High Cerebral Oxygen Saturation Levels During One-Lung Ventilation Predict Better Cognitive and Clinical Outcomes After Thoracic Surgery: A Retrospective Observational Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Population
2.3. Anesthetic Protocol and Monitoring
2.4. Ventilation Strategy
2.5. Patient Grouping
2.6. Assessment of rScO2 and Cognitive Function
2.7. Data Collection
- After lateral positioning, prior to OLV initiation.
- Thirty minutes after OLV initiation, once respiratory parameters had stabilized.
- Fifteen minutes after resuming two-lung ventilation.
2.8. Postoperative Course
2.9. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Inflammatory Biomarkers
3.3. Cognitive Outcomes and Length of Hospital Stay
4. Discussion
4.1. Cerebral Oxygenation and Postoperative Cognitive Function
4.2. Permissive Hypercapnia
4.3. Cerebral Oxygen Threshold
4.4. SpO2 vs. rScO2
4.5. Neuroinflammation and Its Role in Postoperative Cognitive Dysfunction
4.6. Cerebral Oximetry as a Systemic Indicator and Predictor of Recovery
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CPAP | Continuous positive airway pressure |
FiO2 | Inspired fraction oxygen |
H-INVOS | High-INVOS |
IL | Interleuquine |
INVOS | In Vivo Optical Spectroscopy |
L-INVOS | Low-INVOS |
MMPs | Metalloproteinases |
MMSE | Mini-Mental State Examination |
OLV | One-lung ventilation |
PEEP | Positive end-expiratory pressure |
POCD | Postoperative cognitive dysfunction |
rScO2 | Regional cerebral oxygen saturation |
SpO2 | Peripherical saturation oxygen |
TNF | Tumor necrosis factor |
TV | Tidal volume |
References
- Qiu, L.; Ma, Y.; Ge, L.; Zhou, H.; Jia, W. Efficacy of Cerebral Oxygen Saturation Monitoring for Perioperative Neurocognitive Disorder in Adult Noncardiac Surgical Patients: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. World Neurosurg. 2025, 194, 123570. [Google Scholar] [CrossRef]
- Roberts, M.L.; Lin, H.M.; Tinuoye, E.; Cohen, E.; Flores, R.M.; Fischer, G.W.; Weiner, M.M. The Association of Cerebral Desaturation During One-Lung Ventilation and Postoperative Recovery: A Prospective Observational Cohort Study. J. Cardiothorac. Vasc. Anesth. 2021, 35, 542–550. [Google Scholar] [CrossRef]
- Teng, P.; Liu, H.; Xu, D.; Feng, X.; Liu, M.; Wang, Q. Effect of optimizing cerebral oxygen saturation on postoperative delirium in older patients undergoing one-lung ventilation for thoracoscopic surgery. J. Int. Med. Res. 2024, 52, 03000605241274604. [Google Scholar] [CrossRef] [PubMed]
- Tobias, J.D.; Johnson, G.A.; Rehman, S.; Fisher, R.; Caron, N. Cerebral oxygenation monitoring using near infrared spectroscopy during one-lung ventilation in adults. J. Minimal Access Surg. 2008, 4, 104–107. [Google Scholar] [CrossRef] [PubMed]
