Established and Emerging Asthma Biomarkers with a Focus on Biologic Trials: A Narrative Review
Abstract
1. Introduction
2. The Eosinophilic T2 Inflammatory Asthma Endotype
3. Established Biomarkers Investigated in Biologic Clinical Trials
3.1. Serum Immunoglobulin E (IgE)
3.2. Blood Eosinophils
3.2.1. Blood Eosinophils in Anti-IL5/IL5R Biologics (Mepolizumab, Benralizumab, Reslizumab)
3.2.2. Blood Eosinophils in Anti-IL4Rα Biologic Trials (Dupilumab)
3.2.3. Blood Eosinophils in Anti-TSLP Biologic Trials (Tezepelumab)
3.3. Fraction of Exhaled Nitric Oxide (FeNO)
3.3.1. FeNO in Anti-IgE and Anti-IL5/IL5R Biologic Therapies
3.3.2. FeNO in Anti-IL-13 mAb Therapy (Tralokinumab and Lebrikizumab)
3.3.3. FeNO in Anti-IL4Rα mAb Therapy
3.3.4. FeNO in Anti-TSLP mAb Therapy
3.3.5. FeNO Applications from the Guidelines Across Levels of Asthma Severity
3.4. Serum Periostin
4. Emerging Biomarkers Across Asthma Endotypes
4.1. Sputum Markers
4.1.1. Airway Eosinophils/Granule Contents
4.1.2. Sputum Neutrophils
4.1.3. Sputum Interleukins (4, 5, 8, 13, 33)
4.2. Novel Biomarkers
4.2.1. Thymus and Activation-Regulated Chemokine (TARC)
4.2.2. Plasma Eotaxin-3
4.2.3. Eosinophil Peroxidase (EPX)
4.2.4. Clara/Club Cell Secretory Protein (CC16)
4.3. Imaging Biomarkers
4.3.1. Mucus Plugging
4.3.2. Air Trapping
4.3.3. Airway Wall Thickness
4.3.4. Small Airway Remodeling
4.3.5. Hyperpolarized Gas Magnetic Resonance Imaging (MRI)
5. Clinical Applications
5.1. Biomarkers in Society Guidelines
5.2. Composite Biomarkers
6. Future Directions and New Research
Biomarkers for Current Biologic Development
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FDA-NIH Biomarker Working Group. BEST (Biomarkers, EndpointS, and other Tools) Resource; Food and Drug Administration: Silver Spring, MD, USA, 2016. [Google Scholar]
- Chung, K.F.; Wenzel, S.E.; Brozek, J.L.; Bush, A.; Castro, M.; Sterk, P.J.; Adcock, I.M.; Bateman, E.D.; Bel, E.H.; Bleecker, E.R.; et al. International ERS/ATS guidelines on definition, evaluation and treatment of severe asthma. Eur. Respir. J. 2014, 43, 343–373. [Google Scholar] [CrossRef]
- Holguin, F.; Cardet, J.C.; Chung, K.F.; Diver, S.; Ferreira, D.S.; Fitzpatrick, A.; Gaga, M.; Kellermeyer, L.; Khurana, S.; Knight, S.; et al. Management of severe asthma: A European Respiratory Society/American Thoracic Society guideline. Eur. Respir. J. 2020, 55, 1900588. [Google Scholar] [CrossRef]
- Global Initiative for Asthma. 2025 GINA Main Report. Global Strategy for Asthma Management and Prevention. Available online: https://ginasthma.org/reports/ (accessed on 3 June 2025).
- Kuruvilla, M.E.; Lee, F.E.H.; Lee, G.B. Understanding Asthma Phenotypes, Endotypes, and Mechanisms of Disease. Clin. Rev. Allergy Immunol. 2019, 56, 219–233. [Google Scholar] [CrossRef]
- Habib, N.; Pasha, M.A.; Tang, D.D. Current Understanding of Asthma Pathogenesis and Biomarkers. Cells 2022, 11, 2764. [Google Scholar] [CrossRef] [PubMed]
- Rupani, H.; Busse, W.W.; Howarth, P.H.; Bardin, P.G.; Adcock, I.M.; Konno, S.; Jackson, D.J. Therapeutic relevance of eosinophilic inflammation and airway viral interactions in severe asthma. Allergy 2024, 79, 2589–2604. [Google Scholar] [CrossRef]
- Martinez, F.D.; Wright, A.L.; Taussig, L.M.; Holberg, C.J.; Halonen, M.; Morgan, W.J. Asthma and Wheezing in the First Six Years of Life. N. Engl. J. Med. 1995, 332, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Milgrom, H.; Fick, R.B., Jr.; Su, J.Q.; Reimann, J.D.; Bush, R.K.; Watrous, M.L.; Metzger, W.J. Treatment of allergic asthma with monoclonal anti-IgE antibody. rhuMAb-E25 Study Group. N. Engl. J. Med. 1999, 341, 1966–1973. [Google Scholar] [CrossRef]
- Busse, W.; Corren, J.; Lanier, B.Q.; McAlary, M.; Fowler-Taylor, A.; Cioppa, G.D.; van As, A.; Gupta, N. Omalizumab, anti-IgE recombinant humanized monoclonal antibody, for the treatment of severe allergic asthma. J. Allergy Clin. Immunol. 2001, 108, 184–190. [Google Scholar] [CrossRef] [PubMed]
- Solèr, M.; Matz, J.; Townley, R.; Buhl, R.; O’Brien, J.; Fox, H.; Thirlwell, J.; Gupta, N.; Della Cioppa, G. The anti-IgE antibody omalizumab reduces exacerbations and steroid requirement in allergic asthmatics. Eur. Respir. J. 2001, 18, 254–261. [Google Scholar] [CrossRef]
- Humbert, M.; Beasley, R.; Ayres, J.; Slavin, R.; Hébert, J.; Bousquet, J.; Beeh, K.M.; Ramos, S.; Canonica, G.W.; Hedgecock, S.; et al. Benefits of omalizumab as add-on therapy in patients with severe persistent asthma who are inadequately controlled despite best available therapy (GINA 2002 step 4 treatment): INNOVATE. Allergy 2005, 60, 309–316. [Google Scholar] [CrossRef]
- Hanania, N.A.; Alpan, O.; Hamilos, D.L.; Condemi, J.J.; Reyes-Rivera, I.; Zhu, J.; Rosen, K.E.; Eisner, M.D.; Wong, D.A.; Busse, W. Omalizumab in severe allergic asthma inadequately controlled with standard therapy: A randomized trial. Ann. Intern. Med. 2011, 154, 573–582. [Google Scholar] [CrossRef]
- Bousquet, J.; Wenzel, S.; Holgate, S.; Lumry, W.; Freeman, P.; Fox, H. Predicting Response to Omalizumab, an Anti-IgE Antibody, in Patients With Allergic Asthma. Chest 2004, 125, 1378–1386. [Google Scholar] [CrossRef]
- Bousquet, J.; Rabe, K.; Humbert, M.; Chung, K.F.; Berger, W.; Fox, H.; Ayre, G.; Chen, H.; Thomas, K.; Blogg, M.; et al. Predicting and evaluating response to omalizumab in patients with severe allergic asthma. Respir. Med. 2007, 101, 1483–1492. [Google Scholar] [CrossRef] [PubMed]
- Hanania, N.A.; Wenzel, S.; Rosén, K.; Hsieh, H.J.; Mosesova, S.; Choy, D.F.; Lal, P.; Arron, J.R.; Harris, J.M.; Busse, W. Exploring the effects of omalizumab in allergic asthma: An analysis of biomarkers in the EXTRA study. Am. J. Respir. Crit. Care Med. 2013, 187, 804–811. [Google Scholar] [CrossRef]
- Pavord, I.D.; Korn, S.; Howarth, P.; Bleecker, E.R.; Buhl, R.; Keene, O.N.; Ortega, H.; Chanez, P. Mepolizumab for severe eosinophilic asthma (DREAM): A multicentre, double-blind, placebo-controlled trial. Lancet 2012, 380, 651–659. [Google Scholar] [CrossRef]
