Closed-Incision Negative-Pressure Wound Therapy in Bypass Surgery: Evidence and Implications for Personalized Care
Abstract
1. Introduction
2. Patients and Methods
2.1. Study Design and Patients
2.2. Ethical Aspects
2.3. Study Outcomes
- An organism isolated from mediastinal tissue or fluid culture;
- Evidence of mediastinitis seen during operation; or
- The presence of chest pain, sternal instability, or fever (>38 °C) and purulent drainage from the mediastinum, or isolation of an organism in blood/mediastinal culture.
2.4. Data Collection and Intervention
2.5. Follow-Up
2.6. Cost Assessment
2.7. Statistical Analysis
3. Results
3.1. Clinical Outcomes
3.2. Cost Analysis
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BMI | Body mass index |
CABG | Coronary artery bypass grafting |
CI | Confidence interval |
ciNPWT | Closed-incision negative-pressure wound therapy |
COPD | Chronic obstructive pulmonary disease |
CPB | Cardio-pulmonary bypass |
DSWI | Deep sternal wound infection |
eGFR | Estimated glomerular filtration rate |
EuroSCORE II | European System for Cardiac Operative Risk Evaluation II |
ICU | Intensive care unit |
LVEF | Left ventricular ejection fraction |
NPWT | Negative-pressure wound therapy |
OR | Odds ratio |
SSC | Surgical site complication |
SWI | Sternal wound infections |
References
- Coskun, D.; Aytac, J.; Aydinli, A.; Bayer, A. Mortality rate, length of stay and extra cost of sternal surgical site infections following coronary artery bypass grafting in a private medical centre in Turkey. J. Hosp. Infect. 2005, 60, 176–179. [Google Scholar] [CrossRef]
- Gaudino, M.; Audisio, K.; Rahouma, M.; Robinson, N.B.; Soletti, G.J.; Cancelli, G.; Masterson Creber, R.M.; Gray, A.; Lees, B.; Gerry, S.; et al. Association between sternal wound complications and 10-year mortality following coronary artery bypass grafting. J. Thorac. Cardiovasc. Surg. 2023, 166, 532–539. [Google Scholar] [CrossRef]
- Kaspersen, A.E.; Nielsen, S.J.; Orrason, A.W.; Petursdottir, A.; Sigurdsson, M.I.; Jeppsson, A.; Gudbjartsson, T. Short- and long-term mortality after deep sternal wound infection following cardiac surgery: Experiences from SWEDEHEART. Eur. J. Cardiothorac. Surg. 2021, 60, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Perezgrovas-Olaria, R.; Audisio, K.; Cancelli, G.; Rahouma, M.; Ibrahim, M.; Soletti, G.J.; Chadow, D.; Demetres, M.; Girardi, L.N.; Gaudino, M. Deep Sternal Wound Infection and Mortality in Cardiac Surgery: A Meta-analysis. Ann. Thorac. Surg. 2023, 115, 272–280. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Chu, W.; Sun, J.; Liu, X.; Zhu, H.; Yu, H.; Shen, C. Review on risk factors, classification, and treatment of sternal wound infection. J. Cardiothorac. Surg. 2023, 18, 184. [Google Scholar] [CrossRef]
- Sharif, M.; Wong, C.H.M.; Harky, A. Sternal Wound Infections, Risk Factors and Management—How Far Are We? A Literature Review. Heart Lung Circ. 2019, 28, 835–843. [Google Scholar] [CrossRef] [PubMed]