- Knaak, C.; Vorderwülbecke, G.; Spies, C.; Piper, S.K.; Hadzidiakos, D.; Borchers, F.; Brockhaus, W.-R.; Radtke, F.M.; Lachmann, G. C-reactive protein for risk prediction of post-operative delirium and post-operative neurocognitive disorder. Acta Anaesthesiol. Scand. 2019, 63, 1282–1289. [Google Scholar] [CrossRef]
- Lammers-Lietz, F.; Akyuz, L.; Feinkohl, I.; Lachmann, C.; Pischon, T.; Volk, H.D.; von Häfen, C.; Yürek, F.; Winterer, G.; Spies, C.D. Interleukin 8 in postoperative delirium—Preliminary findings from two studies. Brain Behav. Immun. Health 2022, 20, 100419. [Google Scholar] [CrossRef]
- Tastan, B.; Heneka, M.T. The impact of neuroinflammation on neuronal integrity. Immunol. Rev. 2024, 327, 8–32. [Google Scholar] [CrossRef]
- Knethen, V.; Kanda, N.; Jarczak, D.; Nierhaus, A. Cytokine Storm—Definition, Causes, and Implications. Int. J. Mol. Sci. 2022, 23, 11740. [Google Scholar] [CrossRef]
- Simon Machado, R.; Mathias, K.; Joaquim, L.; de Quadros, R.W.; Rezin, G.T.; Petronilho, F. Hyperoxia and brain: The link between necessity and injury from a molecular perspective. Neurotox Res. 2024, 42, 25. [Google Scholar] [CrossRef]
- Tsaousi, G.; Tramontana, A.; Yamani, F.; Bilotta, F. Cerebral Perfusion and Brain Oxygen Saturation Monitoring with: Jugular Venous Oxygen Saturation, Cerebral Oximetry, and Transcranial Doppler Ultrasonography. Anesth. Clin. 2021, 39, 507–523. [Google Scholar] [CrossRef] [PubMed]
- Cui, F.; Zhao, W.; Mu, D.L.; Zhao, X.; Li, X.Y.; Wang, D.X.; Jia, H.-Q.; Dai, F.; Meng, L. Association between Cerebral Desaturation and Postoperative Delirium in Thoracotomy with One-Lung Ventilation: A Prospective Cohort Study. Anesth. Analg. 2021, 133, 176–186. [Google Scholar] [CrossRef]
- Dindo, D.; Demartines, N.; Clavien, P.A. Classification of Surgical Complications: A New Proposal With Evaluation in a Cohort of 6336 Patients and Results of a Survey. Ann. Surg. 2004, 240, 205. [Google Scholar] [CrossRef]
- Brinkman, R.; Amadeo, R.J.J.; Funk, D.J.; Girling, L.G.; Grocott, H.P.; Mutch, W.A.C. Cerebral oxygen desaturation during one-lung ventilation: Correlation with hemodynamic variables. Can. J. Anesth. 2013, 60, 660–666. [Google Scholar] [CrossRef]
- Kazan, R.; Bracco, D.; Hemmerling, T.M. Reduced cerebral oxygen saturation measured by absolute cerebral oximetry during thoracic surgery correlates with postoperative complications. Br. J. Anaesth. 2009, 103, 811–816. [Google Scholar] [CrossRef] [PubMed]
