Prognostication Following Transcatheter Edge-to-Edge Mitral Valve Repair Using Combined Echocardiography-Derived Velocity Time Integral Ratio and Artificial Intelligence Applied to Electrocardiogram
Abstract
1. Introduction
2. Methods
2.1. Study Population
2.2. Echocardiographic Evaluation
2.3. Electrocardiogram Artificial Intelligence Algorithm
2.4. Outcomes
2.5. Statistical Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kaneko, T.; Newell, P.C.; Nisivaco, S.; Yoo, S.G.K.; Hirji, S.A.; Hou, H.; Romano, M.; Lim, D.S.; Chetcuti, S.; Shah, P.; et al. Incidence, characteristics, and outcomes of reintervention after mitral transcatheter edge-to-edge repair. J. Thorac. Cardiovasc. Surg. 2024, 167, 143–154.e146. [Google Scholar] [CrossRef] [PubMed]
- Hausleiter, J.; Stocker, T.J.; Adamo, M.; Karam, N.; Swaans, M.J.; Praz, F. Mitral valve transcatheter edge-to-edge repair. EuroIntervention 2023, 18, 957–976. [Google Scholar] [CrossRef] [PubMed]
- Zoghbi, W.A.; Asch, F.M.; Bruce, C.; Gillam, L.D.; Grayburn, P.A.; Hahn, R.T.; Inglessis, I.; Islam, A.M.; Lerakis, S.; Little, S.H.; et al. Guidelines for the Evaluation of Valvular Regurgitation After Percutaneous Valve Repair or Replacement: A Report from the American Society of Echocardiography Developed in Collaboration with the Society for Cardiovascular Angiography and Interventions, Japanese Society of Echocardiography, and Society for Cardiovascular Magnetic Resonance. J. Am. Soc. Echocardiogr. 2019, 32, 431–475. [Google Scholar] [CrossRef]
- Scalia, I.G.; Farina, J.M.; Wraith, R.; Brown, L.; Abbas, M.T.; Pereyra, M.; Allam, M.; Mahmoud, A.K.; Kamel, M.A.; Barry, T.; et al. Association between echocardiographic velocity time integral ratio of mitral valve and left ventricular outflow tract and clinical outcomes post transcatheter edge-to-edge mitral valve repair. Heliyon 2024, 10, e32378. [Google Scholar] [CrossRef]
- Olmos, L.; Salazar, G.; Barbetseas, J.; Quiñones, M.A.; Zoghbi, W.A. Usefulness of transthoracic echocardiography in detecting significant prosthetic mitral valve regurgitation. Am. J. Cardiol. 1999, 83, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Spencer, R.J.; Gin, K.G.; Tsang, M.Y.C.; Tsang, T.S.M.; Nair, P.; Lee, P.K.; Jue, J. Doppler Parameters Derived from Transthoracic Echocardiography Accurately Detect Bioprosthetic Mitral Valve Dysfunction. J. Am. Soc. Echocardiogr. 2017, 30, 966–973.e961. [Google Scholar] [CrossRef] [PubMed]
- Tsaban, G.; Lee, E.; Wopperer, S.; Abbasi, M.; Yu, H.T.; Kane, G.C.; Lopez-Jimenez, F.; Pislaru, S.V.; Nkomo, V.T.; Deshmukh, A.J.; et al. Using Electrocardiogram to Assess Diastolic Function and Prognosis in Mitral Regurgitation. J. Am. Coll. Cardiol. 2024, 84, 2278–2289. [Google Scholar] [CrossRef]
