Non-Small Cell Lung Cancer beyond Biomarkers: The Evolving Landscape of Clinical Trial Design
Abstract
:1. Introduction
2. Methods
3. Description and Discussion of Studies
Study Identifier Name Sponsor | Study Design | Setting | Biomarker/Population Selection | Treatment Arms | Primary Endpoint | Tissue Requirement for Biomarker Analysis |
---|---|---|---|---|---|---|
3.1. Trials with EGFR Pathway Targeted Therapies | ||||||
NCT00637910 TAILOR Fatebenefratelli and Ophthalmic Hospital | Phase III Randomized Open label | 2nd line | EGFR WT | Erlotinib Docetaxel | OS | Archived tissue |
NCT01360554 ARCHER 1009 Pfizer | Phase III Randomized Double blind Superiority | 2nd line 3rd line | none | Erlotinib Dacomitinib | PFS | Archived tissue |
NCT01466660 LUX-Lung 7 Boehringer Ingelheim | Phase II Randomized Open label Superiority | 1st line | EGFR mut Adenocarcinoma | Gefitinib Afatinib | PFS | No |
NCT01523587 LUX-Lung 8 Boehringer Ingelheim | Phase III Randomized Open label Superiority | 2nd line | Squamous cell carcinoma | Erlotinib Afatinib | PFS | Archived tissue |
NCT01487265 SCRI Development Innovations, LLC/Novartis | Phase II Single arm | 2nd line 3rd line 4th line | EGFR TKI sensitive | Erlotinib plus BKM120 | PFS at 3 months | Archived tissue |
NCT01294306 NCI | Phase II Single arm | Any line | Erlotinib sensitive | Erlotinib plus MK2206 | EGFR mut: ORR | Archived tissue |
EGFR WT: DCR | ||||||
NCT01229150 NCI | Phase II Randomized Open label | 2nd line 3rd line | KRAS mut | KRAS mut: Selumetinib Selumetinib plus erlotinib | KRAS mut: ORR | Archived tissue |
KRAS WT | KRAS WT: Erlotinib Erlotinib plus selumetinib | KRAS WT: PFS | ||||
3.2. Trials with ALK Pathway Targeted Therapies | ||||||
NCT01801111 Hoffmann-La Roche | Phase II Single arm | 2nd line or higher | ALK translocation Prior progression on crizotinib | Erlotinib plus alectinib | ORR | No |
NCT01449461 Ariad Pharmaceuticals | Phase II Single arm | Any line | ALK translocation Prior progression on crizotinib | AP26113 | ORR | Archived tissue |
ALK translocation Crizotinib naive | ||||||
3.3. Trials with MET and EGFR Pathway Combination Targeted Therapies | ||||||
NCT01456325 MetLung Hoffmann-La Roche | Phase III Randomized Double blind | 2nd line 3rd line | MET positive | Erlotinib Erlotinib plus onartuzumab | OS | Archived tissue |
3.4. Trials with Angiogenesis and EGFR Pathway Combination Targeted Therapies | ||||||
NCT01562028 BELIEF European Thoracic Oncology Platform/Spanish Lung Cancer Group | Phase II Single arm | 1st line | EGFR mut Non Squamous | Erlotinib plus bevacizumab | PFS | Archived tissue |
NCT01532089 Academic and Community Cancer Research United | Phase II Randomized Open label | 1st line | EGFR mut Non Squamous | Erlotinib Erlotinib plus bevacizumab | PFS | No |
3.5. Trials with Targeted Therapies from Multiple Pathways | ||||||
NCT01306045 NCI | Phase II Non randomized Open label | EGFR mut: 1st line or higher | EGFR mut | EGFR mut: erlotinib KRAS, NRAS, HRAS, or BRAF mut: selumetinib | ORR | Archived tissue |
Other groups: 2nd line or higher | KRAS, NRAS, HRAS, or BRAF mut | |||||
PI3K Activation | PI3K activation: MK2206 | |||||
HER2 activation | HER2 activation: lapatinib | |||||
PDGFR mut or amplification or KIT mut | PDGFR mut or amplification or KIT mut: sunitinib | |||||