- Suehiro, K.; Okutai, R. Cerebral desaturation during single-lung ventilation is negatively correlated with preoperative respiratory functions. J. Cardiothorac. Vasc. Anesth. 2011, 25, 127–130. [Google Scholar] [CrossRef] [PubMed]
- Taşkın, K. The Effect of One-Lung Ventilation on Cerebral Oxygenation and Neurocognitive Functions. J. Cardıo Vasc. Thoracıc Anaesth. Intensıve Care Socıety 2022, 28, 7–14. [Google Scholar] [CrossRef]
- Anderloni, M.; Schuind, S.; Salvagno, M.; Donadello, K.; Peluso, L.; Annoni, F.; Taccone, F.S.; Bogossian, E.G. Brain Oxygenation Response to Hypercapnia in Patients with Acute Brain Injury. Neurocrit Care 2024, 40, 750–758. [Google Scholar] [CrossRef]
- Végh, T.; Szatmári, S.; Juhász, M.; László, I.; Vaskó, A.; Takács, I.; Szegedi, L.; Fülesdi, B. One-lung ventilation does not result in cerebral desaturation during application of lung protective strategy if normocapnia is maintained. Acta Physiol. Hung. 2013, 100, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Lv, S.; Xiao, Q.; Zhang, Y.; Yi, W.; Bai, Y.; Lu, K.; Bermea, K.C.; Semel, J.; Yang, X.; et al. Effects of positive end-expiratory pressure on regional cerebral oxygen saturation in elderly patients undergoing thoracic surgery during one-lung ventilation: A randomized crossover-controlled trial. BMC Pulm Med. 2024, 24, 120. [Google Scholar] [CrossRef] [PubMed]
- Akdogan, A.; Besir, A.; Kutanis, D.; Erturk, E.; Tugcugil, E.; Saylan, S. The effect of different anesthesia techniques on cerebral oxygenation in thoracic surgery. Cir. Y Cir. (Engl. Ed.) 2022, 90 (Suppl. S1), 52–60. [Google Scholar]
- Li, S.; Zhang, J.; Hu, J.; Li, L.; Liu, G.; Zheng, T.; Wang, F.; Liu, L.; Li, G. Association of regional cerebral oxygen saturation and postoperative pulmonary complications in pediatric patients undergoing one-lung ventilation: A propensity score matched analysis of a prospective cohort study. Front. Pediatr. 2022, 10, 1077578. [Google Scholar] [CrossRef]
- Egawa, J.; Inoue, S.; Nishiwada, T.; Tojo, T.; Kimura, M.; Kawaguchi, T.; Taniguchi, S.; Furuya, H.; Kawaguchi, M. Effets des agents anesthésiques sur l’issue cognitive postopératoire précoce et l’équilibre peropératoire d’oxygène cérébral chez les patients subissant une chirurgie pulmonaire: Une étude clinique randomisée. Can. J. Anesth. 2016, 63, 1161–1169. [Google Scholar] [CrossRef]
- De La Gala, F.; Piñeiro, P.; Reyes, A.; Vara, E.; Olmedilla, L.; Cruz, P.; Garutti, I. Postoperative pulmonary complications, pulmonary and systemic inflammatory responses after lung resection surgery with prolonged one-lung ventilation. Randomized controlled trial comparing intravenous and inhalational anaesthesia. Br. J. Anaesth. 2017, 119, 655–663. [Google Scholar] [CrossRef]
