teenek | 104 | 71.4 | 65.4 | [22] | |
Multiple Countries (1000 Genomes) | MXL | 128 | 39.8 | 33.6 | [20] |
CHB | 206 | 43.7 | 26.7 | [20] | |
CEU | 198 | 9.1 | 4.0 | [20] | |
ASW | 122 | 27.1 | 5.7 | [20] |
Country | Population | N | CYP1A2*1F MAF (%) | Refs. |
---|---|---|---|---|
rs762551 | ||||
Mexico | Aggregate of Amerindian tribes (Tarahumara, Tepehuano, Mexicanera, Huichol, Cora, Seri, Mayo and Guarijío) | 896 | 66.6 | [23] |
Multiple Countries (1000 Genomes) | MXL | 128 | 73.4 | [20] |
CHB | 206 | 63.6 | [20] | |
CEU | 198 | 72.7 | [20] | |
ASW | 122 | 63.9 | [20] |
Country | Population | N | CYP2A6 MAF (%) | Refs. | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
*2 rs1801272 | *4 | *5 rs5031017 | *7 rs5031016 | *8 rs28399468 | *9 rs28399433 | *10 rs5031016, rs28399468 | *12 | *17 rs28399454 | *35 rs143731390 | ||||
Canada | FN | 432 | 0.9 | - | - | - | - | - | - | - | - | - | [26] |
FN | 202 | 0.0 | 1.0 | 0.5 | 0.0 | 0.0 | 15.5 | 0.0 | 0.5 | - | - | [27] | |
USA | Yup’ik | 722 | 0.4 | 14.5 | - | 0.0 | 0.0 | 8.9 | 1.9 | 0.4 | 0.0 | 0.0 | [24] |
NP AI | 636 | 0.3 | 1.6 | - | 0.0 | - | 11.9 | - | 0.3 | 0.0 | 0.0 | [25] | |
SW AI | 344 | 0.6 | 0.3 | - | 0.0 | - | 20.9 | - | 0.3 | 0.0 | 0.3 | [25] | |
Multiple Countries (1000 Genomes) | MXL | 128 | 1.6 | - | <0.1 ‡ | 0.3 ‡ | - | 10.2 | - | - | 0.0 | - | [20] |
Latino ‡ | 11,576 ‡ | [80] ‡ | |||||||||||
CHB | 206 | 0.0 | 17 ‡ | 0.1 ‡ | 12.9 ‡ | 0.3 ‡ | 26.7 | 0.3 ‡ | - | 0.0 | - | [20] | |
East Asian ‡ | 8528 ‡ | [21,80] ‡ | |||||||||||
CEU | 198 | 3.5 | 1.0 ‡ | <0.1 ‡ | 0.2 ‡ | 0.3 ‡ | 5.1 | <0.1 ‡ | - | 0.0 | - | [20] | |
European ‡ | 66,714 ‡ | [21,80] ‡ | |||||||||||
ASW | 122 | 0.8 | 1.5 ‡ | <0.1 ‡ | 0.0 ‡ | 0.3 ‡ | 10.7 | <0.1 ‡ | - | 7.4 | - | [20] | |
African ‡ | 10,404 ‡ | [21,80] ‡ |
Country | Population | N | CYP2B6 MAF (%) | Refs. | ||
---|---|---|---|---|---|---|
*4 rs2279343 | *6 rs2279343, rs3745274 | *9 rs3745274 | ||||
USA | Yup’ik | 722 | 0.0 | 51.7 | 0.0 | [24] |
Multiple Countries (1000 Genomes) | MXL | 128 | 3.4 ‡ | - | 31.3 | [20] |
Latino ‡ | 10,418 ‡ | [80] ‡ | ||||
CHB | 206 | 3.0 ‡ | 2.7 ‡ | 16.0 | [20] | |
East Asian ‡ | 8064 ‡ | [21,80] ‡ | ||||
CEU | 198 | 3.7 ‡ | 3.4 ‡ | 27.8 | [20] | |
European ‡ | 61,428 ‡ | [21,80] ‡ | ||||
ASW | 122 | 6.5 ‡ | 5.8 ‡ | 35.3 | [20] | |
African ‡ | 8646 ‡ | [21,80] ‡ |
Country | Population | N | CYP2C9 MAF (%) | Refs. | |||
---|---|---|---|---|---|---|---|
*2 rs1799853 | *3 rs1057910 | *5 rs28371686 | *29 rs182132442 | ||||
Canada | FN | 228 | 3.0 | 6.0 | - | - | [28] |