NCT01248247 BATTLE II M.D. Anderson Cancer Center | Phase II Randomized Open label | Any line | Adaptive randomization based on ongoing analysis that attests which treatment is best in the setting of specific biomarker patterns | Erlotinib Erlotinib plus MK2206 MK2206 plus selumetinib sorafenib | 8 week PFS | Real time biopsy |
3.6. Trials with Therapies Inhibiting Miscellaneous Targets | ||||||
NCT00787267 TOP0801 DUKE University | Phase II Single arm | 2nd line or higher | None | dasatinib | Biomarker predictors of response | Real time biopsy |
NCT01514864 Bristol-Myers Squibb | Phase II Single arm | Any line | BRAF or DDR2 mutations | dasatinib | ORR | No |
NCT01124864 Novartis Pharmaceuticals | Phase II Single arm | 3rd or higher | EGFR mut | AUY922 | Response at 18 weeks | Archived tissue Real time biopsy only for the modified EGFR mut group |
KRAS mut | ||||||
EGFR and KRAS WT | ||||||
ALK translocation | ||||||
Modified EGFR mut (EGFR mut with prior response to EGFR TKI) | ||||||
NCT01788332 Lisette Nixon | Phase II Randomized Double blind | Maintenance after 1st line chemotherapy | Only patients with response to first line chemotherapy will be randomized | Olaparib Placebo | PFS | Archived tissue |
NCT01560104 AbbVie | Phase II Randomized 2:1 Double blind | 1st line | EGFR wild type | Carboplatin plus paclitaxel plus veliparib Carboplatin plus paclitaxel plus placebo | PFS | Archived tissue |
3.1. EGFR Pathway Targeted Therapies
3.2. Inhibition of the ALK Pathway
3.3. Combination of MET and EGFR Pathway Inhibition
3.4. Anti-Angiogenesis Targeted Therapies Combined with EGFR Inhibition
3.5. Trials with Multiple Targets
3.6. Miscellaneous
4. Concluding Remarks
Author Contributions
Conflicts of Interest
References
- Ferlay, J.; Shin, H.R.; Bray, F.; Forman, D.; Mathers, C.; Parkin, D.M. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int. J. Cancer 2010, 127, 2893–2917. [Google Scholar] [CrossRef]
- Siegel, R.; Naishadham, D.; Jemal, A. Cancer statistics, 2013. CA Cancer J. Clin. 2013, 63, 11–30. [Google Scholar] [CrossRef]
- Le Chevalier, T.; Scagliotti, G.; Natale, R.; Danson, S.; Rosell, R.; Stahel, R.; Thomas, P.; Rudd, R.M.; Vansteenkiste, J.; Thatcher, N.; et al. Efficacy of gemcitabine plus platinum chemotherapy compared with other platinum containing regimens in advanced non-small-cell lung cancer: A meta-analysis of survival outcomes. Lung Cancer 2005, 47, 69–80. [Google Scholar] [CrossRef]
- Ding, L.; Getz, G.; Wheeler, D.A.; Mardis, E.R.; McLellan, M.D.; Cibulskis, K.; Sougnez, C.; Greulich, H.; Muzny, D.M.; Morgan, M.B.; et al. Somatic mutations affect key pathways in lung adenocarcinoma. Nature 2008, 455, 1069–1075. [Google Scholar] [CrossRef]
- Kan, Z.; Jaiswal, B.S.; Stinson, J.; Janakiraman, V.; Bhatt, D.; Stern, H.M.; Yue, P.; Haverty, P.M.; Bourgon, R.; Zheng, J.; et al. Diverse somatic mutation patterns and pathway alterations in human cancers. Nature 2010, 466, 869–873. [Google Scholar] [CrossRef]
- Scagliotti, G.V.; Parikh, P.; von Pawel, J.; Biesma, B.; Vansteenkiste, J.; Manegold, C.; Serwatowski, P.; Gatzemeier, U.; Digumarti, R.; Zukin, M.; et al. Phase III study comparing cisplatin plus gemcitabine with cisplatin plus pemetrexed in chemotherapy-naive patients with advanced-stage non-small-cell lung cancer. J. Clin. Oncol. 2008, 26, 3543–3551. [Google Scholar] [CrossRef]
- Toyooka, S.; Mitsudomi, T.; Soh, J.; Aokage, K.; Yamane, M.; Oto, T.; Kiura, K.; Miyoshi, S. Molecular oncology of lung cancer. Gen. Thorac. Cardiovasc. Surg. 2011, 59, 527–537. [Google Scholar]