- Ortega, H.G.; Liu, M.C.; Pavord, I.D.; Brusselle, G.G.; FitzGerald, J.M.; Chetta, A.; Humbert, M.; Katz, L.E.; Keene, O.N.; Yancey, S.W.; et al. Mepolizumab Treatment in Patients with Severe Eosinophilic Asthma. N. Engl. J. Med. 2014, 371, 1198–1207. [Google Scholar] [CrossRef]
- Bleecker, E.R.; FitzGerald, J.M.; Chanez, P.; Papi, A.; Weinstein, S.F.; Barker, P.; Sproule, S.; Gilmartin, G.; Aurivillius, M.; Werkström, V.; et al. Efficacy and Safety of Benralizumab for Patients with Severe Asthma Uncontrolled with High-Dosage Inhaled Corticosteroids and Long-Acting β2-Agonists (SIROCCO): A Randomised, Multicentre, Placebo-Controlled Phase 3 Trial. Lancet 2016, 388, 2115–2127. [Google Scholar] [CrossRef]
- Bjermer, L.; Lemiere, C.; Maspero, J.; Weiss, S.; Zangrilli, J.; Germinaro, M. Reslizumab for Inadequately Controlled Asthma with Elevated Blood Eosinophil Levels. Chest 2016, 150, 789–798. [Google Scholar] [CrossRef]
- Corren, J.; Weinstein, S.; Janka, L.; Zangrilli, J.; Garin, M. Phase 3 Study of Reslizumab in Patients with Poorly Controlled Asthma. Chest 2016, 150, 799–810. [Google Scholar] [CrossRef] [PubMed]
- Wenzel, S.; Ford, L.; Pearlman, D.; Spector, S.; Sher, L.; Skobieranda, F.; Wang, L.; Kirkesseli, S.; Rocklin, R.; Bock, B.; et al. Dupilumab in Persistent Asthma with Elevated Eosinophil Levels. N. Engl. J. Med. 2013, 368, 2455–2466. [Google Scholar] [CrossRef] [PubMed]
- Castro, M.; Corren, J.; Pavord, I.D.; Maspero, J.; Wenzel, S.; Rabe, K.F.; Busse, W.W.; Ford, L.; Sher, L.; FitzGerald, J.M.; et al. Dupilumab Efficacy and Safety in Moderate-to-Severe Uncontrolled Asthma. N. Engl. J. Med. 2018, 378, 2486–2496. [Google Scholar] [CrossRef]
- Rabe, K.F.; Nair, P.; Brusselle, G.; Maspero, J.F.; Castro, M.; Sher, L.; Zhu, H.; Hamilton, J.D.; Swanson, B.N.; Khan, A.; et al. Efficacy and Safety of Dupilumab in Glucocorticoid-Dependent Severe Asthma. N. Engl. J. Med. 2018, 378, 2475–2485. [Google Scholar] [CrossRef]
- Wechsler, M.E.; Ford, L.B.; Maspero, J.F.; Pavord, I.D.; Papi, A.; Bourdin, A.; Watz, H.; Castro, M.; Nenasheva, N.M.; Tohda, Y.; et al. Long-Term Safety and Efficacy of Dupilumab in Patients with Moderate-to-Severe Asthma (TRAVERSE): An Open-Label Extension Study. Lancet Respir. Med. 2022, 10, 11–25. [Google Scholar] [CrossRef]
- Numata, T.; Araya, J.; Miyagawa, H.; Okuda, K.; Takekoshi, D.; Hashimoto, M.; Minagawa, S.; Ishikawa, T.; Hara, H.; Kuwano, K. Real-World Effectiveness of Dupilumab for Patients with Severe Asthma: A Retrospective Study. J. Asthma Allergy 2022, 15, 395–405. [Google Scholar] [CrossRef]
- Corren, J.; Parnes, J.R.; Wang, L.; Mo, M.; Roseti, S.L.; Griffiths, J.M.; van der Merwe, R. Tezepelumab in Adults with Uncontrolled Asthma. N. Engl. J. Med. 2017, 377, 936–946. [Google Scholar] [CrossRef] [PubMed]
- Menzies-Gow, A.; Corren, J.; Bourdin, A.; Chupp, G.; Israel, E.; Wechsler, M.E.; Brightling, C.E.; Griffiths, J.M.; Hellqvist, Å.; Bowen, K.; et al. Tezepelumab in Adults and Adolescents with Severe, Uncontrolled Asthma. N. Engl. J. Med. 2021, 384, 1800–1809. [Google Scholar] [CrossRef]
- Price, D.B.; Rigazio, A.; Campbell, J.D.; Bleecker, E.R.; Corrigan, C.J.; Thomas, M.; Wenzel, S.E.; Wilson, A.M.; Small, M.B.; Gopalan, G.; et al. Blood Eosinophil Count and Prospective Annual Asthma Disease Burden: A UK Cohort Study. Lancet Respir. Med. 2015, 3, 849–858. [Google Scholar] [CrossRef] [PubMed]
- Peters, M.C.; Mauger, D.; Ross, K.R.; Phillips, B.; Gaston, B.; Cardet, J.C.; Israel, E.; Levy, B.D.; Phipatanakul, W.; Jarjour, N.N.; et al. Evidence for Exacerbation-Prone Asthma and Predictive Biomarkers of Exacerbation Frequency. Am. J. Respir. Crit. Care Med. 2020, 202, 973–982. [Google Scholar] [CrossRef]
- Pretolani, M.; Soussan, D.; Poirier, I.; Thabut, G.; Aubier, M. Clinical and Biological Characteristics of the French COBRA Cohort of Adult Subjects with Asthma. Eur. Respir. J. 2017, 50, 1700019. [Google Scholar] [CrossRef] [PubMed]
- Leckie, M.J.; ten Brinke, A.; Khan, J.; Diamant, Z.; O’Connor, B.J.; Walls, C.M.; Mathur, A.K.; Cowley, H.C.; Chung, K.F.; Djukanovic, R.; et al. Effects of an Interleukin-5 Blocking Monoclonal Antibody on Eosinophils, Airway Hyper-Responsiveness, and the Late Asthmatic Response. Lancet 2000, 356, 2144–2148. [Google Scholar] [CrossRef]
- Flood-Page, P.; Swenson, C.; Faiferman, I.; Matthews, J.; Williams, M.; Brannick, L.; Robinson, D.; Wenzel, S.; Busse, W.; Hansel, T.T.; et al. A Study to Evaluate Safety and Efficacy of Mepolizumab in Patients with Moderate Persistent Asthma. Am. J. Respir. Crit. Care Med. 2007, 176, 1062–1071. [Google Scholar] [CrossRef]
- Bel, E.H.; Wenzel, S.E.; Thompson, P.J.; Prazma, C.M.; Keene, O.N.; Yancey, S.W.; Ortega, H.G.; Pavord, I.D. Oral Glucocorticoid-Sparing Effect of Mepolizumab in Eosinophilic Asthma. N. Engl. J. Med. 2014, 371, 1189–1197. [Google Scholar] [CrossRef] [PubMed]
- Chupp, G.L.; Bradford, E.S.; Albers, F.C.; Bratton, D.J.; Wang-Jairaj, J.; Nelsen, L.M.; Trevor, J.L.; Magnan, A.; Ten Brinke, A. Efficacy of Mepolizumab Add-on Therapy on Health-Related Quality of Life and Markers of Asthma Control in Severe Eosinophilic Asthma (MUSCA): A Randomised, Double-Blind, Placebo-Controlled, Parallel-Group, Multicentre, Phase 3b Trial. Lancet Respir. Med. 2017, 5, 390–400. [Google Scholar] [CrossRef]
- Khatri, S.; Moore, W.; Gibson, P.G.; Leigh, R.; Bourdin, A.; Maspero, J.; Barros, M.; Buhl, R.; Howarth, P.; Albers, F.C.; et al. Assessment of the Long-Term Safety of Mepolizumab and Durability of Clinical Response in Patients with Severe Eosinophilic Asthma. J. Allergy Clin. Immunol. 2019, 143, 1742–1751.e7. [Google Scholar] [CrossRef]
- Lugogo, N.; Domingo, C.; Chanez, P.; Leigh, R.; Gilson, M.J.; Price, R.G.; Yancey, S.W.; Ortega, H.G. Long-Term Efficacy and Safety of Mepolizumab in Patients with Severe Eosinophilic Asthma: A Multi-Center, Open-Label, Phase IIIb Study. Clin. Ther. 2016, 38, 2058–2070.e1. [Google Scholar] [CrossRef]
- Khurana, S.; Brusselle, G.G.; Bel, E.H.; FitzGerald, J.M.; Masoli, M.; Korn, S.; Kato, M.; Albers, F.C.; Bradford, E.S.; Gilson, M.J.; et al. Long-Term Safety and Clinical Benefit of Mepolizumab in Patients with the Most Severe Eosinophilic Asthma: The COSMEX Study. Clin. Ther. 2019, 41, 2041–2056.e5. [Google Scholar] [CrossRef]