Inuit | 302 | 0.0 | 0.0 | - | - | [28] | |
USA | Yup’ik | 700 | 0.3 | 2.1 | 0.0 | 2.1 | [33] |
AIAN | 718 | 5.2 | 3.4 | 0.0 | 0.0 | [33] | |
CSKT | 188 | 5.2 | 2.7 | 0.0 | 0.0 | [32] | |
AI | 246 | 5.8 | 2.7 | 0.4 | - | [34] | |
Mexico | Tepehuano | 245 | 0.0 | 7.5 | - | - | [30] |
Mexicanera | 76 | 0.0 | 0.0 | - | - | [30] | |
Huichol | 214 | 0.0 | 3.3 | - | - | [30] | |
Seri | 38 | 2.6 | 0.0 | - | - | [30] | |
Guarijío | 30 | 0.0 | 6.7 | - | - | [30] | |
Mayo | 88 | 5.7 | 9.1 | - | - | [30] | |
Cora | 162 | 0.0 | 3.7 | - | - | [30] | |
Tarahumara | 148 | 0.0 | 10.4 | - | - | [30] | |
Nahua | 424 | 0.7 | 0.4 | - | - | [31] | |
Teenek | 196 | 0.5 | 0.5 | - | - | [31] | |
Tarahumara | 104 | 0.0 | 0.0 | - | - | [31] | |
Purepecha | 96 | 0.0 | 0.0 | - | - | [31] | |
Huichol | 146 | 0.0 | 0.0 | - | - | [31] | |
Tepehuano | 198 | 1.0 | 1.5 | 0.0 | - | [29] | |
Aggregate of Amerindian tribes | 882 | 0.6 | 5.1 | - | - | [23] | |
Multiple Countries (1000 Genomes) | MXL | 128 | 10.2 | 2.3 | 0.0 | 0.0 | [20] |
CHB | 206 | 0.0 | 3.9 | 0.0 | 0.5 | [20] | |
CEU | 198 | 15.2 | 6.6 | 0.0 | 0.0 | [20] | |
ASW | 122 | 4.1 | 1.6 | 2.5 | 0.0 | [20] |
Country | Population | N | CYP2C9 MAF (%) | Refs. | ||
---|---|---|---|---|---|---|
M1L rsNA | K119T rsNA | N218I rsNA | ||||
USA | Yup’ik | 700 | 6.3 | 0.0 | 3.8 | [33] |
AIAN | 718 | 1.0 | 0.0 | 1.4 | [33] | |
CSKT | 188 | 0.0 | 0.57 | 0.0 | [32] |
Country | Population | N | CYP2C19 MAF (%) | Refs. | ||||
---|---|---|---|---|---|---|---|---|
*2 rs4244285 | *3 rs4986893 | *4 rs28399504 | *8 rs41291556 | *17 rs12248560 | ||||
Canada | FN | 230 | 19.1 | 0.0 | - | - | - | [26] |
Inuit | 180 | 12.0 | 0.0 | - | - | - | [35] | |
USA | Sioux | 196 | 11.2 | 0.0 | - | - | 8.7 | [36] |
AI | 246 | 11.5 | - | 1.3 | 0.0 | 11.1 | [34] | |
Mexico | Tarahumara | 168 | 31.0 | 0.0 | 0.0 | - | - | [37] |
Purepecha | 202 | 5.4 | 0.0 | 0.0 | - | - | [37] | |
Tojolabal | 136 | 3.6 | 0.0 | 0.0 | - | - | [37] | |
Tzotzil | 176 | 5.6 | 0.0 | 0.0 | - | - | [37] | |
Tzeltal | 40 | 0.0 | 0.0 | 0.0 | - | - | [37] | |
Aggregate of Amerindian tribes | 880 | 12.0 | 0.2 | 0.0 | - | 2.2 | [23] | |
Multiple Countries (1000 Genomes) | MXL | 128 | 12.5 | 0.0 | 0.8 | 0.0 | 11.7 | [20] |
CHB | 206 | 33.5 | 4.4 | 0.5 | 0.0 | 2.4 | [20] | |
CEU | 198 | 13.1 | 0.0 | 0.0 | 1.5 | 22.2 | [20] | |
ASW | 122 | 13.9 | 0.0 | 0.0 | 0.8 | 19.7 | [20] |
Country | Population | N | CYP2D6 MAF (%) | Refs. | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