- Ju, Y.S.; Lee, W.C.; Shin, J.Y.; Lee, S.; Bleazard, T.; Won, J.K.; Kim, Y.T.; Kim, J.I.; Kang, J.H.; Seo, J.S. A transforming KIF5B and RET gene fusion in lung adenocarcinoma revealed from whole-genome and transcriptome sequencing. Genome Res. 2012, 22, 436–445. [Google Scholar]
- Imielinski, M.; Berger, A.H.; Hammerman, P.S.; Hernandez, B.; Pugh, T.J.; Hodis, E.; Cho, J.; Suh, J.; Capelletti, M.; Sivachenko, A.; et al. Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing. Cell 2012, 150, 1107–1120. [Google Scholar]
- Gridelli, C.; Maione, P.; Rossi, A.; de Marinis, F. The role of bevacizumab in the treatment of non-small cell lung cancer: Current indications and future developments. Oncologist 2007, 12, 1183–1193. [Google Scholar] [CrossRef]
- Fukuoka, M.; Wu, Y.L.; Thongprasert, S.; Sunpaweravong, P.; Leong, S.S.; Sriuranpong, V.; Chao, T.Y.; Nakagawa, K.; Chu, D.T.; Saijo, N.; et al. Biomarker analyses and final overall survival results from a phase III, randomized, open-label, first-line study of gefitinib versus carboplatin/paclitaxel in clinically selected patients with advanced non-small-cell lung cancer in Asia (IPASS). J. Clin. Oncol. 2011, 29, 2866–2874. [Google Scholar] [CrossRef]
- Garassino, M.; Martelli, O.; Bettini, A.; Floriani, I.; Copreni, E.; Lauricella, C.; Ganzinelli, M.; Marabese, M.; Broggini, M.; Veronese, S.; et al. TAILOR: A phase III trial comparing erlotinib with docetaxel as the second-line treatment of NSCLC patients with wild-type (wt) EGFR. J. Clin. Oncol. 2012, 30. abstr LBA7501. [Google Scholar]
- Garassino, M.C.; Martelli, O.; Broggini, M.; Farina, G.; Veronese, S.; Rulli, E.; Bianchi, F.; Bettini, A.; Longo, F.; Moscetti, L.; et al. Erlotinib versus docetaxel as second-line treatment of patients with advanced non-small-cell lung cancer and wild-type EGFR tumours (TAILOR): A randomised controlled trial. Lancet Oncol. 2013, 14, 981–988. [Google Scholar] [CrossRef]
- Kim, E.S.; Hirsh, V.; Mok, T.; Socinski, M.A.; Gervais, R.; Wu, Y.L.; Li, L.Y.; Watkins, C.L.; Sellers, M.V.; Lowe, E.S.; et al. Gefitinib versus docetaxel in previously treated non-small-cell lung cancer (INTEREST): A randomised phase III trial. Lancet 2008, 372, 1809–1818. [Google Scholar] [CrossRef]
- Ciuleanu, T.; Stelmakh, L.; Cicenas, S.; Miliauskas, S.; Grigorescu, A.C.; Hillenbach, C.; Johannsdottir, H.K.; Klughammer, B.; Gonzalez, E.E. Efficacy and safety of erlotinib versus chemotherapy in second-line treatment of patients with advanced, non-small-cell lung cancer with poor prognosis (TITAN): A randomised multicentre, open-label, phase 3 study. Lancet Oncol. 2012, 13, 300–308. [Google Scholar] [CrossRef]
- Ramalingam, S.S.; Blackhall, F.; Krzakowski, M.; Barrios, C.H.; Park, K.; Bover, I.; Seog Heo, D.; Rosell, R.; Talbot, D.C.; Frank, R.; et al. Randomized phase II study of dacomitinib (PF-00299804), an irreversible pan-human epidermal growth factor receptor inhibitor, versus erlotinib in patients with advanced non-small-cell lung cancer. J. Clin. Oncol. 2012, 30, 3337–3344. [Google Scholar] [CrossRef]
- Clement-Duchene, C.; Natale, R.B.; Jahan, T.; Krupitskaya, Y.; Osarogiagbon, R.; Sanborn, R.E.; Bernstein, E.D.; Dudek, A.Z.; Latz, J.E.; Shi, P.; et al. A phase II study of enzastaurin in combination with erlotinib in patients with previously treated advanced non-small cell lung cancer. Lung Cancer 2012, 78, 57–62. [Google Scholar] [CrossRef]