- Moore, W.C.; Kornmann, O.; Humbert, M.; Poirier, C.; Bel, E.H.; Kaneko, N.; Smith, S.G.; Martin, N.; Gilson, M.J.; Price, R.G.; et al. Stopping versus Continuing Long-Term Mepolizumab Treatment in Severe Eosinophilic Asthma (COMET Study). Eur. Respir. J. 2022, 59, 2100396. [Google Scholar] [CrossRef]
- Castro, M.; Wenzel, S.E.; Bleecker, E.R.; Pizzichini, E.; Kuna, P.; Busse, W.W.; Gossage, D.L.; Ward, C.K.; Wu, Y.; Wang, B.; et al. Benralizumab, an Anti-Interleukin 5 Receptor α Monoclonal Antibody, versus Placebo for Uncontrolled Eosinophilic Asthma: A Phase 2b Randomised Dose-Ranging Study. Lancet Respir. Med. 2014, 2, 879–890. [Google Scholar] [CrossRef]
- FitzGerald, J.M.; Bleecker, E.R.; Nair, P.; Korn, S.; Ohta, K.; Lommatzsch, M.; Ferguson, G.T.; Busse, W.W.; Barker, P.; Sproule, S.; et al. Benralizumab, an Anti-Interleukin-5 Receptor α Monoclonal Antibody, as Add-on Treatment for Patients with Severe, Uncontrolled, Eosinophilic Asthma (CALIMA): A Randomised, Double-Blind, Placebo-Controlled Phase 3 Trial. Lancet 2016, 388, 2128–2141. [Google Scholar] [CrossRef] [PubMed]
- Nair, P.; Wenzel, S.; Rabe, K.F.; Bourdin, A.; Lugogo, N.L.; Kuna, P.; Barker, P.; Sproule, S.; Ponnarambil, S.; Goldman, M.; et al. Oral Glucocorticoid–Sparing Effect of Benralizumab in Severe Asthma. N. Engl. J. Med. 2017, 376, 2448–2458. [Google Scholar] [CrossRef]
- Ferguson, G.T.; FitzGerald, J.M.; Bleecker, E.R.; Laviolette, M.; Bernstein, D.; LaForce, C.; Mansfield, L.; Barker, P.; Wu, Y.; Jison, M.; et al. Benralizumab for Patients with Mild to Moderate, Persistent Asthma (BISE): A Randomised, Double-Blind, Placebo-Controlled, Phase 3 Trial. Lancet Respir. Med. 2017, 5, 568–576. [Google Scholar] [CrossRef]
- Castro, M.; Zangrilli, J.; Wechsler, M.E.; Bateman, E.D.; Brusselle, G.G.; Bardin, P.; Murphy, K.; Maspero, J.F.; O’Brien, C.; Korn, S. Reslizumab for Inadequately Controlled Asthma with Elevated Blood Eosinophil Counts: Results from Two Multicentre, Parallel, Double-Blind, Randomised, Placebo-Controlled, Phase 3 Trials. Lancet Respir. Med. 2015, 3, 355–366. [Google Scholar] [CrossRef]
- Busse, W.W.; Bleecker, E.R.; FitzGerald, J.M.; Ferguson, G.T.; Barker, P.; Sproule, S.; Olsson, R.F.; Martin, U.J.; Goldman, M. Long-Term Safety and Efficacy of Benralizumab in Patients with Severe, Uncontrolled Asthma: 1-Year Results from the BORA Phase 3 Extension Trial. Lancet Respir. Med. 2019, 7, 46–59. [Google Scholar] [CrossRef]
- Korn, S.; Bourdin, A.; Chupp, G.; Cosio, B.G.; Arbetter, D.; Shah, M.; Gil, E.G. Integrated Safety and Efficacy among Patients Receiving Benralizumab for up to 5 Years. J. Allergy Clin. Immunol. Pract. 2021, 9, 4381–4392.e4. [Google Scholar] [CrossRef]
- Soendergaard, M.B.; Hansen, S.; Bjerrum, A.S.; Hilberg, O.; Lock-Johansson, S.; Håkansson, K.E.J.; Ingebrigtsen, T.S.; Johnsen, C.R.; Rasmussen, L.M.; von Bülow, A.; et al. Complete Response to Anti-Interleukin-5 Biologics in a Real-Life Setting: Results from the Nationwide Danish Severe Asthma Register. ERJ Open Res. 2022, 8, 00238-2022. [Google Scholar] [CrossRef]
- Wenzel, S.; Castro, M.; Corren, J.; Maspero, J.; Wang, L.; Zhang, B.; Pirozzi, G.; Sutherland, E.R.; Evans, R.R.; Joish, V.N.; et al. Dupilumab Efficacy and Safety in Adults with Uncontrolled Persistent Asthma Despite Use of Medium-to-High-Dose Inhaled Corticosteroids plus a Long-Acting β2 Agonist: A Randomised Double-Blind Placebo-Controlled Pivotal Phase 2b Dose-Ranging Trial. Lancet 2016, 388, 31–44. [Google Scholar] [CrossRef]
- Wechsler, M.E.; Klion, A.D.; Paggiaro, P.; Nair, P.; Staumont-Salle, D.; Radwan, A.; Johnson, R.R.; Kapoor, U.; Khokhar, F.A.; Daizadeh, N.; et al. Effect of Dupilumab on Blood Eosinophil Counts in Patients with Asthma, Chronic Rhinosinusitis with Nasal Polyps, Atopic Dermatitis, or Eosinophilic Esophagitis. J. Allergy Clin. Immunol. Pract. 2022, 10, 2695–2709. [Google Scholar] [CrossRef] [PubMed]
- Le Floc’h, A.; Allinne, J.; Nagashima, K.; Scott, G.; Birchard, D.; Asrat, S.; Bai, Y.; Lim, W.K.; Martin, J.; Huang, T.; et al. Dual Blockade of IL-4 and IL-13 with Dupilumab, an IL-4Rα Antibody, Is Required to Broadly Inhibit Type 2 Inflammation. Allergy 2020, 75, 1188–1204. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Menzies-Gow, A.; Wechsler, M.E.; Brightling, C.E.; Korn, S.; Corren, J.; Israel, E.; Chupp, G.; Bednarczyk, A.; Ponnarambil, S.; Caveney, S.; et al. Long-Term Safety and Efficacy of Tezepelumab in People with Severe, Uncontrolled Asthma (DESTINATION): A Randomised, Placebo-Controlled Extension Study. Lancet Respir. Med. 2023, 11, 425–438. [Google Scholar] [CrossRef]
- Wechsler, M.E.; Menzies-Gow, A.; Brightling, C.E.; Kuna, P.; Korn, S.; Welte, T.; Griffiths, J.M.; Sałapa, K.; Hellqvist, Å.; Almqvist, G.; et al. Evaluation of the Oral Corticosteroid-Sparing Effect of Tezepelumab in Adults with Oral Corticosteroid-Dependent Asthma (SOURCE): A Randomised, Placebo-Controlled, Phase 3 Study. Lancet Respir. Med. 2022, 10, 650–660. [Google Scholar] [CrossRef] [PubMed]
- Israel, E.; Brusselle, G.; Bourdin, A.; Virchow, J.C.; Pavord, I.D.; Jackson, D.J.; Côté, A.; Llanos, J.P.; Salapa, K.; Keeling, N.; et al. ARRIVAL: A Phase 3b Study to Assess Potential for Tezepelumab to Reduce Maintenance Inhaled Therapy and Induce Remission in Patients with Severe Asthma. Eur. Respir. Soc. 2024, 64, PA3564. [Google Scholar]
- Loewenthal, L.; Menzies-Gow, A. FeNO in Asthma. Semin. Respir. Crit. Care Med. 2022, 43, 635–645. [Google Scholar] [CrossRef]
- Casale, T.B.; Luskin, A.T.; Busse, W.; Zeiger, R.S.; Trzaskoma, B.; Yang, M.; Griffin, N.M.; Chipps, B.E. Omalizumab Effectiveness by Biomarker Status in Patients with Asthma: Evidence From PROSPERO, a Prospective Real-World Study. J. Allergy Clin. Immunol. Pract. 2019, 7, 156–164.e1. [Google Scholar] [CrossRef]