- Bruinooge, A.J.G.; Mao, R.; Gottschalk, T.H.; Srinathan, S.K.; Buduhan, G.; Tan, L.; Halayko, A.J.; Kidane, B. Identifying biomarkers of ventilator induced lung injury during one-lung ventilation surgery: A scoping review. J. Thorac. Dis. 2022, 14, 4506–4520. [Google Scholar] [CrossRef]
- Zhang, S.; Tao Xjun Ding, S.; Feng Xwei Wu Fqin Wu, Y. Associations between postoperative cognitive dysfunction, serum interleukin-6 and postoperative delirium among patients after coronary artery bypass grafting: A mediation analysis. Nurs. Crit. Care 2024, 29, 1245–1252. [Google Scholar] [CrossRef]
- Xiao, M.Z.; Liu, C.X.; Zhou, L.G.; Yang, Y.; Wang, Y. Postoperative delirium, neuroinflammation, and influencing factors of postoperative delirium: A review. Medicine 2023, 102, E32991. [Google Scholar] [CrossRef]
- Mekhora, C.; Lamport, D.J.; Spencer, J.P.E. An overview of the relationship between inflammation and cognitive function in humans, molecular pathways and the impact of nutraceuticals. Neurochem. Int. 2024, 181, 105900. [Google Scholar] [CrossRef]
- Wang, J.Y.; Li, M.; Wang, P.; Fang, P. Goal-directed therapy based on rScO2 monitoring in elderly patients with one-lung ventilation: A randomized trial on perioperative inflammation and postoperative delirium. Trials 2022, 23, 687. [Google Scholar] [CrossRef]
- Sun, Y.; Koyama, Y.; Shimada, S. Inflammation From Peripheral Organs to the Brain: How Does Systemic Inflammation Cause Neuroinflammation? Front. Aging Neurosci. 2022, 14, 903455. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.; Chen, W.; Kong, G.; Wei, L.; Xie, Y. Peripheral inflammation and neurocognitive impairment: Correlations, underlying mechanisms, and therapeutic implications. Front. Aging Neurosci. 2023, 15, 1305790. [Google Scholar] [CrossRef]
- Taylor, J.; Wu, J.G.; Kunkel, D.; Parker, M.; Rivera, C.; Casey, C.; Naismith, S.; Teixeira-Pinto, A.; Maze, M.; Pearce, A.R.; et al. Resolution of elevated interleukin-6 after surgery is associated with return of normal cognitive function. Br. J. Anaesth. 2023, 131, 694–704. [Google Scholar] [CrossRef] [PubMed]
- Barreto Chang, O.L.; Maze, M. Defining the role of Interleukin-6 for the development of perioperative neurocognitive disorders: Evidence from clinical and preclinical studies. Front. Aging Neurosci. 2023, 14, 1097606. [Google Scholar] [CrossRef] [PubMed]
Variable | INVOS ≥ 75 (n = 38) | INVOS ≤ 75 (n = 60) | p-Value | |
---|---|---|---|---|
Age (years) | 62 [55.5–71.5] | 64 [60–75] | 0.185 | |
YesWeight (kg) | 80 [67–84] | 71 [61–85] | 0.190 | |
Height (cm) | 165 [160–175] | 165 [160–170.5] | 0.385 | |
Ideal Body Weight (kg) | 60 [55–71.5] | 60 [54.5–66] | 0.453 | |