- Socinski, M.A.; Raju, R.N.; Stinchcombe, T.; Kocs, D.M.; Couch, L.S.; Barrera, D.; Rousey, S.R.; Choksi, J.K.; Jotte, R.; Patt, D.A.; et al. Randomized, phase II trial of pemetrexed and carboplatin with or without enzastaurin versus docetaxel and carboplatin as first-line treatment of patients with stage IIIB/IV non-small cell lung cancer. J. Thorac. Oncol. 2010, 5, 1963–1969. [Google Scholar] [CrossRef]
- Vansteenkiste, J.; Ramlau, R.; von Pawel, J.; San Antonio, B.; Eschbach, C.; Szczesna, A.; Kennedy, L.; Visseren-Grul, C.; Chouaki, N.; Reck, M. A phase II randomized study of cisplatin-pemetrexed plus either enzastaurin or placebo in chemonaive patients with advanced non-small cell lung cancer. Oncology 2012, 82, 25–29. [Google Scholar] [CrossRef]
- Kim, E.S.; Herbst, R.S.; Wistuba, I.I.; Lee, J.J.; Blumenschein, G.R., Jr.; Tsao, A.; Stewart, D.J.; Hicks, M.E.; Erasmus, J., Jr.; Gupta, S.; et al. The BATTLE trial: Personalizing therapy for lung cancer. Cancer Discov. 2011, 1, 44–53. [Google Scholar] [CrossRef]
- Janne, P.A.; Shaw, A.T.; Pereira, J.R.; Jeannin, G.; Vansteenkiste, J.; Barrios, C.; Franke, F.A.; Grinsted, L.; Zazulina, V.; Smith, P.; et al. Selumetinib plus docetaxel for KRAS-mutant advanced non-small-cell lung cancer: A randomised, multicentre, placebo-controlled, phase 2 study. Lancet Oncol. 2013, 14, 38–47. [Google Scholar] [CrossRef]
- Balko, J.M.; Jones, B.R.; Coakley, V.L.; Black, E.P. MEK and EGFR inhibition demonstrate synergistic activity in EGFR-dependent NSCLC. Cancer Biol. Ther. 2009, 8, 522–530. [Google Scholar] [CrossRef]
- Camidge, D.R.; Bang, Y.J.; Kwak, E.L.; Iafrate, A.J.; Varella-Garcia, M.; Fox, S.B.; Riely, G.J.; Solomon, B.; Ou, S.H.; Kim, D.W.; et al. Activity and safety of crizotinib in patients with ALK-positive non-small-cell lung cancer: Updated results from a phase 1 study. Lancet Oncol. 2012, 13, 1011–1019. [Google Scholar] [CrossRef]
- Shaw, A.T.; Kim, D.W.; Nakagawa, K.; Seto, T.; Crino, L.; Ahn, M.J.; de Pas, T.; Besse, B.; Solomon, B.J.; Blackhall, F.; et al. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N. Engl. J. Med. 2013, 368, 2385–2394. [Google Scholar] [CrossRef]
- Mehra, R.; Camidge, D.; Sharma, S.; Felip, E.; Tan, D.; Vansteenkiste, J.; de Pas, T.; Kim, D.; Santoro, A.; Liu, G.; et al. First-in-human phase I study of the ALK inhibitor LDK378 in advanced solid tumors. J. Clin. Oncol. 2012, 30. abstr 3007. [Google Scholar]
- Engelman, J.A.; Zejnullahu, K.; Mitsudomi, T.; Song, Y.; Hyland, C.; Park, J.O.; Lindeman, N.; Gale, C.M.; Zhao, X.; Christensen, J.; et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 2007, 316, 1039–1043. [Google Scholar] [CrossRef]
- Cappuzzo, F.; Marchetti, A.; Skokan, M.; Rossi, E.; Gajapathy, S.; Felicioni, L.; Del Grammastro, M.; Sciarrotta, M.G.; Buttitta, F.; Incarbone, M.; et al. Increased MET gene copy number negatively affects survival of surgically resected non-small-cell lung cancer patients. J. Clin. Oncol. 2009, 27, 1667–1674. [Google Scholar] [CrossRef]
- Dua, R.; Zhang, J.; Parry, G.; Penuel, E. Detection of hepatocyte growth factor (HGF) ligand-c-MET receptor activation in formalin-fixed paraffin embedded specimens by a novel proximity assay. PLoS One 2011, 6, e15932. [Google Scholar]