- Hirahara, N.; Miyata, H.; Motomura, N.; Kohsaka, S.; Nishimura, T.; Takamoto, S. Procedure- and Hospital-Level Variation of Deep Sternal Wound Infection from All-Japan Registry. Ann. Thorac. Surg. 2020, 109, 547–554. [Google Scholar] [CrossRef]
- Pogorelic, Z.; Stricevic, L.; Elezovic Baloevic, S.; Todoric, J.; Budimir, D. Safety and Effectiveness of Triclosan-Coated Polydioxanone (PDS Plus) versus Uncoated Polydioxanone (PDS II) Sutures for Prevention of Surgical Site Infection after Hypospadias Repair in Children: A 10-Year Single Center Experience with 550 Hypospadias. Biomedicines 2024, 12, 583. [Google Scholar] [CrossRef]
- Dohmen, P.M.; Markou, T.; Ingemansson, R.; Rotering, H.; Hartman, J.M.; van Valen, R.; Brunott, M.; Segers, P. Use of incisional negative pressure wound therapy on closed median sternal incisions after cardiothoracic surgery: Clinical evidence and consensus recommendations. Med. Sci. Monit. 2014, 20, 1814–1825. [Google Scholar] [CrossRef]
- Smolle, M.A.; Nischwitz, S.P.; Hutan, M.; Trunk, P.; Lumenta, D.; Bernhardt, G.A. Closed-incision negative-pressure wound management in surgery—Literature review and recommendations. Eur. Surg. 2020, 52, 249–267. [Google Scholar] [CrossRef]
- The R Core Team. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2025. [Google Scholar]
- Clough, R.A.; Leavitt, B.J.; Morton, J.R.; Plume, S.K.; Hernandez, F.; Nugent, W.; Lahey, S.J.; Ross, C.S.; O’Connor, G.T. The effect of comorbid illness on mortality outcomes in cardiac surgery. Arch. Surg. 2002, 137, 428–432; discussion 423–432. [Google Scholar] [CrossRef]
- Scrutinio, D.; Giannuzzi, P. Comorbidity in patients undergoing coronary artery bypass graft surgery: Impact on outcome and implications for cardiac rehabilitation. Eur. J. Cardiovasc. Prev. Rehabil. 2008, 15, 379–385. [Google Scholar] [CrossRef]
- Nashef, S.A.; Roques, F.; Sharples, L.D.; Nilsson, J.; Smith, C.; Goldstone, A.R.; Lockowandt, U. EuroSCORE II. Eur. J. Cardiothorac. Surg. 2012, 41, 734–744; discussion 735–744. [Google Scholar] [CrossRef] [PubMed]
- Jennings, S.; Vahaviolos, J.; Chan, J.; Worthington, M.G.; Stuklis, R.G. Prevention of Sternal Wound Infections by use of a Surgical Incision Management System: First Reported Australian Case Series. Heart Lung Circ. 2016, 25, 89–93. [Google Scholar] [CrossRef]
- Witt-Majchrzak, A.; Zelazny, P.; Snarska, J. Preliminary outcome of treatment of postoperative primarily closed sternotomy wounds treated using negative pressure wound therapy. Pol. Przegl Chir. 2015, 86, 456–465. [Google Scholar] [CrossRef]
- Tabley, A.; Aludaat, C.; Le Guillou, V.; Gay, A.; Nafeh-Bizet, C.; Scherrer, V.; Bouchart, F.; Doguet, F. A Survey of Cardiac Surgery Infections with PICO Negative Pressure Therapy in High-Risk Patients. Ann. Thorac. Surg. 2020, 110, 2034–2040. [Google Scholar] [CrossRef]