- Young, M.N.; Kearing, S.; Albaghdadi, M.A.; Latib, A.; Iribarne, A. Trends in Transcatheter vs Surgical Mitral Valve Repair Among Medicare Beneficiaries, 2012 to 2019. JAMA Cardiol. 2022, 7, 770–772. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, C.; Rahko, P.S.; Blauwet, L.A.; Canaday, B.; Finstuen, J.A.; Foster, M.C.; Horton, K.; Ogunyankin, K.O.; Palma, R.A.; Velazquez, E.J. Guidelines for Performing a Comprehensive Transthoracic Echocardiographic Examination in Adults: Recommendations from the American Society of Echocardiography. J. Am. Soc. Echocardiogr. 2019, 32, 1–64. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.; Ito, S.; Kane, G.C.; Lopez-Jimenez, F.; Friedman, P.A.; Attia, Z.I.; Oh, J.K. An Artificial Intelligence-Enabled Ecg Algorithm for Left Ventricular Diastolic Function Assessment. J. Am. Coll. Cardiol. 2023, 81, 4023. [Google Scholar] [CrossRef]
- Lee, E.; Ito, S.; Miranda, W.R.; Lopez-Jimenez, F.; Kane, G.C.; Asirvatham, S.J.; Noseworthy, P.A.; Friedman, P.A.; Carter, R.E.; Borlaug, B.A.; et al. Artificial intelligence-enabled ECG for left ventricular diastolic function and filling pressure. NPJ Digit. Med. 2024, 7, 4. [Google Scholar] [CrossRef] [PubMed]
- Chikwe, J.; O’Gara, P.; Fremes, S.; Sundt Thoralf, M.; Habib Robert, H.; Gammie, J.; Gaudino, M.; Badhwar, V.; Gillinov, M.; Acker, M.; et al. Mitral Surgery After Transcatheter Edge-to-Edge Repair. J. Am. Coll. Cardiol. 2021, 78, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Sorajja, P.; Vemulapalli, S.; Feldman, T.; Mack, M.; Holmes David, R.; Stebbins, A.; Kar, S.; Thourani, V.; Ailawadi, G. Outcomes With Transcatheter Mitral Valve Repair in the United States. J. Am. Coll. Cardiol. 2017, 70, 2315–2327. [Google Scholar] [CrossRef] [PubMed]
- Zweck, E.; Spieker, M.; Horn, P.; Iliadis, C.; Metze, C.; Kavsur, R.; Tiyerili, V.; Nickenig, G.; Baldus, S.; Kelm, M.; et al. Machine Learning Identifies Clinical Parameters to Predict Mortality in Patients Undergoing Transcatheter Mitral Valve Repair. JACC Cardiovasc. Interv. 2021, 14, 2027–2036. [Google Scholar] [CrossRef] [PubMed]
Baseline Characteristics | VTIMV/LVOT < 2.5 & ECG-AI Score ≤ 1 “Both Normal” (n = 37) | VTIMV/LVOT ≥ 2.5 or ECG-AI Score > 1 “One Abnormal” (n = 143) | VTIMV/LVOT ≥ 2.5 & ECG-AI Score > 1 “Both Abnormal” (n = 70) | Overall Patient Cohort (n = 250) | p Value |
---|---|---|---|---|---|
Age at time of M-TEER, years | 79.7 (74.5, 83.5) | 79.4 (71.8, 84.6) | 81.5 (73.5, 84.5) | 79.5 (73.1, 84.6) | 0.677 |
Sex, male | 23 (62.2) | 95 (66.4) | 48 (68.6) | 166 (66.4) | 0.800 |
Hypertension | 29 (78.4) | 121 (84.6) | 55 (78.6) | 205 (82.0) | 0.461 |
Diabetes | 11 (29.7) | 42 (29.4) | 25 (35.7) | 78 (31.2) | 0.630 |
Atrial fibrillation/flutter | 19 (51.4) | 104 (72.7) | 52 (74.3) | 175 (70.0) | 0.027 |
MR etiology | |||||
MR Primary | 31 (83.8) | 90 (62.9) | 44 (62.9) | 165 (66.0) | 0.047 |
MR Secondary | 6 (16.2) | 53 (37.1) | 26 (37.1) | 85 (34.0) | 0.047 |
Prior ischemic heart disease | 7 (18.9) | 47 (32.9) | 26 (37.1) | 80 (32.0) | 0.149 |
Prior valvular intervention | 4 (10.8) | 18 (12.6) | 12 (17.1) | 34 (13.6) | 0.572 |
Prior aortic valve intervention | 3 (8.1) | 12 (8.4) | 9 (12.9) | 24 (9.6) | 0.551 |
Prior tricuspid valve intervention | 2 (5.4) | 4 (2.8) | 4 (5.7) | 10 (4.0) | 0.531 |
Prior mitral valve intervention | 0 (0.0) | 6 (4.2) | 3 (4.3) | 9 (3.6) | 0.444 |