*2 rs16947, rs1135840 | *3 rs35742686 | *4 rs3892097 | *5 | *6 rs5030655 | *8 rs5030865 | *10 rs1065852, rs1135840 | *17 rs16947, rs28371706 | *35 rs769258, rs16947, rs1135840 | *41 rs28371725 | ||||
Canada | FN | 190 | - | 0.0 | 3.0 | - | - | - | 3.0 | - | - | - | [39] |
Inuit | 180 | - | 0.0 | 6.7–8.3 | - | - | - | 2.2 | - | - | - | [38] | |
USA | AI | 246 | 25.2 | 0.0 | 14.6 | 2.8 | 0.8 | - | 2.0 | 0.0 | 0.4 | 6.9 | [34] |
CSKT | 374 | 23.4 | 0.3 | 20.9 | 1.3 | 0.0 | - | 1.3 | 0.0 | 1.1 | 11.2 | [32] | |
Mexico | Tepehuano | 198 | 20.0 | 0.0 | 0.6 | 0.5 | 0.0 | - | 0.0 | - | 0.0 | 1.0 | [41,42] |
Tarahumara | 176 | - | 0.0 | 7.3 | - | 0.0 | 0.0 | - | - | - | - | [37] | |
Purepecha | 170 | - | 0.0. | 2.9 | - | 0.0 | 0.0 | - | - | - | - | [37] | |
Tojolabal | 86 | - | 0.0 | 1.2 | - | 0.0 | 0.0 | - | - | - | - | [37] | |
Tzotzil | 112 | - | 0.0 | 2.7 | - | 0.0 | 0.0 | - | - | - | - | [37] | |
Tzeltal | 38 | - | 0.0 | 5.3 | - | 0.0 | 0.0 | - | - | - | - | [37] | |
Tarahumara | 148 | 21.0 | 0.0 | 11.5 | 3.4 | 0.0 | - | 0.7 | 0.0 | 0.0 | 4.1 | [43] | |
Tepehuano | 258 | 20.0 | 0.0 | 0.3 | 0.4 | 0.0 | - | 0.0 | 0.0 | 0.0 | 0.4 | [43] | |
Huichol | 214 | 21.0 | 0.0 | 7.0 | 0.0 | 0.0 | - | 0.0 | 0.0 | 0.0 | 0.0 | [43] | |
Mexicanera | 78 | 22.0 | 0.0 | 0.0 | 1.3 | 0.0 | - | 0.0 | 0.0 | 0.0 | 0.0 | [43] | |
Cora | 162 | 28.0 | 0.0 | 1.0 | 1.2 | 0.0 | - | 0.0 | 0.0 | 0.0 | 1.0 | [43] | |
Seri | 38 | 5.0 | 0.0 | 21.0 | 0.0 | 0.0 | - | 0.0 | 0.0 | 0.0 | 0.0 | [43] | |
Guarijío | 30 | 23.0 | 0.0 | 3.0 | 0.0 | 0.0 | - | 0.0 | 0.0 | 0.0 | 0.0 | [43] | |
Mayo | 88 | 10.0 | 0.0 | 8.0 | 0.0 | 3.0 | - | 0.0 | 0.0 | 0.0 | 3.0 | [43] | |
Mayan Lacandon | 308 | 20.8 | 0.0 | 10.4 | 0.0 | 0.0 | - | 0.6 | 0.0 | 0.3 | 1.3 | [44] | |
Tzotzil and Tzeltal | 220 | 17.3 | 0.5 | 5.5 | 3.6 | 0.0 | - | 0.5 | 0.5 | 0.0 | 0.0 | [45] | |
Aggregate of Amerindian tribes | 758 | 18.9 | - | 4.5 | 1.0 | 0.1 | - | 0.1 | - | - | 1.1 | [23] | |
Multiple Countries (1000 Genomes) | MXL | 128 | - | 0.0 | 12.5 | - | 0.0 | 0.0 | - | - | - | 1.6 | [20] |
Latino ‡ | 9768 ‡ | [80] ‡ | |||||||||||
CHB | 206 | 14.0 ‡ | 0.0 | 0.5 | 6.5 ‡ | 0.0 | 0.5 | 58.7 ‡ | 0.0 ‡ | - | 3.4 | [20] | |
East Asian ‡ | 7968 ‡ | [21,80] ‡ | |||||||||||
CEU | 198 | 34.3 ‡ | 2.0 | 22.7 | 3.0 ‡ | 2.0 | 0.0 | 0.2 ‡ | <0.1 ‡ | - | 12.1 | [20] | |
European ‡ | 56,352 ‡ | [21,80] ‡ | |||||||||||
ASW | 122 | 26.7 ‡ | 1.6 | 12.3 | 4.0 ‡ | 0.8 | 0.0 | 3.2 ‡ | 19.7 ‡ | - | 1.6 | [20] | |
African ‡ | 7304 ‡ | [21,80] ‡ |
Country | Population | N | CYP2E1 MAF (%) | Refs. | |
---|---|---|---|---|---|