BMI (kg/m2) | 27.11 [23.73–31.2] | 26.94 [23.52–31.45] | 0.766 | |
ASA Class | I | 2 (5.3%) | 1 (1.7%) | 0.439 |
II | 17 (44.7%) | 21 (35%) | ||
III | 18 (47.4%) | 37 (61.7%) | ||
IV | 1 (2.6%) | 1 (1.7%) | ||
FEV1 (% predicted) | 100.5 [86–114.75] | 87 [72–98] | 0.002 | |
FVC (% predicted) | 105 [99–115] | 96 [89–106] | 0.017 | |
FEV1/FVC Ratio | 0.75 [0.68–0.82] | 0.7 [0.55–0.76] | 0.028 | |
DLCO (% predicted) | 87 [77–108] | 87.5 [76.7–104.2] | 0.925 | |
Male sex | 27 (71.1%) | 32 (53.3%) | 0.126 | |
ARISCAT Score | 50 [40–50] | 50 [43–50] | 0.296 | |
Dyslipidemia | 14 (36.8%) | 19 (31.7%) | 0.486 | |
Type 2 Diabetes | 6 (15.8%) | 9 (15%) | 0.639 | |
Type 1 Diabetes | 1 (2.6%) | 0 (0%) | 0.168 | |
Cardiovascular Disease | 9 (23.7%) | 22 (36.7%) | 0.209 | |
Arterial Hypertension | 16 (42.1%) | 32 (53.3%) | 0.782 | |
Respiratory Disease | 9 (23.7%) | 22 (36.7%) | 0.087 | |
| 7 (18.4%) | 15 (25%) | 0.181 | |
| 3 (7.9%) | 3 (5%) | 0.344 | |
| 0 (0%) | 5 (8.3%) | 0.112 | |
Renal Disease | 2 (5.3%) | 2 (3.3%) | 0.432 | |
Liver Disease | 2 (5.3%) | 3 (5%) | 0.570 | |
Psychiatric Disorder | 1 (2.6%) | 6 (10%) | 0.229 | |
Right side surgery | 22 (57.9%) | 40 (66.6%) | 0.524 | |
Type of surgery | 0.737 | |||
Wedge resection | 19 (50%) | 23 (38.3%) | ||
Lobectomy | 19 (50%) | 36 (60%) | ||
Bilobectomy | 0 (0%) | 1 (1.7%) | ||
Length OLV (min) | 170 [106–195] | 175 [104–201] | 0.789 | |
Crystalloids (mL) | 547 [472–772] | 600 [500–733] | 0.945 |
Variable | BASELINE | p-Value | OLV + 30 | p-Value | END SURGERY | p-Value | |
---|---|---|---|---|---|---|---|
PaO2 (mmHg) | INVOS ≥ 75 | 184 [162–216] | 0.622 | 97 [77–125] | 0.037 | 189.5 [161.2–210.8] | 0.170 |
INVOS < 75 | 169 [133.5–225] | 83 [71.8–100.2] | 199.5 [171–249] | ||||
FiO2 | INVOS ≥ 75 | 0.5 [0.5–0.6] | 0.223 | 0.7 [0.6–0.8] | 0.080 | 0.6 [0.5–0.6] | 0.123 |
INVOS < 75 | 0.6 [0.5–0.6] | 0.8 [0.7–0.9] | 0.6 [0.6–0.7] | ||||
PAFI | INVOS ≥ 75 | 341 [306–396] | 0.199 | 124 [103–181] | 0.036 | 333 [281–374] | 0.743 |
INVOS < 75 | 321 [257–382] | 112 [86–144] | 318 [254–391] | ||||
SaO2 (%) | INVOS ≥ 75 | 100 [99–100] | 0.659 | 96 [93–98] | 0.060 | 100 [99–100] | 0.542 |
INVOS < 75 | 99 [99–100] | 94 [91–97] | 100 [99–100] | ||||
SpO2 (%) | INVOS ≥ 75 | 98 [97–99] | 0.896 | 95 [93–96] | 0.123 | 98 [97–99] | 0.074 |
INVOS < 75 | 98 [97–99] | 93.5 [91.8–95] | 99 [98–100] | ||||
PaCO2 (mmHg) | INVOS ≥ 75 | 52 [47–55] | 0.058 | 57 [52–64] | 0.303 | 54.5 [50.8–60] | 0.175 |
INVOS < 75 | 48 [44–54] | 55 [50–61] | 53 [47.8–61] | ||||
Hb (g/dL) | INVOS ≥ 75 | 14 [12.7–14.9] | 0.004 | 14 [13.2–15.2] | 0.004 | 13.85 [12.8–15.3] | 0.021 |