- Spigel, D.R.; Edelman, M.J.; O’Byrne, K.; Paz-Ares, L.; Shames, D.S.; Yu, W.; Paton, V.E.; Mok, T. Onartuzumab plus erlotinib versus erlotinib in previously treated stage IIIb or IV NSCLC: Results from the pivotal phase III randomized, multicenter, placebo-controlled METLung (OAM4971g) global trial. J. Clin. Oncol. 2014, 32. abstr 8000. [Google Scholar]
- Sequist, L.V.; von Pawel, J.; Garmey, E.G.; Akerley, W.L.; Brugger, W.; Ferrari, D.; Chen, Y.; Costa, D.B.; Gerber, D.E.; Orlov, S.; et al. Randomized phase II study of erlotinib plus tivantinib versus erlotinib plus placebo in previously treated non-small-cell lung cancer. J. Clin. Oncol. 2011, 29, 3307–3315. [Google Scholar]
- Naumov, G.N.; Nilsson, M.B.; Cascone, T.; Briggs, A.; Straume, O.; Akslen, L.A.; Lifshits, E.; Byers, L.A.; Xu, L.; Wu, H.K.; et al. Combined vascular endothelial growth factor receptor and epidermal growth factor receptor (EGFR) blockade inhibits tumor growth in xenograft models of EGFR inhibitor resistance. Clin. Cancer Res. 2009, 15, 3484–3494. [Google Scholar] [CrossRef]
- Lee, J.S.; Hirsh, V.; Park, K.; Qin, S.; Blajman, C.R.; Perng, R.P.; Chen, Y.M.; Emerson, L.; Langmuir, P.; Manegold, C. Vandetanib Versus placebo in patients with advanced non-small-cell lung cancer after prior therapy with an epidermal growth factor receptor tyrosine kinase inhibitor: A randomized, double-blind phase III trial (ZEPHYR). J. Clin. Oncol. 2012, 30, 1114–1121. [Google Scholar] [CrossRef]
- Herbst, R.S.; Sun, Y.; Eberhardt, W.E.; Germonpre, P.; Saijo, N.; Zhou, C.; Wang, J.; Li, L.; Kabbinavar, F.; Ichinose, Y.; et al. Vandetanib plus docetaxel versus docetaxel as second-line treatment for patients with advanced non-small-cell lung cancer (ZODIAC): A double-blind, randomised, phase 3 trial. Lancet Oncol. 2010, 11, 619–626. [Google Scholar] [CrossRef]
- Pao, W.; Miller, V.A.; Politi, K.A.; Riely, G.J.; Somwar, R.; Zakowski, M.F.; Kris, M.G.; Varmus, H. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med. 2005, 2, e73. [Google Scholar] [CrossRef] [Green Version]
- Maheswaran, S.; Sequist, L.V.; Nagrath, S.; Ulkus, L.; Brannigan, B.; Collura, C.V.; Inserra, E.; Diederichs, S.; Iafrate, A.J.; Bell, D.W.; et al. Detection of mutations in EGFR in circulating lung-cancer cells. N. Engl. J. Med. 2008, 359, 366–377. [Google Scholar] [CrossRef]
- Lara, P.N., Jr.; Redman, M.W.; Kelly, K.; Edelman, M.J.; Williamson, S.K.; Crowley, J.J.; Gandara, D.R. Disease control rate at 8 weeks predicts clinical benefit in advanced non-small-cell lung cancer: Results from Southwest Oncology Group randomized trials. J. Clin. Oncol. 2008, 26, 463–467. [Google Scholar] [CrossRef]
- Neckers, L.; Workman, P. Hsp90 molecular chaperone inhibitors: Are we there yet? Clin. Cancer Res. 2012, 18, 64–76. [Google Scholar] [CrossRef]
- Kris, M.G.; Johnson, B.E.; Kwiatkowski, D.J.; Iafrate, A.J.; Wistuba, I.I.; Aronson, S.L.; Engelman, J.A.; Shyr, Y.; Khuri, F.R.; Rudin, C.M.; et al. Identification of driver mutations in tumor specimens from 1,000 patients with lung adenocarcinoma: The NCI’s Lung Cancer Mutation Consortium (LCMC). J. Clin. Oncol. 2011, 29. abstr CRA7506. [Google Scholar]
- Cancer Genome Atlas Research Network. Comprehensive genomic characterization of squamous cell lung cancers. Nature 2012, 489, 519–525. [Google Scholar] [CrossRef]
- Heger, M. TCGA Lung Cancer Study IDs Potential Drug Targets in Majority of Cases. Available online: http://www.genomeweb.com/sequencing/tcga-lung-cancer-study-ids-potential-drug-targets-majority-cases (accessed on 6 January 2013).