- Hearn, A.P.; Kavanagh, J.; d’Ancona, G.; Roxas, C.; Green, L.; Thomson, L.; Fernandes, M.; Kent, B.D.; Dhariwal, J.; Nanzer, A.M.; et al. The Relationship Between FeNO and Effectiveness of Mepolizumab and Benralizumab in Severe Eosinophilic Asthma. J. Allergy Clin. Immunol. Pract. 2021, 9, 2093–2096.e1. [Google Scholar] [CrossRef]
- Ramonell, R.P.; Lee, F.E.H.; Levy, J.M.; Kuruvilla, M. Exhaled Nitric Oxide Measurements Are Not Influenced by Anti-Eosinophil Therapy in Patients with Asthma. Ann. Allergy Asthma Immunol. 2021, 126, 102–104. [Google Scholar] [CrossRef]
- Russell, R.J.; Chachi, L.; FitzGerald, J.M.; Backer, V.; Olivenstein, R.; Titlestad, I.L.; Ulrik, C.S.; Harrison, T.; Singh, D.; Chaudhuri, R.; et al. Effect of Tralokinumab, an Interleukin-13 Neutralising Monoclonal Antibody, on Eosinophilic Airway Inflammation in Uncontrolled Moderate-to-Severe Asthma (MESOS): A Multicentre, Double-Blind, Randomised, Placebo-Controlled Phase 2 Trial. Lancet Respir. Med. 2018, 6, 499–510. [Google Scholar] [CrossRef]
- Panettieri, R.A., Jr.; Sjöbring, U.; Péterffy, A.; Wessman, P.; Bowen, K.; Piper, E.; Colice, G.; Brightling, C.E. Tralokinumab for Severe, Uncontrolled Asthma (STRATOS 1 and STRATOS 2): Two Randomised, Double-Blind, Placebo-Controlled, Phase 3 Clinical Trials. Lancet Respir. Med. 2018, 6, 511–525. [Google Scholar] [CrossRef]
- Hanania, N.A.; Korenblat, P.; Chapman, K.R.; Bateman, E.D.; Kopecky, P.; Paggiaro, P.; Yokoyama, A.; Olsson, J.; Gray, S.; Holweg, C.T.; et al. Efficacy and Safety of Lebrikizumab in Patients with Uncontrolled Asthma (LAVOLTA I and LAVOLTA II): Replicate, Phase 3, Randomised, Double-Blind, Placebo-Controlled Trials. Lancet Respir. Med. 2016, 4, 781–796. [Google Scholar] [CrossRef]
- Corren, J.; Szefler, S.J.; Sher, E.; Korenblat, P.; Soong, W.; Hanania, N.A.; Berman, G.; Brusselle, G.; Zitnik, R.; Natalie, C.R.; et al. Lebrikizumab in Uncontrolled Asthma: Reanalysis in a Well-Defined Type 2 Population. J. Allergy Clin. Immunol. Pract. 2024, 12, 1215–1224.e3. [Google Scholar] [CrossRef] [PubMed]
- Busse, W.W.; Wenzel, S.E.; Casale, T.B.; FitzGerald, J.M.; Rice, M.S.; Daizadeh, N.; Deniz, Y.; Patel, N.; Harel, S.; Rowe, P.J.; et al. Baseline FeNO as a Prognostic Biomarker for Subsequent Severe Asthma Exacerbations in Patients with Uncontrolled, Moderate-to-Severe Asthma Receiving Placebo in the LIBERTY ASTHMA QUEST Study: A Post-Hoc Analysis. Lancet Respir. Med. 2021, 9, 1165–1173. [Google Scholar] [CrossRef]
- Pavord, I.D.; Deniz, Y.; Corren, J.; Casale, T.B.; FitzGerald, J.M.; Izuhara, K.; Daizadeh, N.; Ortiz, B.; Johnson, R.R.; Harel, S.; et al. Baseline FeNO Independently Predicts the Dupilumab Response in Patients with Moderate-to-Severe Asthma. J. Allergy Clin. Immunol. Pract. 2023, 11, 1213–1220.e2. [Google Scholar] [CrossRef]
- Pavord, I.D.; Casale, T.B.; Corren, J.; FitzGerald, M.J.; Deniz, Y.; Altincatal, A.; Gall, R.; Pandit-Abid, N.; Radwan, A.; Jacob-Nara, J.A.; et al. Dupilumab Reduces Exacerbations Independent of Changes in Biomarkers in Moderate-to-Severe Asthma. J. Allergy Clin. Immunol. Pract. 2024, 12, 1763–1772. [Google Scholar] [CrossRef] [PubMed]
- Castro, M.; Papi, A.; Porsbjerg, C.; Lugogo, N.L.; Brightling, C.E.; González-Barcala, F.J.; Bourdin, A.; Ostrovskyy, M.; Staevska, M.; Chou, P.C.; et al. Effect of Dupilumab on Exhaled Nitric Oxide, Mucus Plugs, and Functional Respiratory Imaging in Patients with Type 2 Asthma (VESTIGE): A Randomised, Double-Blind, Placebo-Controlled, Phase 4 Trial. Lancet Respir. Med. 2025, 13, 208–220. [Google Scholar] [CrossRef]
- Corren, J.; Pham, T.H.; Garcia Gil, E.; Sałapa, K.; Ren, P.; Parnes, J.R.; Colice, G.; Griffiths, J.M. Baseline Type 2 Biomarker Levels and Response to Tezepelumab in Severe Asthma. Allergy Eur. J. Allergy Clin. Immunol. 2022, 77, 1786–1796. [Google Scholar] [CrossRef]
- Wechsler, M.E.; Brusselle, G.; Virchow, J.C.; Bourdin, A.; Kostikas, K.; Llanos, J.P.; Roseti, S.L.; Ambrose, C.S.; Hunter, G.; Jackson, D.J.; et al. Clinical Response On-Treatment Clinical Remission with Tezepelumab in a Broad Population of Patients with Severe Uncontrolled Asthma: Results over 2 Years from the NAVIGATOR and DESTINATION Studies. Eur. Respir. J. 2024, 64, 2400316. Available online: http://www.ncbi.nlm.nih.gov/pubmed/39326921 (accessed on 3 June 2025). [CrossRef]
- Dweik, R.A.; Boggs, P.B.; Erzurum, S.C.; Irvin, C.G.; Leigh, M.W.; Lundberg, J.O.; Olin, A.C.; Plummer, A.L.; Taylor, D.R. An Official ATS Clinical Practice Guideline: Interpretation of Exhaled Nitric Oxide Levels (FENO) for Clinical Applications. Am. J. Respir. Crit. Care Med. 2011, 184, 602–615. [Google Scholar] [CrossRef]
- Asthma: Diagnosis, Monitoring and Chronic Asthma Management (BTS, NICE, SIGN). Clinical Guidelines; National Institute for Health and Care Excellence: London, UK, 2024. [Google Scholar]
- Mansur, A.H.; Srivastava, S.; Sahal, A. Disconnect of Type 2 Biomarkers in Severe Asthma; Dominated by FeNO as a Predictor of Exacerbations and Periostin as Predictor of Reduced Lung Function. Respir. Med. 2018, 143, 31–38. [Google Scholar] [CrossRef]
- Woodruff, P.G.; Modrek, B.; Choy, D.F.; Jia, G.; Abbas, A.R.; Ellwanger, A.; Koth, L.L.; Arron, J.R.; Fahy, J.V. T-helper Type 2–driven Inflammation Defines Major Subphenotypes of Asthma. Am. J. Respir. Crit. Care Med. 2009, 180, 388–395. [Google Scholar] [CrossRef]
- Jia, G.; Erickson, R.W.; Choy, D.F.; Mosesova, S.; Wu, L.C.; Solberg, O.D.; Shikotra, A.; Carter, R.; Audusseau, S.; Hamid, Q.; et al. Periostin is a systemic biomarker of eosinophilic airway inflammation in asthmatic patients. J. Allergy Clin. Immunol. 2012, 130, 647–654.e10. [Google Scholar] [CrossRef]
- Corren, J.; Lemanske, R.F.; Hanania, N.A.; Korenblat, P.E.; Parsey, M.V.; Arron, J.R.; Harris, J.M.; Scheerens, H.; Wu, L.C.; Su, Z.; et al. Lebrikizumab Treatment in Adults with Asthma. N. Engl. J. Med. 2011, 365, 1088–1098. [Google Scholar] [CrossRef]
- Hanania, N.A.; Noonan, M.; Corren, J.; Korenblat, P.; Zheng, Y.; Fischer, S.K.; Cheu, M.; Putnam, W.S.; Murray, E.; Scheerens, H.; et al. Lebrikizumab in moderate-to-severe asthma: Pooled data from two randomised placebo-controlled studies. Thorax 2015, 70, 748–756. [Google Scholar] [CrossRef]