- Suelo-Calanao, R.L.; Thomson, R.; Read, M.; Matheson, E.; Isaac, E.; Chaudhry, M.; Loubani, M. The impact of closed incision negative pressure therapy on prevention of median sternotomy infection for high risk cases: A single centre retrospective study. J. Cardiothorac. Surg. 2020, 15, 222. [Google Scholar] [CrossRef]
- Colli, A.; Camara, M.L. First experience with a new negative pressure incision management system on surgical incisions after cardiac surgery in high risk patients. J. Cardiothorac. Surg. 2011, 6, 160. [Google Scholar] [CrossRef]
- Elhassan, H.; Amjad, R.; Palaniappan, U.; Loubani, M.; Rose, D. The negative pressure wound therapy for prevention of sternal wound infection: Can we reduce infection rate after the use of bilateral internal thoracic arteries? A systematic literature review and meta-analysis. J. Cardiothorac. Surg. 2024, 19, 87. [Google Scholar] [CrossRef]
- Grauhan, O.; Navasardyan, A.; Tutkun, B.; Hennig, F.; Muller, P.; Hummel, M.; Hetzer, R. Effect of surgical incision management on wound infections in a poststernotomy patient population. Int. Wound J. 2014, 11 (Suppl. 1), 6–9. [Google Scholar] [CrossRef]
- Grauhan, O.; Navasardyan, A.; Hofmann, M.; Muller, P.; Stein, J.; Hetzer, R. Prevention of poststernotomy wound infections in obese patients by negative pressure wound therapy. J. Thorac. Cardiovasc. Surg. 2013, 145, 1387–1392. [Google Scholar] [CrossRef]
- Rashed, A.; Csiszar, M.; Beledi, A.; Gombocz, K. The impact of incisional negative pressure wound therapy on the wound healing process after midline sternotomy. Int. Wound J. 2021, 18, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Brega, C.; Calvi, S.; Albertini, A. Use of a negative pressure wound therapy system over closed incisions option in preventing post-sternotomy wound complications. Wound Repair. Regen. 2021, 29, 848–852. [Google Scholar] [CrossRef] [PubMed]
- Biancari, F.; Santoro, G.; Provenzano, F.; Savarese, L.; Iorio, F.; Giordano, S.; Zebele, C.; Speziale, G. Negative-Pressure Wound Therapy for Prevention of Sternal Wound Infection after Adult Cardiac Surgery: Systematic Review and Meta-Analysis. J. Clin. Med. 2022, 11, 4268. [Google Scholar] [CrossRef] [PubMed]
- Myllykangas, H.M.; Halonen, J.; Husso, A.; Vaananen, H.; Berg, L.T. Does Incisional Negative Pressure Wound Therapy Prevent Sternal Wound Infections? Thorac. Cardiovasc. Surg. 2022, 70, 65–71. [Google Scholar] [CrossRef]
- Ruggieri, V.G.; Olivier, M.E.; Aludaat, C.; Rosato, S.; Marticho, P.; Saade, Y.A.; Lefebvre, A.; Poncet, A.; Rubin, S.; Biancari, F. Negative Pressure versus Conventional Sternal Wound Dressing in Coronary Surgery Using Bilateral Internal Mammary Artery Grafts. Heart Surg. Forum 2019, 22, E092–E096. [Google Scholar] [CrossRef]
- de Tymowski, C.; Provenchere, S.; Para, M.; Duval, X.; Grall, N.; Sahnoun, T.; Iung, B.; Kerneis, S.; Lucet, J.C.; Montravers, P. Deep sternal wound infection after cardiac surgery: A combination of 2 distinct infection types, deep incisional surgical-site infection and mediastinitis: Results of a retrospective study. Surgery 2025, 181, 109255. [Google Scholar] [CrossRef]