INVOS < 75 | 12.7 [11.83–13.8] | 13 [11.4–13.87] | 13.1 [11.5–14.1] | ||||
MAP (mmHg) | INVOS ≥ 75 | 71.5 [66–81.25] | 0.439 | 79 [70–86.5] | 0.663 | 75 [67–85] | 0.806 |
INVOS < 75 | 75 [64–84] | 78 [68.50–87] | 74 [68–84] | ||||
HR (b/min) | INVOS ≥ 75 | 67 [61–73.25] | 0.269 | 72 [64.50–80] | 0.237 | 73 [66–79] | 0.504 |
INVOS < 75 | 65 [58.5–73.5] | 68 [60.5–73] | 68 [63–76.5] | ||||
CI (L min m2) | INVOS ≥ 75 | 2.67 [2.24–3.1] | 0.075 | 3.2 [2.51–3.38] | 0.221 | 3.9 [2.57–3.46] | 0.658 |
INVOS < 75 | 2.5 [22–2.91] | 2.77 [2.21–38] | 3.1 [2.38–3.59] | ||||
SVV (%) | INVOS ≥ 75 | 10 [7–13] | 0.060 | 6.5 [4–11] | 0.324 | 9 [7–11.5] | 0.262 |
INVOS < 75 | 12 [8–16] | 6 [5–11] | 9 [7–13] | ||||
Ppeak (CmH2O) | INVOS ≥ 75 | 19 [18–21] | 0.580 | 22 [20–26] | 0.365 | 21 [19–24] | 0.748 |
INVOS < 75 | 19.5 [18–21] | 22.5 [20–26] | 22 [19–25] | ||||
Pplateau (CmH2O) | INVOS ≥ 75 | 15 [15–17] | 0.105 | 17 [16–21] | 0.966 | 18 [15–19] | 0.571 |
INVOS < 75 | 16 [15–17.75] | 18 [16–20] | 18 [17–20] | ||||
PEEP (CmH2O) | INVOS ≥ 75 | 5 [5] | 0.773 | 8 [6.25–8] | 0.660 | 8 [6–8] | 0.410 |
INVOS < 75 | 5 [5] | 8 [6–8] | 8 [7,8] | ||||
TV (mL) | INVOS ≥ 75 | 475 [437–545] | 0.926 | 382 [350–420] | 0.499 | 480 [450–540] | 0.588 |
INVOS < 75 | 480 [430–532] | 380 [350–425] | 475 [430–525] | ||||
Respiratory rate (/min) | INVOS ≥ 75 | 12 [12–13] | 0.430 | 13 [12–14] | 0.157 | 13 [12–14] | 0.539 |
INVOS < 75 | 12 [12–13] | 13 [12–14] | 13 [12–14] |
Variable | Baseline | p | OLV + 30 | p | End Surgery | p | 24 h PO | p | |
NSE (IU) | INVOS ≥ 75 | 14 [13–15] | 0.57 | 14.3 [13–15] | 0.800 | 14.9 [13.8–15.5] | 0.836 | 14.2 [13.5–14.9] | 0.649 |
INVOS < 75 | 14.5 [14–15] | 14.3 [13.6–154] | 14.9 [13.8–15.3] | 14.1 [13.6–14.8] | |||||
NME (IU) | INVOS ≥ 75 | 26.5 [24–30] | 0.234 | 21 [17.2–27.6] | 0.886 | 19.3 [13.8–26.7] | 0.919 | 17.6 [12.7–26.9] | 0.956 |
INVOS < 75 | 28.1 [26–30] | 20.3 [17.6–27.8] | 20.9 [14.8–26.5] | 16.7 [13.5–25.5] | |||||
HPDJ (IU) | INVOS ≥ 75 | 0.4 [0.37–0.42] | 0.528 | 0.35 [0.32–0.4] | 0.956 | 0.41 [0.35–0.51] | 0.403 | 0.44 [0.33–0.52] | 0.551 |
INVOS < 75 | 0.41 [0.39–0.42] | 0.36 [0.31–0.38] | 0.45 [0.36–0.52] | 0.49 [0.38–0.5] | |||||
S100 (IU) | INVOS ≥ 75 | 219 [208–233] | 0.301 | 264 [231–269] | 0.321 | 112 [84.7–232] | 0.946 | 627 [36.1–1710] | 0.730 |
INVOS < 75 | 226 [210–236] | 254 [236–273] | 119 [83.9–230] | 40 [37–174] | |||||
APOE (IU) | INVOS ≥ 75 | 690 [570–760] | 0.715 | 920 [850–952] | 0.976 | 910 [740–945] | 0.150 | 815 [710–869] | 0.643 |
INVOS < 75 | 701 [550–765] | 920 [810–948] | 920 [840–984] | 831 [730–889] | |||||
TNF-α (IU) | INVOS ≥ 75 | 7.55 [7.34–7.92] | 0.594 | 9.35 [9.09–9.66] | 0.896 | 9.23 [8.87–9.55] | 0.452 | 8.01 [7.42–8.53] | 0.344 |