- Reck, M. What future opportunities may immuno-oncology provide for improving the treatment of patients with lung cancer? Ann. Oncol. 2012, 23, viii28–viii34. [Google Scholar]
- Kelly, R.J.; Gulley, J.L.; Giaccone, G. Targeting the immune system in non-small-cell lung cancer: Bridging the gap between promising concept and therapeutic reality. Clin. Lung Cancer 2010, 11, 228–237. [Google Scholar] [CrossRef]
- Welters, M.J.; Kenter, G.G.; de vos van Steenwijk, P.J.; Lowik, M.J.; Berends-van der Meer, D.M.; Essahsah, F.; Stynenbosch, L.F.; Vloon, A.P.; Ramwadhdoebe, T.H.; Piersma, S.J.; et al. Success or failure of vaccination for HPV16-positive vulvar lesions correlates with kinetics and phenotype of induced T-cell responses. Proc. Natl. Acad. Sci. USA 2010, 107, 11895–11899. [Google Scholar] [CrossRef]
- Pardoll, D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 2012, 12, 252–264. [Google Scholar] [CrossRef]
- Dong, H.; Strome, S.E.; Salomao, D.R.; Tamura, H.; Hirano, F.; Flies, D.B.; Roche, P.C.; Lu, J.; Zhu, G.; Tamada, K.; et al. Tumor-associated B7-H1 promotes T-cell apoptosis: A potential mechanism of immune evasion. 2002, 8, 793–800. [Google Scholar]
- Topalian, S.L.; Hodi, F.S.; Brahmer, J.R.; Gettinger, S.N.; Smith, D.C.; McDermott, D.F.; Powderly, J.D.; Carvajal, R.D.; Sosman, J.A.; Atkins, M.B.; et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 2012, 366, 2443–2454. [Google Scholar] [CrossRef]
- Brahmer, J.R.; Tykodi, S.S.; Chow, L.Q.; Hwu, W.J.; Topalian, S.L.; Hwu, P.; Drake, C.G.; Camacho, L.H.; Kauh, J.; Odunsi, K.; et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med. 2012, 366, 2455–2465. [Google Scholar] [CrossRef]
- Duraiswamy, J.; Kaluza, K.M.; Freeman, G.J.; Coukos, G. Dual Blockade of PD-1 and CTLA-4 Combined with Tumor Vaccine Effectively Restores T Cell Rejection Function in Tumors. Cancer Res. 2013, 73, 3591–3603. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Dimou, A.; Papadimitrakopoulou, V. Non-Small Cell Lung Cancer beyond Biomarkers: The Evolving Landscape of Clinical Trial Design. J. Pers. Med. 2014, 4, 386-401. https://doi.org/10.3390/jpm4030386
Dimou A, Papadimitrakopoulou V. Non-Small Cell Lung Cancer beyond Biomarkers: The Evolving Landscape of Clinical Trial Design. Journal of Personalized Medicine. 2014; 4(3):386-401. https://doi.org/10.3390/jpm4030386
Chicago/Turabian StyleDimou, Anastasios, and Vassiliki Papadimitrakopoulou. 2014. "Non-Small Cell Lung Cancer beyond Biomarkers: The Evolving Landscape of Clinical Trial Design" Journal of Personalized Medicine 4, no. 3: 386-401. https://doi.org/10.3390/jpm4030386