- Buhl, R.; Korn, S.; Menzies-Gow, A.; Aubier, M.; Chapman, K.R.; Canonica, G.W.; Picado, C.; Donica, M.; Kuhlbusch, K.; Korom, S.; et al. Prospective, Single-Arm, Longitudinal Study of Biomarkers in Real-World Patients with Severe Asthma. J. Allergy Clin. Immunol. Pract. 2020, 8, 2630–2639.e6. [Google Scholar] [CrossRef]
- Gerday, S.; Graff, S.; Moermans, C.; Guissard, F.; Paulus, V.; Henket, M.; Louis, R.; Schleich, F. Super-responders to anti-IL-5/anti-IL-5R are characterized by high sputum eosinophil counts at baseline. Thorax 2023, 78, 1138–1141. [Google Scholar] [CrossRef]
- Shrimanker, R.; Pavord, I.D.; Yancey, S.; Heaney, L.G.; Green, R.H.; Bradding, P.; Hargadon, B.; Brightling, C.E.; Wardlaw, A.J.; Haldar, P. Exacerbations of severe asthma in patients treated with mepolizumab. Vol. 52, European Respiratory Journal. Eur. Respir. Soc. 2018, 52, 1801127. [Google Scholar] [CrossRef]
- Nair, P.; Pizzichini, M.M.M.; Kjarsgaard, M.; Inman, M.D.; Efthimiadis, A.; Pizzichini, E.; Hargreave, F.E.; O’Byrne, P.M. Mepolizumab for prednisone-dependent asthma with sputum eosinophilia. N. Engl. J. Med. 2009, 360, 985–993. [Google Scholar] [CrossRef]
- Mukherjee, M.; Kjarsgaard, M.; Radford, K.; Huang, C.; Leigh, R.; Dorscheid, D.R.; Lemiere, C.; Boulet, L.P.; Waserman, S.; Martin, J.; et al. Omalizumab in patients with severe asthma and persistent sputum eosinophilia. Allergy Asthma Clin. Immunol. 2019, 15, 21. [Google Scholar] [CrossRef] [PubMed]
- Diver, S.; Khalfaoui, L.; Emson, C.; Wenzel, S.E.; Menzies-Gow, A.; Wechsler, M.E.; Johnston, J.; Molfino, N.; Parnes, J.R.; Megally, A.; et al. Effect of tezepelumab on airway inflammatory cells, remodelling, and hyperresponsiveness in patients with moderate-to-severe uncontrolled asthma (CASCADE): A double-blind, randomised, placebo-controlled, phase 2 trial. Lancet Respir. Med. 2021, 9, 1299–1312. [Google Scholar] [CrossRef] [PubMed]
- Quoc, Q.L.; Choi, Y.; Hur, G.Y.; Park, H.S. New targets for type 2-low asthma. Korean J. Intern. Med. 2024, 39, 215–227. [Google Scholar] [CrossRef]
- Moore, W.C.; Hastie, A.T.; Li, X.; Li, H.; Busse, W.W.; Jarjour, N.N.; Wenzel, S.E.; Peters, S.P.; Meyers, D.A.; Bleecker, E.R.; et al. Sputum neutrophil counts are associated with more severe asthma phenotypes using cluster analysis. J. Allergy Clin. Immunol. 2014, 133, 1557–1563.e5. [Google Scholar] [CrossRef]
- Bullone, M.; Carriero, V.; Bertolini, F.; Folino, A.; Mannelli, A.; Di Stefano, A.; Gnemmi, I.; Torchio, R.; Ricciardolo, F.L.M. Elevated serum IgE, oral corticosteroid dependence and IL-17/22 expression in highly neutrophilic asthma. Eur. Respir. J. 2019, 54, 1900068. [Google Scholar] [CrossRef]
- Shi, B.; Li, W.; Hao, Y.; Dong, H.; Cao, W.; Guo, J.; Gao, P. Characteristics of inflammatory phenotypes among patients with asthma: Relationships of blood count parameters with sputum cellular phenotypes. Allergy Asthma Clin. Immunol. 2021, 17, 47. [Google Scholar] [CrossRef]
- Cowan, D.C.; Cowan, J.O.; Palmay, R.; Williamson, A.; Taylor, D.R. Effects of steroid therapy on inflammatory cell subtypes in asthma. Thorax 2010, 65, 384–390. [Google Scholar] [CrossRef]
- O’Byrne, P.M.; Metev, H.; Puu, M.; Richter, K.; Keen, C.; Uddin, M.; Larsson, B.; Cullberg, M.; Nair, P. Efficacy and safety of a CXCR2 antagonist, AZD5069, in patients with uncontrolled persistent asthma: A randomised, double-blind, placebo-controlled trial. Lancet Respir. Med. 2016, 4, 797–806. [Google Scholar] [CrossRef]
- Watz, H.; Uddin, M.; Pedersen, F.; Kirsten, A.; Goldmann, T.; Stellmacher, F.; Groth, E.; Larsson, B.; Böttcher, G.; Malmgren, A.; et al. Effects of the CXCR2 antagonist AZD5069 on lung neutrophil recruitment in asthma. Pulm. Pharmacol. Ther. 2017, 45, 121–123. [Google Scholar] [CrossRef] [PubMed]
- Farah, C.S.; Keulers, L.A.B.; Hardaker, K.M.; Peters, M.J.; Berend, N.; Postma, D.S.; Salome, C.M.; King, G.G. Association between peripheral airway function and neutrophilic inflammation in asthma. Respirology 2015, 20, 975–981. [Google Scholar] [CrossRef] [PubMed]
- Moermans, C.; Decerf, N.; Javaux, N.; Onssels, A.; Bricmont, N.; Bonhiver, R.; Regnier, F.; Rosu, A.; Graff, S.; Gerday, S.; et al. High local type-2 inflammation is linked to response in severe asthma treated with anti-Interleukin-5 receptor. Respir. Med. 2025, 243, 108151. [Google Scholar] [CrossRef] [PubMed]
- Chu, D.K.; Al-Garawi, A.; Llop-Guevara, A.; Pillai, R.A.; Radford, K.; Shen, P.; Walker, T.D.; Goncharova, S.; Calhoun, W.J.; Nair, P.; et al. Therapeutic potential of anti-IL-6 therapies for granulocytic airway inflammation in asthma. Allergy Asthma Clin. Immunol. 2015, 11, 14. [Google Scholar] [CrossRef]
- Berry, M.A.; Hargadon, B.; Shelley, M.; Parker, D.; Shaw, D.E.; Green, R.H.; Bradding, P.; Brightling, C.E.; Wardlaw, A.J.; Pavord, I.D. Evidence of a Role of Tumor Necrosis Factor α in Refractory Asthma. N. Engl. J. Med. 2006, 354, 697–708. [Google Scholar] [CrossRef]
- Agrawal, S.; Townley, R.G. Role of periostin, FENO, IL-13, lebrikzumab, other IL-13 antagonist and dual IL-4/IL-13 antagonist in asthma. Expert Opin. Biol. Ther. 2014, 14, 165–181. [Google Scholar] [CrossRef]
- Tsilogianni, Z.; Hillas, G.; Bakakos, P.; Aggelakis, L.; Konstantellou, E.; Papaioannou, A.I.; Papaporfyriou, A.; Papiris, S.; Koulouris, N.; Loukides, S.; et al. Sputum interleukin-13 as a biomarker for the evaluation of asthma control. Clin. Exp. Allergy 2016, 46, 1498. [Google Scholar] [CrossRef]
- Kallieri, M.; Papaioannou, A.I.; Papathanasiou, E.; Ntontsi, P.; Papiris, S.; Loukides, S. Predictors of response to therapy with omalizumab in patients with severe allergic asthma—A real life study. Postgrad. Med. 2017, 129, 598–604. [Google Scholar] [CrossRef]
- Abdo, M.; Pedersen, F.; Kirsten, A.M.; Trinkmann, F.; Groth, E.E.; Bahmer, T.; Watz, H.; Rabe, K.F. Association of airway inflammation and smoking status with IL-33 level in sputum of patients with asthma or COPD. Eur. Respir. J. 2024, 64, 2400347. [Google Scholar] [CrossRef]