*1D | *5B rs2031920 | ||||
Canada | FN | 228 | 9.3 | - | [46] |
Mexico | Huichol | 198 | - | 51.5 | [47] |
Multiple Countries (1000 Genomes) | MXL | 128 | - | 15.6 | [20] |
CHB | 206 | - | 23.8 | [20] | |
CEU | 198 | - | 6.1 | [20] | |
ASW | 122 | - | 1.6 | [20] |
Country | Population | N | CYP3A4 MAF (%) | Refs. | |||
---|---|---|---|---|---|---|---|
*1B rs2740574 | *1G rs2242480 | *5 rs55901263 | *22 rs35599367 | ||||
USA | CSKT | 188 | 2.2 | 26.8 | 0.0 | 2.4 | [32] |
Mexico | Tepehuano | 200 | 8.0 | - | 0.0 | - | [48] |
Aggregate of Amerindian tribes | 420 | 4.8 | - | - | - | [23] | |
Multiple Countries (1000 Genomes) | MXL | 128 | 7.0 | 39.1 | 0.0 | 0.8 | [20] |
CHB | 206 | 0.0 | 24.8 | 0.5 | 0.0 | [20] | |
CEU | 198 | 1.5 | 5.6 | 0.0 | 4.6 | [20] | |
ASW | 122 | 67.2 | 74.6 | 0.0 | 0.0 | [20] |
Country | Population | N | CYP3A5 MAF (%) | Refs. | ||
---|---|---|---|---|---|---|
*3 rs776746 | *6 rs10264272 | *7 rs41303343 | ||||
USA | CSKT | 188 | 92.5 | 0.0 | 0.0 | [32] |
Multiple Countries (1000 Genomes) | MXL | 128 | 76.6 | 2.3 | 0.0 | [20] |
CHB | 206 | 68.9 | 0.0 | 0.0 | [20] | |
CEU | 198 | 96.0 | 0.0 | 0.0 | [20] | |
ASW | 122 | 31.2 | 4.9 | 12.3 | [20] |
Country | Population | N | CYP4F2 MAF (%) | Refs. | ||||
---|---|---|---|---|---|---|---|---|
*2 rs3093105 | *3 rs2108622 | G185V rs3093153 | L519M rs3093200 | spliceCG rsNA | ||||
USA | Yup’ik | 700 | 3.7 | 50.9 | 0.3 | 0.0 | 0.7 | [33] |
AIAN | 718 | 11.0 | 31.5 | 2.2 | 2.7 | 1.4 | [33] | |
Multiple Countries (1000 Genomes) | MXL | 128 | 14.1 | 25.0 | 1.6 | 0.8 | - | [20] |
CHB | 206 | 8.3 | 21.8 | 0.0 | 0.0 | - | [20] | |
CEU | 198 | 14.1 | 24.8 | 7.0 | 8.6 | - | [20] | |
ASW | 122 | 25.4 | 9.0 | 0.8 | 13.9 | - | [20] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Henderson, L.M.; Claw, K.G.; Woodahl, E.L.; Robinson, R.F.; Boyer, B.B.; Burke, W.; Thummel, K.E. P450 Pharmacogenetics in Indigenous North American Populations. J. Pers. Med. 2018, 8, 9. https://doi.org/10.3390/jpm8010009
Henderson LM, Claw KG, Woodahl EL, Robinson RF, Boyer BB, Burke W, Thummel KE. P450 Pharmacogenetics in Indigenous North American Populations. Journal of Personalized Medicine. 2018; 8(1):9. https://doi.org/10.3390/jpm8010009
Chicago/Turabian StyleHenderson, Lindsay M., Katrina G. Claw, Erica L. Woodahl, Renee F. Robinson, Bert B. Boyer, Wylie Burke, and Kenneth E. Thummel. 2018. "P450 Pharmacogenetics in Indigenous North American Populations" Journal of Personalized Medicine 8, no. 1: 9. https://doi.org/10.3390/jpm8010009