- Gundestrup, L.; Florczak, C.K.; Riber, L.P.S. Factors associated with deep sternal wound infection after open-heart surgery in a Danish registry. Am. Heart J. Plus 2023, 31, 100307. [Google Scholar] [CrossRef]
Overall | ciNPWT | Conventional | p-Value | |
---|---|---|---|---|
(N = 142) | (n = 71) | (n = 71) | ||
Characteristics | ||||
Age (years), mean ± SD | 67.0 ± 8.5 | 67.4 ± 8.9 | 66.6 ± 8.0 | 0.58 |
Sex (male), n (%) | 98 (69.0%) | 48 (67.6%) | 50 (70.4%) | 0.86 |
BMI (kg/m2), mean ± SD | 35.1 ± 4.8 | 35.3 ± 4.9 | 34.9 ± 4.8 | 0.61 |
EuroSCORE II (%), Mdn (IQR) | 1.62 (1.15, 2.39) | 1.62 (1.04, 2.56) | 1.62 (1.23, 2.29) | 0.71 |
Diabetes mellitus, n (%) | 80 (56.3%) | 43 (60.6%) | 37 (52.1%) | 0.40 |
Smoking, n (%) | 49 (34.5%) | 23 (32.4%) | 26 (36.6%) | 0.72 |
COPD, n (%) | 29 (20.4%) | 18 (25.4%) | 11 (15.5%) | 0.21 |
eGFR (mL/min), mean ± SD | 104.0 ± 38.6 | 108.0 ± 35.1 | 99.7 ± 41.7 | 0.06 |
Dialysis, n (%) | 1 (0.7%) | 0 (0%) | 1 (1.4%) | 1.00 |
Peripheral arteriopathy, n (%) | 15 (10.6%) | 10 (14.1%) | 5 (7.0%) | 0.28 |
Cerebrovascular arteriopathy, n (%) | 18 (12.7%) | 10 (14.1%) | 8 (11.3%) | 0.80 |
LVEF (%), Mdn (IQR) | 54.0 (45.0, 60.0) | 54.0 (46.5, 60.0) | 54.0 (45.0, 60.0) | 0.33 |
Operative variables | ||||
Procedural urgency, n (%) | ||||
| 63 (44.4%) | 35 (49.3%) | 28 (39.4%) | 0.43 |
| 75 (52.8%) | 34 (47.9%) | 41 (57.7%) | |
| 4 (2.8%) | 2 (2.8%) | 2 (2.8%) | |
Double internal mammary artery, n (%) | 8 (5.6%) | 5 (7.0%) | 3 (4.2%) | 0.72 |
Skin to skin time (min), mean ± SD | 172 ± 34.4 | 174 ± 32.8 | 170 ± 36.0 | 0.48 |
CPB time (min), mean ± SD | 62.3 ± 18.4 | 64.3 ± 19.3 | 60.4 ± 17.5 | 0.21 |
Cross clamp time (min), mean ± SD | 47.3 ± 16.5 | 50.9 ± 16.8 | 43.9 ± 15.6 | 0.01 |
Type of wound suture, n (%) | ||||
| 16 (11.3%) | 9 (12.7%) | 7 (9.9%) | 0.61 |
| 1 (0.7%) | 1 (1.4%) | 0 (0%) | |
| 125 (88.0%) | 61 (85.9%) | 64 (90.1%) |
Overall | ciNPWT | Conventional | p-Value | |
---|---|---|---|---|
(N = 142) | (n = 71) | (n = 71) | ||
Postoperative variables | ||||
Ventilation time (hours), Mdn (IQR) | 5.00 (4.00, 7.75) | 5.00 (4.00, 8.00) | 5.00 (4.00, 7.00) | 0.33 |
Surgical site complication, n (%) | 25 (17.6%) | 18 (25.4%) | 7 (9.9%) | 0.03 * |
| 117 (82.4%) | 53 (74.6%) | 64 (90.1%) | |
| 5 (3.5%) | 3 (4.2%) | 2 (2.8%) | |
| 20 (14.1%) | 15 (21.1%) | 5 (7.0%) | |
Ascertained infection, n (%) | 17 (12.0%) | 13 (18.3%) | 4 (5.6%) | 0.04 * |
Wound revision, n (%) | ||||
| 121 (85.2%) | 56 (78.9%) | 65 (91.5%) | 0.05 * |
| 17 (12.0%) | 11 (15.5%) | 6 (8.5%) | |
| 4 (2.8%) | 4 (5.6%) | 0 (0%) | |
ICU stay (days), Mdn (IQR) | 1.00 (1.00, 3.00) | 1.00 (1.00, 2.00) | 2.00 (1.00, 3.00) | 0.02 * |
Hospital stay (days), Mdn (IQR) | 8.00 (5.00, 11.0) | 8.00 (6.50, 10.0) | 8.00 (7.00, 11.0) | 0.34 |
In-hospital mortality, n (%) | 0 (0%) | 0 (0%) | 0 (0%) | 1.00 |
Variables | Deep Sternal Wound Infection | |||
---|---|---|---|---|
Univariate Analysis | Multivariate Analysis | |||