Pre M-TEER Echocardiographic parameters | |||||
Ejection fraction, % | 60.0 (55.0, 65.0) | 53.0 (35.0, 60.0) | 50.0 (35.5, 60.0) | 55.0 (39.0, 60.0) | <0.001 |
Right ventricular systolic pressure, mmHg | 41.0 (33.0, 47.0) | 50.0 (41.0, 59.0) | 51.0 (41.0, 63.0) | 49.0 (40.5, 59.0) | <0.001 |
LV dimension (d), mm | 54.0 (50.0, 58.0) | 56.0 (52.0, 62.0) | 56.0 (52.3, 63.5) | 56.0 (51.0, 61.0) | 0.064 |
LV dimension (s), mm | 35.0 (29.5, 38.5) | 38.0 (33.0, 48.0) | 40.0 (33.0, 50.0) | 38.0 (32.3, 47.8) | 0.007 |
Outcomes | VTIMV/LVOT < 2.5 & ECG-AI ≤ 1 vs. VTIMV/LVOT ≥ 2.5 or ECG-AI > 1 | VTIMV/LVOT < 2.5 & ECG-AI ≤ 1 vs. VTIMV/LVOT ≥ 2.5 & ECG-AI > 1 | VTIMV/LVOT ≥ 2.5 or ECG-AI > 1 vs. VTIMV/LVOT ≥ 2.5 & ECG-AI > 1 | |||
---|---|---|---|---|---|---|
Adjusted HR [95% CI] | p value | Adjusted HR [95% CI] | p value | Adjusted HR [95% CI] | p value | |
Mortality | 3.26 [0.77–13.89] | 0.110 | 4.56 [1.04–19.89] | 0.044 | 1.39 [0.77–2.52] | 0.267 |
MACE | 2.05 [0.61–6.89] | 0.245 | 3.72 [1.09–12.72] | 0.037 | 1.81 [1.03–3.20] | 0.041 |
MV reintervention | 0.63 [0.11–3.58] | 0.601 | 1.44 [0.24–8.50] | 0.687 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bismee, N.N.; Scalia, I.G.; Abbas, M.T.; Farina, J.M.; Pereyra Pietri, M.; Awad, K.; Ali, N.B.; Javadi, N.; Esfahani, S.A.; Sheashaa, H.; et al. Prognostication Following Transcatheter Edge-to-Edge Mitral Valve Repair Using Combined Echocardiography-Derived Velocity Time Integral Ratio and Artificial Intelligence Applied to Electrocardiogram. J. Pers. Med. 2025, 15, 371. https://doi.org/10.3390/jpm15080371
Bismee NN, Scalia IG, Abbas MT, Farina JM, Pereyra Pietri M, Awad K, Ali NB, Javadi N, Esfahani SA, Sheashaa H, et al. Prognostication Following Transcatheter Edge-to-Edge Mitral Valve Repair Using Combined Echocardiography-Derived Velocity Time Integral Ratio and Artificial Intelligence Applied to Electrocardiogram. Journal of Personalized Medicine. 2025; 15(8):371. https://doi.org/10.3390/jpm15080371
Chicago/Turabian StyleBismee, Nadera N., Isabel G. Scalia, Mohammed Tiseer Abbas, Juan M. Farina, Milagros Pereyra Pietri, Kamal Awad, Nima Baba Ali, Niloofar Javadi, Sogol Attaripour Esfahani, Hesham Sheashaa, and et al. 2025. "Prognostication Following Transcatheter Edge-to-Edge Mitral Valve Repair Using Combined Echocardiography-Derived Velocity Time Integral Ratio and Artificial Intelligence Applied to Electrocardiogram" Journal of Personalized Medicine 15, no. 8: 371. https://doi.org/10.3390/jpm15080371
APA StyleBismee, N. N., Scalia, I. G., Abbas, M. T., Farina, J. M., Pereyra Pietri, M., Awad, K., Ali, N. B., Javadi, N., Esfahani, S. A., Sheashaa, H., Ibrahim, O. H., Abdelfattah, F. E., Fortuin, F. D., Lester, S. J., Sweeney, J. P., Ayoub, C., & Arsanjani, R. (2025). Prognostication Following Transcatheter Edge-to-Edge Mitral Valve Repair Using Combined Echocardiography-Derived Velocity Time Integral Ratio and Artificial Intelligence Applied to Electrocardiogram. Journal of Personalized Medicine, 15(8), 371. https://doi.org/10.3390/jpm15080371