INVOS < 75 | 7.58 [7.24–7.78] | 9.37 [9.12–9.57] | 9.27 [92–9.84] | 8.21 [7.61–8.68] | |||||
IL1 (IU) | INVOS ≥ 75 | 24.3 [23–26] | 0.494 | 28.7 [27.6–30] | 0.739 | 34.5 [32.5–36.5] | 0.970 | 38.2 [35.3–39.7] | 0.178 |
INVOS < 75 | 24.1 [23–25] | 28.6 [27.2–30.3] | 34.7 [32.5–36.6] | 36.9 [35.6–38.8] | |||||
MMP9 (IU) | INVOS ≥ 75 | 472 [451–500] | 0.651 | 523 [479–682] | 0.739 | 728 [703–780] | 0.673 | 717 [691–760] | 0.620 |
INVOS < 75 | 470 [433–490] | 552 [477–660] | 735 [700–748] | 719 [683–753] | |||||
IL6 (IU) | INVOS ≥ 75 | 282 [265–302] | 0.611 | 296 [287–307] | 0.391 | 301 [294–316] | 0.007 | 305 [278–336] | 0.044 |
INVOS < 75 | 290 [266–304] | 299 [283–313] | 316 [298–334] | 321 [309–347] | |||||
IL8 (IU) | INVOS ≥ 75 | 97 [92–107] | 0.736 | 198 [183–217] | 0.891 | 122 [108–129] | 0.869 | 248 [197–343] | 0.584 |
INVOS < 75 | 98 [92–106] | 198 [183–216] | 122 [107–129] | 288 [193–383] | |||||
IL10 (IU) | INVOS ≥ 75 | 0.1 [0.08–0.1] | 0.459 | 0.1 [9–0.1] | 0.175 | 0.1 [9–0.11] | 0.891 | 0.1 [9–0.1] | 0.627 |
INVOS < 75 | 0.1 [0.09–0.1] | 0.1 [9–0.11] | 0.1 [9–0.11] | 0.1 [9–0.11] | |||||
MCP1 (IU) | INVOS ≥ 75 | 245 [241–250] | 0.572 | 257 [252–263] | 0.878 | 339 [328–343] | 0.599 | 351 [344–356] | 0.135 |
INVOS < 75 | 243 [240–246] | 258 [251–263] | 340 [327–342] | 352 [350–357] | |||||
MMP2 (IU) | INVOS ≥ 75 | 231 [227–238] | 0.767 | 327 [320–339] | 0.77 | 365 [346–386] | 0.495 | 427 [411–442] | 0.66 |
INVOS < 75 | 231 [223–237] | 321 [310–331] | 362 [349–380] | 430 [415–453] | |||||
MMP3 (IU) | INVOS ≥ 75 | 15.3 [14.5–17] | 0.230 | 24.9 [22.8–26.7] | 0.904 | 27.3 [25.5–28.4] | 0.508 | 28.5 [26.9–29.1] | 0.660 |
INVOS < 75 | 15.2 [13–16] | 25.1 [22.4–26.8] | 26.7 [24.8–28.4] | 28.6 [26.8–29.1] | |||||
IL18 (IU) | INVOS ≥ 75 | 1.66 [1.5–1.8] | 0.896 | 1.85 [1.75–1.96] | 0.227 | 1.98 [1.94–2.5] | 0.810 | 2.97 [2.84–34] | 0.38 |
INVOS < 75 | 1.7 [1.5–1.8] | 1.79 [1.63–1.93] | 1.97 [1.93–2.4] | 2.88 [2.76–2.96] |
Variable | INVOS ≥ 75 (n = 38) (n = 38) | INVOS < 75 (n = 60) (n = 60) | p-Value |
---|---|---|---|
Length of hospital stay (days) | 4 [3–6] | 5 [4–7] | 0.019 |
Baseline mini-mental score | 30 [29–30] | 29 [28–30] | 0.23 |
Mini-mental score at 72 h | 30 [29–30] | 29 [27–30] | 0.018 |
Patients with mini-mental score at 72 h ≤ 26 points | 1 (2.7%) | 9 (15.3%) | 0.047 |
Patients with postoperative mini-mental drop ≥ 2 points | 2 (5.4%) | 13 (22%) | 0.025 |
Percentage change in mental score | 0 [0–0] | 0 [−0.3–0] | 0.046 |
Clavien–Dindo classification | 0.112 | ||
| 27 (71.1%) | 33 (55%) | |
| 11 (28.9%) | 23 (38.4%) | |
| 0 (0%) | 4 (6.6%) | |
