EBV-Driven HLH and T Cell Lymphoma in a Child with X-Linked Agammaglobulinemia: A Genetically Confirmed Case Report and Literature Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Clinical Evaluation and Record Review
2.2. EBV Detection and Viral Load
2.3. Genetic Analysis
2.4. EBER-Based In Situ Hybridization (EBER-ISH)
2.5. Review of Literature
2.6. Ethical Compliance
3. Results
3.1. Case Presentation
3.2. Review of the Literature
3.2.1. Susceptibility to Microbial Infections
3.2.2. Immunological and Cellular Deficiencies
3.2.3. BTK Mutations and Genotype–Phenotype Correlation
3.2.4. Atypical Manifestations in CAEBV and XLA Related to EBV
3.2.5. Differential Biomarker Patterns in CAEBV and XLA
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Poli, M.C.; Aksentijevich, I.; Bousfiha, A.A.; Cunningham-Rundles, C.; Hambleton, S.; Klein, C.; Morio, T.; Picard, C.; Puel, A.; Rezaei, N.; et al. Human inborn errors of immunity: 2024 update on the classification from the International Union of Immunological Societies Expert Committee. J. Hum. Immun. 2025, 1, e20250003. [Google Scholar] [CrossRef]
- Cinicola, B.; Uva, A.; Leonardi, L.; Moratto, D.; Giliani, S.; Carsetti, R.; Ferrari, S.; Zicari, A.M.; Duse, M. Case Report: A Case of X-Linked Agammaglobulinemia with High Serum IgE Levels and Allergic Rhinitis. Front. Immunol. 2020, 11, 582376. [Google Scholar] [CrossRef]
- Holinski-Feder, E.; Weiss, M.; Brandau, O.; Jedele, K.B.; Nore, B.; Bäckesjö, C.M.; Vihinen, M.; Hubbard, S.R.; Belohradsky, B.H.; Smith, C.E.; et al. Mutation screening of the BTK gene in 56 families with X-linked agammaglobulinemia (XLA): 47 unique mutations without correlation to clinical course. Pediatrics 1998, 101, 276–284. [Google Scholar] [CrossRef] [PubMed]
- Hagemann, T.L.; Chen, Y.; Rosen, F.S.; Kwan, S.P. Genomic organization of the Btk gene and exon scanning for mutations in patients with x-linked agammaglobulinemia. Hum. Mol. Genet. 1994, 3, 1743–1749. [Google Scholar] [CrossRef]
- Rozkiewicz, D.; Hermanowicz, J.M.; Kwiatkowska, I.; Krupa, A.; Pawlak, D. Bruton’s Tyrosine Kinase Inhibitors (BTKIs): Review of Preclinical Studies and Evaluation of Clinical Trials. Molecules 2023, 28, 2400. [Google Scholar] [CrossRef]
- Alu, A.; Lei, H.; Han, X.; Wei, Y.; Wei, X. BTK Inhibitors in the Treatment of Hematological Malignancies and Inflammatory Diseases: Mechanisms and Clinical Studies. J. Hematol. Oncol. 2022, 15, 138. [Google Scholar] [CrossRef] [PubMed]
- Han, S.P.; Lin, Y.F.; Weng, H.Y.; Tsai, S.F.; Fu, L.S. A novel BTK gene mutation in a child with atypical X-linked agammaglobulinemia and recurrent hemophagocytosis: A case report. Front. Immunol. 2019, 10, 1953. [Google Scholar] [CrossRef]
- Graziani, S.; Di Matteo, G.; Benini, L.; Di Cesare, S.; Chiriaco, M.; Chini, L.; Chianca, M.; De Iorio, F.; La Rocca, M.; Iannini, R.; et al. Identification of a Btk mutation in a dysgammaglobulinemic patient with reduced B cells: XLA diagnosis or not? Clin. Immunol. 2008, 128, 322–328. [Google Scholar] [CrossRef]
- Bedaiwy, N.; Alhamdi, S.; Al Suwairi, W.; Alsalamah, M. Case report of a novel mutation in Bruton’s tyrosine kinase gene with confirmed agammaglobulinemia and absent B lymphocytes. LymphoSign J. 2022, 9, 1–4. [Google Scholar] [CrossRef]