OR (95% CI) | p | OR (95% CI) | p | |
Patients’ characteristics | ||||
Age | 0.998 (0.992, 1.005) | 0.67 | - | |
Sex (male) | 1.133 (1.002, 1.282) | 0.04 * | - | |
Body mass index (kg/m2) | 1.015 (1.003, 1.027) | 0.02 * | 1.016 (1.005, 1.027) | <0.01 ** |
EuroSCORE II (%) | 1.019 (0.980, 1.060) | 0.34 | - | |
Hypertension | 1.017 (0.792, 1.306) | 0.90 | - | |
Diabetes | 1.021 (0.909, 1.147) | 0.72 | - | |
Dyslipidemia | 0.941 (0.835, 1.062) | 0.33 | - | |
Smoking | 0.972 (0.861, 1.097) | 0.65 | - | |
Immunosoppressive therapy | 0.865 (0.611, 1.224) | 0.41 | - | |
COPD | 1.040 (0.902, 1.200) | 0.59 | - | |
eGFR (mL/min) | 1.000 (0.999, 1.002) | 0.81 | - | |
Dialysis | 0.868 (0.436, 1.728) | 0.69 | - | |
History of wound infection | 1.439 (0.886, 2.339) | 0.14 | - | |
Peripheral arteriopathy | 1.240 (1.032, 1.491) | 0.02 * | 1.283 (1.085, 1.518) | <0.01 ** |
Cerebrovascular arteriopathy | 1.328 (1.125, 1.569) | <0.01 ** | - | |
NYHA Class III or IV | 1.049 (0.927, 1.186) | 0.45 | - | |
Left ventricular ejection fraction (%) | 1.003 (0.997, 1.008) | 0.34 | - | |
Operative variables | ||||
Procedural urgency | 0.968 (0.862, 1.087) | 0.59 | - | |
Double internal mammary artery | 0.861, (0.672, 1.105) | 0.24 | - | |
Skin to skin time (min) | 1.000, (0.998, 1.001) | 0.6 | - | |
Cardio-pulmonary bypass time (min) | 0.999, (0.996, 1.002) | 0.38 | - | |
Cross clamp time (min) | 0.997, (0.994, 1.000) | 0.09 * | 0.997 (0.993, 1.000) | 0.04 * |
ciNPWT | 1.151, (1.028, 1.289) | 0.02 * | 1.115 (1.002, 1.240) | 0.04 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taghizadeh-Waghefi, A.; De Angelis, V.; Bastouni, T.; Vander Zwaag, S.; Wilbring, M.; Alexiou, K.; Matschke, K.; Kappert, U.; Petrov, A. Closed-Incision Negative-Pressure Wound Therapy in Bypass Surgery: Evidence and Implications for Personalized Care. J. Pers. Med. 2025, 15, 448. https://doi.org/10.3390/jpm15100448
Taghizadeh-Waghefi A, De Angelis V, Bastouni T, Vander Zwaag S, Wilbring M, Alexiou K, Matschke K, Kappert U, Petrov A. Closed-Incision Negative-Pressure Wound Therapy in Bypass Surgery: Evidence and Implications for Personalized Care. Journal of Personalized Medicine. 2025; 15(10):448. https://doi.org/10.3390/jpm15100448
Chicago/Turabian StyleTaghizadeh-Waghefi, Ali, Veronica De Angelis, Taofeq Bastouni, Stanislaw Vander Zwaag, Manuel Wilbring, Konstantin Alexiou, Klaus Matschke, Utz Kappert, and Asen Petrov. 2025. "Closed-Incision Negative-Pressure Wound Therapy in Bypass Surgery: Evidence and Implications for Personalized Care" Journal of Personalized Medicine 15, no. 10: 448. https://doi.org/10.3390/jpm15100448
APA StyleTaghizadeh-Waghefi, A., De Angelis, V., Bastouni, T., Vander Zwaag, S., Wilbring, M., Alexiou, K., Matschke, K., Kappert, U., & Petrov, A. (2025). Closed-Incision Negative-Pressure Wound Therapy in Bypass Surgery: Evidence and Implications for Personalized Care. Journal of Personalized Medicine, 15(10), 448. https://doi.org/10.3390/jpm15100448