- Ito, K.; Kanemitsu, Y.; Ueda, T.; Kamiya, T.; Kubota, E.; Mori, Y.; Fukumitsu, K.; Tajiri, T.; Fukuda, S.; Uemura, T.; et al. Comorbid functional dyspepsia reflects IL-33–mediated airway neuronal dysfunction in asthma. J. Allergy Clin. Immunol. 2024, 154, 1422–1433. [Google Scholar] [CrossRef]
- Hamilton, J.D.; Ungar, B.; Guttman-Yassky, E. Drug Evaluation Review: Dupilumab in Atopic Dermatitis. Immunotherapy 2015, 7, 1043–1058. [Google Scholar] [CrossRef]
- Olaguibel, J.; Sastre, J.; Rodríguez, J.; del Pozo, V. Eosinophilia Induced by Blocking the IL-4/IL-13 Pathway: Potential Mechanisms and Clinical Outcomes. J. Investig. Allergy Clin. Immunol. 2022, 32, 165–180. [Google Scholar]
- Pilette, C.; Francis, J.N.; Till, S.J.; Durham, S.R. CCR4 ligands are up-regulated in the airways of atopic asthmatics after segmental allergen challenge. Eur. Respir. J. 2004, 23, 876–884. [Google Scholar] [CrossRef]
- Yang, F.; Busby, J.; Heaney, L.G.; Pavord, I.D.; Brightling, C.E.; Borg, K.; McDowell, J.P.; Diver, S.E.; Shrimanker, R.; Bradding, P.; et al. Corticosteroid Responsiveness Following Mepolizumab in Severe Eosinophilic Asthma-A Randomized, Placebo-Controlled Crossover Trial (MAPLE). J. Allergy Clin. Immunol. Pract. 2022, 10, 2925–2934.e12. [Google Scholar] [CrossRef] [PubMed]
- Beck, L.A.; Thaçi, D.; Hamilton, J.D.; Graham, N.M.; Bieber, T.; Rocklin, R.; Ming, J.E.; Ren, H.; Kao, R.; Simpson, E.; et al. Dupilumab Treatment in Adults with Moderate-to-Severe Atopic Dermatitis. N. Engl. J. Med. 2014, 371, 130–139. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, J.D.; Harel, S.; Swanson, B.N.; Brian, W.; Chen, Z.; Rice, M.S.; Amin, N.; Ardeleanu, M.; Radin, A.; Shumel, B.; et al. Dupilumab suppresses type 2 inflammatory biomarkers across multiple atopic, allergic diseases. Clin. Exp. Allergy 2021, 51, 915–931. [Google Scholar] [CrossRef]
- Kataoka, Y. Thymus and activation-regulated chemokine (CCL17) as a clinical biomarker in atopic dermatitis: Significance and limitations in the new treatment era. Front. Allergy 2025, 5, 1473902. [Google Scholar] [CrossRef]
- Larose, M.C.; Chakir, J.; Archambault, A.S.; Joubert, P.; Provost, V.; Laviolette, M.; Flamand, N. Correlation between CCL26 production by human bronchial epithelial cells and airway eosinophils: Involvement in patients with severe eosinophilic asthma. J. Allergy Clin. Immunol. 2015, 136, 904–913. [Google Scholar] [CrossRef]
- Nair, P.; Ochkur, S.I.; Protheroe, C.; Radford, K.; Efthimiadis, A.; Lee, N.A.; Lee, J.J. Eosinophil peroxidase in sputum represents a unique biomarker of airway eosinophilia. Allergy 2013, 68, 1177–1184. [Google Scholar] [CrossRef] [PubMed]
- Tang, M.; Charbit, A.R.; Johansson, M.W.; Jarjour, N.N.; Denlinger, L.C.; Raymond, W.W.; Peters, M.C.; Dunican, E.M.; Castro, M.; Sumino, K.; et al. Utility of eosinophil peroxidase as a biomarker of eosinophilic inflammation in asthma. J. Allergy Clin. Immunol. 2024, 154, 580–591.e6. [Google Scholar] [CrossRef]
- Ackerman, S.J. Sputum eosinophil peroxidase: Building a better biomarker for eosinophilic asthma. J. Allergy Clin. Immunol. 2024, 154, 546–548. [Google Scholar] [CrossRef] [PubMed]
- Kelly, E.A.; Esnault, S.; Liu, L.Y.; Evans, M.D.; Johansson, M.W.; Mathur, S.; Mosher, D.F.; Denlinger, L.C.; Jarjour, N.N. Mepolizumab Attenuates Airway Eosinophil Numbers, but Not Their Functional Phenotype, in Asthma. Am. J. Respir. Crit. Care Med. 2017, 196, 1385–1395. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, M.; Bulir, D.C.; Radford, K.; Kjarsgaard, M.; Huang, C.M.; Jacobsen, E.A.; Ochkur, S.I.; Catuneanu, A.; Lamothe-Kipnes, H.; Mahony, J.; et al. Sputum autoantibodies in patients with severe eosinophilic asthma. J. Allergy Clin. Immunol. 2018, 141, 1269–1279. [Google Scholar] [CrossRef]
- Mukherjee, M.; Aleman Paramo, F.; Kjarsgaard, M.; Salter, B.; Nair, G.; LaVigne, N.; Radford, K.; Sehmi, R.; Nair, P. Weight-adjusted Intravenous Reslizumab in Severe Asthma with Inadequate Response to Fixed-Dose Subcutaneous Mepolizumab. Am. J. Respir. Crit. Care Med. 2018, 197, 38–46. [Google Scholar] [CrossRef]
- Hermans, C.; Bernard, A. Lung Epithelium–specific Proteins. Am. J. Respir. Crit. Care Med. 1999, 159, 646–678. [Google Scholar] [CrossRef]
- Bernard, A.; Nickmilder, M.; Dumont, X. Airway Epithelium Defects and Risks of Allergic Diseases: Multiple Associations Revealed by a Biomarker Study among Adolescents. Am. J. Respir. Crit. Care Med. 2015, 191, 714–717. [Google Scholar] [CrossRef]
- Guerra, S.; Vasquez, M.M.; Spangenberg, A.; Halonen, M.; Martin, R.J. Club cell secretory protein in serum and bronchoalveolar lavage of patients with asthma. J. Allergy Clin. Immunol. 2016, 138, 932–934.e1. [Google Scholar] [CrossRef]
- Stenberg, H.; Wadelius, E.; Moitra, S.; Åberg, I.; Ankerst, J.; Diamant, Z.; Bjermer, L.; Tufvesson, E. Club cell protein (CC16) in plasma, bronchial brushes, BAL and urine following an inhaled allergen challenge in allergic asthmatics. Biomarkers 2018, 23, 51–60. [Google Scholar] [CrossRef]
- Wang, A.; Liu, J.; Li, Z.; Qian, Z.; Yang, S.; Luo, S.; Lin, J.; Wu, J. CC16 alleviates PM2.5-induced lung epithelial cell injury and airway inflammation in asthmatic mice by inhibiting ferroptosis. Ecotoxicol. Environ. Saf. 2025, 289, 117417. [Google Scholar] [CrossRef]
- Li, X.; Guerra, S.; Ledford, J.G.; Kraft, M.; Li, H.; Hastie, A.T.; Castro, M.; Denlinger, L.C.; Erzurum, S.C.; Fahy, J.V.; et al. Low CC16 mRNA Expression Levels in Bronchial Epithelial Cells Are Associated with Asthma Severity. Am. J. Respir. Crit. Care Med. 2023, 207, 438–451. [Google Scholar] [CrossRef]
- Gribben, K.C.; Wyss, A.B.; Poole, J.A.; Farazi, P.A.; Wichman, C.; Richards-Barber, M.; Beane Freeman, L.E.; Henneberger, P.K.; Umbach, D.M.; London, S.J.; et al. CC16 polymorphisms in asthma, asthma subtypes, and asthma control in adults from the Agricultural Lung Health Study. Respir. Res. 2022, 23, 305. [Google Scholar] [CrossRef]