- McLaughlin-Drubin, M.E.; Munger, K. Viruses associated with human cancer. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2008, 1782, 127–150. [Google Scholar] [CrossRef]
- Ferreira, D.A.; Tayyar, Y.; Idris, A.; McMillan, N.A.J. A “hit-and-run” affair—A possible link for cancer progression in virally driven cancers. Biochim. Biophys. Acta (BBA) Rev. Cancer 2021, 1875, 188476. [Google Scholar] [CrossRef]
- Epstein, M.A.; Achong, B.G.; Barr, Y.M. Virus Particles in Cultured Lymphoblasts from Burkitt’s Lymphoma. Lancet 1964, 1, 702–703. [Google Scholar] [CrossRef]
- Latour, S.; Winter, S. Inherited immunodeficiencies with high predisposition to Epstein-Barr Virus-driven lymphoproliferative diseases. Front. Immunol. 2018, 9, 364381. [Google Scholar] [CrossRef]
- Vojdani, A.; Koksoy, S.; Vojdani, E.; Engelman, M.; Benzvi, C.; Lerner, A. Natural Killer Cells and Cytotoxic T Cells: Complementary Partners against Microorganisms and Cancer. Microorganisms 2024, 12, 230. [Google Scholar] [CrossRef]
- Kleinman, S.; Jhaveri, D.; Caimi, P.; Cameron, R.; Lemonovich, T.; Meyerson, H.; Hostoffer, R.; Tcheurekdjian, H. A rare presentation of EBV+ mucocutaneous ulcer that led to a diagnosis of hypogammaglobulinemia. J. Allergy Clin. Immunol. Pract. 2014, 2, 810–812. [Google Scholar] [CrossRef]
- Hatton, O.L.; Harris-Arnold, A.; Schaffert, S.; Krams, S.M.; Martinez, O.M. The Interplay Between Epstein Barr Virus and B Lymphocytes: Implications for Infection, Immunity, and Disease. Immunol. Res. 2014, 58, 268. [Google Scholar] [CrossRef]
- Faulkner, G.C.; Burrows, S.R.; Khanna, R.; Moss, D.J.; Bird, A.G.; Crawford, D.H. X-Linked agammaglobulinemia patients are not infected with Epstein-Barr virus: Implications for the biology of the virus. J. Virol. 1999, 73, 1555–1564. [Google Scholar] [CrossRef] [PubMed]
- Grammatikos, A.; Donati, M.; Johnston, S.L.; Gompels, M.M. Peripheral B Cell Deficiency and Predisposition to Viral Infections: The Paradigm of Immune Deficiencies. Front. Immunol. 2021, 12, 731643. [Google Scholar] [CrossRef]
- Sánchez-Ponce, Y.; Varela-Fascinetto, G.; Romo-Vázquez, J.C.; López-Martínez, B.; Sánchez-Huerta, J.L.; Parra-Ortega, I.; Fuentes-Pananá, E.M.; Morales-Sánchez, A. Simultaneous Detection of Beta and Gamma Human Herpesviruses by Multiplex qPCR Reveals Simple Infection and Coinfection Episodes Increasing Risk for Graft Rejection in Solid Organ Transplantation. Viruses 2018, 10, 730. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Zhang, M.; Winkelstein, J.; Chen, S.H.; Ochs, H.D. Unique mutations of bruton’s tyrosine kinase in fourteen unrelated x-linked agammaglobulinemia families. Hum. Mol. Genet. 1994, 3, 1899–1900. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.Y.; Montes-Mojarro, I.A.; Fend, F.; Quintanilla-Martinez, L. Epstein-barr virus-associated T and NK-cell lymphoproliferative diseases. Front. Pediatr. 2019, 7, 433291. [Google Scholar] [CrossRef]
- El-Mallawany, N.K.; Curry, C.V.; Allen, C.E. Haemophagocytic lymphohistiocytosis and Epstein–Barr virus: A complex relationship with diverse origins, expression and outcomes. Br. J. Haematol. 2022, 196, 31–44. [Google Scholar] [CrossRef]
- Zehr, B.; Brannock, K.; Wyma, R.; Kahwash, S.B. Differentiating fulminant EBV infection complicated by HLH from Lymphoma: Report of a case and a brief literature review. Diagn. Pathol. 2023, 18, 28. [Google Scholar] [CrossRef]