Postoperative cardiac complication | 0 (0%) | 2 (3.3%) | 0.372 |
Renal insufficiency | 0 (0%) | 2 (3.3%) | 0.372 |
Any postoperative pulmonary complications. | 8 (21.1%) | 18 (30%) | 0.328 |
Respiratory failure | 1 (2.6) | 5 (8.3%) | 0.245 |
Atelectasis | 4 (10.5%) | 7 (11.7) | 0.568 |
Bronchoscopic intervention | 0 (0%) | 2 (3.3%) | 0.372 |
Pneumonia | 0 (0%) | 4 (6.6%) | 0.135 |
Non-invasive mechanical ventilation | 0 (0%) | 2 (3.3%) | 0.372 |
Respiratory infection | 6 (15.8%) | 9 (15%) | 0.916 |
Pulmonary embolism | 0 (0%) | 1 (1.7%) | 0.805 |
Atrial fibrillation | 3 (7.9%) | 7 (11.7) | 0.407 |
Pleural effusion | 2 (5.3%) | 11 (18.3%) | 0.056 |
Any surgical complications | 3 (7.9%) | 10 (16.5%) | 0.174 |
Wound infection | 0 (0%) | 3 (5%) | 0.225 |
Hospital readmission | 2 (5.3%) | 5 (8.3%) | 0.443 |
Mortality at 1 year | 0 (0%) | 2 (3.3) | 0.372 |
Mortality at 2 years | 1 (2.6%) | 5 (8.3%) | 0.245 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garutti, I.; de la Gala, F.; Hortal, J.; Reyes, A.; de la Fuente, E.; Martinez-Gascueña, D.; Calvo, C.A.; Hernández, S.; Caamaño, E.; Simón, C.; et al. High Cerebral Oxygen Saturation Levels During One-Lung Ventilation Predict Better Cognitive and Clinical Outcomes After Thoracic Surgery: A Retrospective Observational Study. J. Pers. Med. 2025, 15, 445. https://doi.org/10.3390/jpm15090445
Garutti I, de la Gala F, Hortal J, Reyes A, de la Fuente E, Martinez-Gascueña D, Calvo CA, Hernández S, Caamaño E, Simón C, et al. High Cerebral Oxygen Saturation Levels During One-Lung Ventilation Predict Better Cognitive and Clinical Outcomes After Thoracic Surgery: A Retrospective Observational Study. Journal of Personalized Medicine. 2025; 15(9):445. https://doi.org/10.3390/jpm15090445
Chicago/Turabian StyleGarutti, Ignacio, Francisco de la Gala, Javier Hortal, Almudena Reyes, Elena de la Fuente, David Martinez-Gascueña, Carlos Alberto Calvo, Santiago Hernández, Estrela Caamaño, Carlos Simón, and et al. 2025. "High Cerebral Oxygen Saturation Levels During One-Lung Ventilation Predict Better Cognitive and Clinical Outcomes After Thoracic Surgery: A Retrospective Observational Study" Journal of Personalized Medicine 15, no. 9: 445. https://doi.org/10.3390/jpm15090445
APA StyleGarutti, I., de la Gala, F., Hortal, J., Reyes, A., de la Fuente, E., Martinez-Gascueña, D., Calvo, C. A., Hernández, S., Caamaño, E., Simón, C., Vara, E., & Piñeiro, P. (2025). High Cerebral Oxygen Saturation Levels During One-Lung Ventilation Predict Better Cognitive and Clinical Outcomes After Thoracic Surgery: A Retrospective Observational Study. Journal of Personalized Medicine, 15(9), 445. https://doi.org/10.3390/jpm15090445