- Voraphani, N.; Stern, D.A.; Ledford, J.G.; Spangenberg, A.L.; Zhai, J.; Wright, A.L.; Morgan, W.J.; Kraft, M.; Sherrill, D.L.; Curtin, J.A.; et al. Circulating CC16 and Asthma: A Population-based, Multicohort Study from Early Childhood through Adult Life. Am. J. Respir. Crit. Care Med. 2023, 208, 758–769. [Google Scholar] [CrossRef]
- Goudarzi, H.; Kimura, H.; Kimura, H.; Makita, H.; Takimoto-Sato, M.; Abe, Y.; Oguma, A.; Matsumoto, M.; Takei, N.; Matsumoto-Sasaki, M.; et al. Association of serum CC16 levels with eosinophilic inflammation and respiratory dysfunction in severe asthma. Respir. Med. 2023, 206, 107089. [Google Scholar] [CrossRef] [PubMed]
- Luzzi, S.; Pianigiani, T.; Dilroba, A.; Meocci, M.; Salvadori, E.; Picchi, B.; Ventura, V.; Croce, S.; Bergantini, L.; D’Alessandro, M.; et al. Computed tomography in severe asthma assessment: A systematic review. J. Asthma 2025, 62, 919–928. [Google Scholar] [CrossRef] [PubMed]
- Dunican, E.M.; Elicker, B.M.; Gierada, D.S.; Nagle, S.K.; Schiebler, M.L.; Newell, J.D.; Raymond, W.W.; Lachowicz-Scroggins, M.E.; Di Maio, S.; Hoffman, E.A.; et al. Mucus plugs in patients with asthma linked to eosinophilia and airflow obstruction. J. Clin. Investig. 2018, 128, 997–1009. [Google Scholar] [CrossRef] [PubMed]
- Tang, M.; Elicker, B.M.; Henry, T.; Gierada, D.S.; Schiebler, M.L.; Huang, B.K.; Peters, M.C.; Castro, M.; Hoffman, E.A.; Fain, S.B.; et al. Mucus Plugs Persist in Asthma, and Changes in Mucus Plugs Associate with Changes in Airflow over Time. Am. J. Respir. Crit. Care Med. 2022, 205, 1036–1045. [Google Scholar] [CrossRef]
- Svenningsen, S.; Haider, E.; Boylan, C.; Mukherjee, M.; Eddy, R.L.; Capaldi, D.P.I.; Parraga, G.; Nair, P. CT and Functional MRI to Evaluate Airway Mucus in Severe Asthma. Chest 2019, 155, 1178–1189. [Google Scholar] [CrossRef]
- Sakai, N.; Koya, T.; Murai, Y.; Tsubokawa, F.; Tanaka, K.; Naramoto, S.; Aoki, A.; Shima, K.; Kimura, Y.; Watanabe, S.; et al. Effect of Benralizumab on Mucus Plugs in Severe Eosinophilic Asthma. Int. Arch. Allergy Immunol. 2023, 184, 783–791. [Google Scholar] [CrossRef] [PubMed]
- Nordenmark, L.H.; Hellqvist, Å.; Emson, C.; Diver, S.; Porsbjerg, C.; Griffiths, J.M.; Newell, J.D.; Peterson, S.; Pawlikowska, B.; Parnes, J.R.; et al. Tezepelumab and Mucus Plugs in Patients with Moderate-to-Severe Asthma. NEJM Evid. 2023, 2, EVIDoa2300135. [Google Scholar] [CrossRef]
- Leung, C.; Tang, M.; Huang, B.K.; Fain, S.B.; Hoffman, E.A.; Choi, J.; Dunican, E.M.; Mauger, D.T.; Denlinger, L.C.; Jarjour, N.N.; et al. A Novel Air Trapping Segment Score Identifies Opposing Effects of Obesity and Eosinophilia on Air Trapping in Asthma. Am. J. Respir. Crit. Care Med. 2024, 209, 1196–1207. [Google Scholar] [CrossRef] [PubMed]
- Hartley, R.A.; Barker, B.L.; Newby, C.; Pakkal, M.; Baldi, S.; Kajekar, R.; Kay, R.; Laurencin, M.; Marshall, R.P.; Sousa, A.R.; et al. Relationship between lung function and quantitative computed tomographic parameters of airway remodeling, air trapping, and emphysema in patients with asthma and chronic obstructive pulmonary disease: A single-center study. J. Allergy Clin. Immunol. 2016, 137, 1413–1422.e12. [Google Scholar] [CrossRef]
- Carr, D.H.; Hibon, S.; Rubens, M.; Chung, K.F. Peripheral airways obstruction on high-resolution computed tomography in chronic severe asthma. Respir. Med. 1998, 92, 448–453. [Google Scholar] [CrossRef]
- Busacker, A.; Newell, J.D.; Keefe, T.; Hoffman, E.A.; Granroth, J.C.; Castro, M.; Fain, S.; Wenzel, S. A Multivariate Analysis of Risk Factors for the Air-Trapping Asthmatic Phenotype as Measured by Quantitative CT Analysis. Chest 2009, 135, 48–56. [Google Scholar] [CrossRef]
- Aysola, R.S.; Hoffman, E.A.; Gierada, D.; Wenzel, S.; Cook-Granroth, J.; Tarsi, J.; Zheng, J.; Schechtman, K.B.; Ramkumar, T.P.; Cochran, R.; et al. Airway Remodeling Measured by Multidetector CT Is Increased in Severe Asthma and Correlates With Pathology. Chest 2008, 134, 1183–1191. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Lee, C.; Jin, K.; Cho, S.; Kang, H. Severe Asthma Phenotypes Classified by Site of Airway Involvement and Remodeling via Chest CT Scan. J. Investig. Allergol. Clin. Immunol. 2018, 28, 312–320. [Google Scholar] [CrossRef]
- Tsubokawa, F.; Koya, T.; Murai, Y.; Tanaka, K.; Tsutsui, Y.; Naramoto, S.; Sakai, N.; Aoki, A.; Shima, K.; Kimura, Y.; et al. Effects of Benralizumab on Three-Dimensional Computed Tomography Analysis in Severe Eosinophilic Asthma. Int. Arch. Allergy Immunol. 2023, 184, 243–251. [Google Scholar] [CrossRef]
- Eddy, R.L.; Svenningsen, S.; Kirby, M.; Knipping, D.; McCormack, D.G.; Licskai, C.; Nair, P.; Parraga, G. Is Computed Tomography Airway Count Related to Asthma Severity and Airway Structure and Function? Am. J. Respir. Crit. Care Med. 2020, 201, 923–933. [Google Scholar] [CrossRef]
- Domvri, K.; Tsiouprou, I.; Bakakos, P.; Steiropoulos, P.; Katsoulis, K.; Kostikas, K.; Antoniou, K.M.; Papaioannou, A.I.; Rovina, N.; Katsaounou, P.; et al. Effect of mepolizumab in airway remodeling in patients with late-onset severe asthma with an eosinophilic phenotype. J. Allergy Clin. Immunol. 2025, 155, 425–435. [Google Scholar] [CrossRef] [PubMed]
- Aysola, R.; de Lange, E.E.; Castro, M.; Altes, T.A. Demonstration of the heterogeneous distribution of asthma in the lungs using CT and hyperpolarized helium-3 MRI. J. Magn. Reson. Imaging 2010, 32, 1379–1387. [Google Scholar] [CrossRef] [PubMed]
- Svenningsen, S.; Eddy, R.L.; Lim, H.F.; Cox, P.G.; Nair, P.; Parraga, G. Sputum Eosinophilia and Magnetic Resonance Imaging Ventilation Heterogeneity in Severe Asthma. Am. J. Respir. Crit. Care Med. 2018, 197, 876–884. [Google Scholar] [CrossRef] [PubMed]
- Svenningsen, S.; Eddy, R.L.; Kjarsgaard, M.; Parraga, G.; Nair, P. Effects of Anti-T2 Biologic Treatment on Lung Ventilation Evaluated by MRI in Adults With Prednisone-Dependent Asthma. Chest 2020, 58, 1350–1360. [Google Scholar] [CrossRef] [PubMed]
- Global Initiative for Asthma. 2019 GINA Main Report. Global Strategy for Asthma Management and Prevention. Available online: https://ginasthma.org/wp-content/uploads/2019/06/GINA-2019-main-report-June-2019-wms.pdf (accessed on 5 August 2025).