- Marsh, R.A. Epstein-Barr virus and hemophagocytic lymphohistiocytosis. Front. Immunol. 2018, 8, 1902. [Google Scholar] [CrossRef] [PubMed]
- Kanegane, H.; Taneichi, H.; Nomura, K.; Futatani, T.; Miyawaki, T. Severe Neutropenia in Japanese Patients with X-Linked Agammaglobulinemia. J. Clin. Immunol. 2005, 25, 491–495. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Wu, H.; Gu, L.; Wu, X.; Su, M.; Lin, H.; Liu, B.; Zheng, J.; Mei, X.; Li, D. Clinicopathologic findings of chronic active Epstein–Barr virus infection in adults: A single-center retrospective study in China. Clin. Exp. Med. 2021, 21, 369–377. [Google Scholar] [CrossRef]
- Xiao, H.; Hu, B.; Luo, R.; Hu, H.; Zhang, J.; Kuang, W.; Zhang, R.; Li, L.; Liu, G. Chronic active Epstein–Barr virus infection manifesting as coronary artery aneurysm and uveitis. Virol. J. 2020, 17, 166. [Google Scholar] [CrossRef]
- Luo, L.; Wang, H.; Fan, H.; Xie, J.; Qiu, Z.; Li, T. The clinical characteristics and the features of immunophenotype of peripheral lymphocytes of adult onset chronic active Epstein-Barr virus disease at a Tertiary Care Hospital in Beijing. Medicine 2018, 97, e9854. [Google Scholar] [CrossRef]
- Pac, M.M.; Bernatowska, E.A.; Kierkuś, J.; Ryżko, J.P.; Cielecka-Kuszyk, J.; Jackowska, T.; Mikołuć, B. Gastrointestinal disorders next to respiratory infections as leading symptoms of X-linked agammaglobulinemia in children—34-year experience of a single center. Arch. Med. Sci. 2017, 13, 412–417. [Google Scholar] [CrossRef] [PubMed]
- Barmettler, S.; Otani, I.M.; Minhas, J.; Abraham, R.S.; Chang, Y.; Dorsey, M.J.; Ballas, Z.K.; Bonilla, F.A.; Ochs, H.D.; Walter, J.E. Gastrointestinal Manifestations in X-linked Agammaglobulinemia. J. Clin. Immunol. 2017, 37, 287–294. [Google Scholar] [CrossRef]
- Khan, F.; Person, H.; Dekio, F.; Ogawa, M.; Ho, H.E.; Dunkin, D.; Secord, E.; Cunningham-Rundles, C.; Ward, S.C. Crohn’s-like Enteritis in X-Linked Agammaglobulinemia: A Case Series and Systematic Review. J. Allergy Clin. Immunol. Pract. 2021, 9, 3466–3478. [Google Scholar] [CrossRef]
- Bearden, D.; Collett, M.; Quan, P.L.; Costa-Carvalho, B.T.; Sullivan, K.E. Enteroviruses in X-Linked Agammaglobulinemia: Update on Epidemiology and Therapy. J. Allergy Clin. Immunol. Pract. 2016, 4, 1059–1065. [Google Scholar] [CrossRef] [PubMed]
- Martignani, C.; Massaro, G.; Bruno, A.G.; Biffi, M.; Ziacchi, M.; Diemberger, I. Acute primary purulent pericarditis in an adult patient with unknown X-linked agammaglobulinemia. Immunobiology 2020, 225, 151861. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Li, M.; Tan, L.; Li, X. Pulmonary alveolar proteinosis induced by X-linked agammaglobulinemia: A case report. World J. Clin. Cases 2024, 12, 1644–1648. [Google Scholar] [CrossRef]
- Shen, K.; Shuai, X.; Li, J.; Liu, J.; Liu, T.; Niu, T.; Ma, H. Chronic active Epstein-Barr virus infection involving gastrointestinal tract with hemophagocytic lymphohistiocytosis. Ann. Hematol. 2023, 102, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Li, L.; Pan, C.; Yang, Y.; Chen, G.; He, Y. Case report: Systemic muscle involvement as the primary clinical manifestation of chronic active Epstein–Barr virus infection: A case-based review. Front. Immunol. 2022, 13, 1027859. [Google Scholar] [CrossRef]