- Kraft, M.; Brusselle, G.; FitzGerald, J.M.; Pavord, I.D.; Keith, M.; Fagerås, M.; Garcia Gil, E.; Hirsch, I.; Goldman, M.; Colice, G. Patient characteristics, biomarkers and exacerbation risk in severe, uncontrolled asthma. Eur. Respir. J. 2021, 58, 2100413. [Google Scholar] [CrossRef]
- Meulmeester, F.L.; Mailhot-Larouche, S.; Celis-Preciado, C.; Lemaire-Paquette, S.; Ramakrishnan, S.; Wechsler, M.E.; Brusselle, G.; Corren, J.; Hardy, J.; Diver, S.E.; et al. Inflammatory and clinical risk factors for asthma attacks (ORACLE2): A patient-level meta-analysis of control groups of 22 randomised trials. Lancet Respir. Med. 2025, 13, 505–516. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishnan, S.; Russell, R.E.K.; Mahmood, H.R.; Krassowska, K.; Melhorn, J.; Mwasuku, C.; Pavord, I.D.; Bermejo-Sanchez, L.; Howell, I.; Mahdi, M.; et al. Treating eosinophilic exacerbations of asthma and COPD with benralizumab (ABRA): A double-blind, double-dummy, active placebo-controlled randomised trial. Lancet Respir. Med. 2025, 13, 59–68. [Google Scholar] [CrossRef]
- Cosío, B.G.; Iglesias, A.; Shafiek, H.; Mosteiro, M.; Escribano, I.; Toledo-Pons, N.; Valera, J.L.; Gómez Bellvert, C.; Pérez de Llano, L. The Role of Bronchial Biopsy in the Prediction of Response to Biologic Therapy in Severe Uncontrolled Asthma: A Prospective Study. Chest 2025, 167, 945–955. [Google Scholar] [CrossRef] [PubMed]
- Corren, J.; Du, E.; Gubbi, A.; Vanlandingham, R. Variability in Blood Eosinophil Counts in Patients with Eosinophilic Asthma. J. Allergy. Clin. Immunol. Pract. 2021, 9, 1224–1231.e9. [Google Scholar] [CrossRef]
- Chipps, B.E.; Jarjour, N.; Calhoun, W.J.; Iqbal, A.; Haselkorn, T.; Yang, M.; Brumm, J.; Corren, J.; Holweg, C.T.J.; Bafadhel, M. A Comprehensive Analysis of the Stability of Blood Eosinophil Levels. Ann. Am. Thorac. Soc. 2021, 18, 1978. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, H.; Zhang, Q.; Wang, J.; Gao, S.; Li, C.; Wang, J.; Zhang, S.; Lin, J. Variability of Type 2 inflammatory markers guiding biologic therapy of severe asthma: A 5-year retrospective study from a single tertiary hospital. World Allergy Organ. J. 2021, 14, 100547. [Google Scholar] [CrossRef]
- Lugogo, N. The Rapidly Evolving Landscape of Asthma Therapies Is Exhilarating, Yet a Lack of Innovation in Clinical Trial Design Makes Feasibility A Real Concern. Am. J. Respir. Crit. Care Med. 2025, 211, 674–675. [Google Scholar] [CrossRef]
- Kerwin, E.; Yang, T.; Su, N.; Guo, J.; Adivikolanu, R.; Longphre, M.; Wang, J.; Yun, J.; Pan, W.; Wei, Z.; et al. Rademikibart Treatment for Moderate-to-Severe, Uncontrolled Asthma: A Phase 2B Randomized Trial. Am. J. Respir. Crit. Care Med. 2025, 211, 749–758. [Google Scholar] [CrossRef] [PubMed]
- Jackson, D.J.; Wechsler, M.E.; Jackson, D.J.; Bernstein, D.; Korn, S.; Pfeffer, P.E.; Chen, R.; Saito, J.; de Luíz Martinez, G.; Dymek, L.; et al. Twice-Yearly Depemokimab in Severe Asthma with an Eosinophilic Phenotype. N. Engl. J. Med. 2024, 391, 2337–2349. [Google Scholar] [CrossRef] [PubMed]
- Deiteren, A.; Krupka, E.; Bontinck, L.; Imberdis, K.; Conickx, G.; Bas, S.; Patel, N.; Staudinger, H.W.; Suratt, B.T. A proof-of-mechanism trial in asthma with lunsekimig, a bispecific NANOBODY molecule. Eur. Respir. J. 2025, 65, 2401461. [Google Scholar] [CrossRef]
- Wechsler, M.E.; Ruddy, M.K.; Pavord, I.D.; Israel, E.; Rabe, K.F.; Ford, L.B.; Maspero, J.F.; Abdulai, R.M.; Hu, C.C.; Martincova, R.; et al. Efficacy and Safety of Itepekimab in Patients with Moderate-to-Severe Asthma. N. Engl. J. Med. 2021, 385, 1656–1668. [Google Scholar] [CrossRef] [PubMed]
- Corren, J.; Reid, F.; Moate, R.; Jimenez, E.; Sadiq, M.; Williams, A.; Rytelewski, M.; Muthas, D.; Brooks, D.; Lindqvist, E.; et al. S90 FRONTIER-3: A randomized, phase 2a study to evaluate the efficacy and safety of tozorakimab (an anti-interleukin-33 monoclonal antibody) in early-onset asthma. In ‘A Tale of Two Biologics’–Monoclonal Antibodies in COPD and Asthma; BMJ Publishing Group Ltd. and British Thoracic Society: London, UK, 2024; pp. A65.2–A66. [Google Scholar]
- Kelsen, S.G.; Agache, I.O.; Soong, W.; Israel, E.; Chupp, G.L.; Cheung, D.S.; Theess, W.; Yang, X.; Staton, T.L.; Choy, D.F.; et al. Astegolimab (anti-ST2) efficacy and safety in adults with severe asthma: A randomized clinical trial. J. Allergy Clin. Immunol. 2021, 148, 790–798. [Google Scholar] [CrossRef]
- Bush, A.; Pavord, I.D. Stop the Asthma Treatment Elevator, We Need to Get Off! Am. J. Respir. Crit. Care Med. 2025, 211, 698. [Google Scholar] [CrossRef]
Biomarker Type | Description | Example for Asthma |
---|---|---|
Susceptibility | Increased or decreased risk | Who develops asthma? |
Diagnostic | Confirms disease | Classifying endotypes |
Monitoring | Assesses disease status | Symptom control, airway remolding |
Prognostic | Likelihood of clinical event or disease progression | Exacerbations, morbidity, mortality |
Predictive | Favorable or unfavorable response to treatment | Symptom control, lung function |
Response—pharmacodynamic | Biological response after therapy or exposure | IgE, FeNO, blood or sputum eosinophils |
Response—surrogate endpoint | Predicts clinical benefit or harm | Exacerbations, airway remodeling |
Safety | Detects or predicts exposure effects, toxicity, or need for treatment | Infections, morbidity, immunological alterations |
Biological Agent | FeNO | Blood Eosinophils | Serum IgE | |||
---|---|---|---|---|---|---|
Response Predictor | Response Measure | Response Predictor | Response Measure | Response Predictor | Response Measure | |
Anti-IgE (Omalizumab) | + | ↓ | + | ↓ | No | No |
Anti-IL5 (Mepolizumab, Benralizumab, Reslizumab) | No | No | + + + | ↓↓ | No | No |
Anti-IL4Rα (Dupilumab) | + + + | ↓↓↓ | + + | ↑ | No | ↓↓ |
Anti-TSLP (Tezepelumab) | + + + | ↓↓↓ | + + | ↓↓ | No | ↓↓ |
Biomarker | Strengths | Limitations | Application |
---|---|---|---|
Serum IgE |
|
|
|
Blood eosinophils |
|
|
|
FeNO |
|
|
|
Serum periostin |
|
|
|
Sputum eosinophils |
|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lavere, P.F.; Phillips, K.M.; Hanania, N.A.; Adrish, M. Established and Emerging Asthma Biomarkers with a Focus on Biologic Trials: A Narrative Review. J. Pers. Med. 2025, 15, 370. https://doi.org/10.3390/jpm15080370
Lavere PF, Phillips KM, Hanania NA, Adrish M. Established and Emerging Asthma Biomarkers with a Focus on Biologic Trials: A Narrative Review. Journal of Personalized Medicine. 2025; 15(8):370. https://doi.org/10.3390/jpm15080370
Chicago/Turabian StyleLavere, Philip F., Kaitlin M. Phillips, Nicola A. Hanania, and Muhammad Adrish. 2025. "Established and Emerging Asthma Biomarkers with a Focus on Biologic Trials: A Narrative Review" Journal of Personalized Medicine 15, no. 8: 370. https://doi.org/10.3390/jpm15080370
APA StyleLavere, P. F., Phillips, K. M., Hanania, N. A., & Adrish, M. (2025). Established and Emerging Asthma Biomarkers with a Focus on Biologic Trials: A Narrative Review. Journal of Personalized Medicine, 15(8), 370. https://doi.org/10.3390/jpm15080370