- Yi, T.; Steinberg, J.; Olson, S.; El-Said, H.; Mo, J.; Anderson, E.; Gloude, N.; Schiff, D. Chronic active Epstein–Barr virus and hydroa vacciniforme-like lymphoproliferative disorder in a pediatric patient complicated by fatal ruptured cerebral artery aneurysm. Clin. Case Rep. 2023, 11, e7436. [Google Scholar] [CrossRef]
- Yeh, Y.H.; Hsieh, M.Y.; Lee, W.I.; Huang, J.L.; Chen, L.C.; Yeh, K.W.; Ou, L.S.; Yao, T.C.; Wu, C.Y.; Lin, S.J. Distinct Clinical Features and Novel Mutations in Taiwanese Patients With X-Linked Agammaglobulinemia. Front. Immunol. 2020, 11, 2001. [Google Scholar] [CrossRef]
- Dávila Saldaña, B.J.; John, T.; Bonifant, C.; Buchbinder, D.; Chandra, S.; Chandrakasan, S.; Chang, W.; Chen, L.; Elfassy, H.L.; Geerlinks, A.V.; et al. High risk of relapsed disease in patients with NK/T-cell chronic active Epstein-Barr virus disease outside of Asia. Blood Adv. 2022, 6, 452–459. [Google Scholar] [CrossRef]
- Kadden, D.; Fowler, G.; Engel, E.; Logan, C.; Marathe, K.; Gosdin, C. Streptococcal pneumonia meningitis as an initial presentation of X-linked agammaglobulinemia: A case report and discussion. JACEP Open 2021, 2, 10–13. [Google Scholar] [CrossRef]
- Chear, C.T.; Ismail, I.H.; Chan, K.C.; Noh, L.M.; Kassim, A.; Latiff, A.H.A.; Gill, S.S.; Ramly, N.H.; Tan, K.K.; Sundaraj, C.; et al. Clinical features and mutational analysis of X-linked agammaglobulinemia patients in Malaysia. Front. Immunol. 2023, 14, 1252765. [Google Scholar] [CrossRef]
- Markocsy, A.; Kapustová, D.; Čereš, A.; Froňkova, E.; Jeseňák, M. Atypical Manifestation of X-linked Agammaglobulinemia—the Importance of Genetic Testing. Acta Medica 2024, 67, 60–63. [Google Scholar] [CrossRef]
- Alotaibi, Y.; Albogami, M.; Alsaedy, A.; Khubrani, R.; Al Ahmadi, B. A Lethal Manifestation of Chronic Active Epstein-Barr Virus Infection: A Case Report. Cureus 2022, 14, e30158. [Google Scholar] [CrossRef]
- Lin, S.C.; Chiang, B.L.; Lee, Y.J.; Chang, Y.T.; Fang, S.B. Pseudomonas aeruginosa sepsis presenting as oral ecthyma gangrenosum in identical twins with Bruton tyrosine kinase gene mutation: Two case reports and review of the literature. J. Microbiol. Immunol. Infect. 2020, 53, 1030–1034. [Google Scholar]
- Lanlokun, M.; Borden, A.; Nieves, D.; Walter, J.E.; Albright, D. X-Linked Agammaglobulinemia Presenting as Neutropenia: Case Report and an Overview of Literature. Front. Pediatr. 2021, 9, 633692. [Google Scholar] [CrossRef]
- Jiang, L.; Gu, Z.H.; Yan, Z.X.; Zhao, X.; Xie, Y.Y.; Zhang, Z.G.; Pan, C.M.; Hu, Y.; Cai, C.P.; Dong, Y.; et al. Exome sequencing identifies somatic mutations of DDX3X in natural killer/T-cell lymphoma. Nat. Genet. 2015, 47, 1061–1066. [Google Scholar] [CrossRef]
- Arai, A. Advances in the study of Chronic active Epstein-Barr virus infection: Clinical features under the 2016 WHO classification and mechanisms of development. Front. Pediatr. 2019, 7, 14. [Google Scholar] [CrossRef]
- Okuno, Y.; Murata, T.; Sato, Y.; Muramatsu, H.; Ito, Y.; Watanabe, T.; Okuno, T.; Murakami, N.; Yoshida, K.; Sawada, A.; et al. Defective Epstein–Barr virus in chronic active infection and haematological malignancy. Nat. Microbiol. 2019, 4, 404–413. [Google Scholar] [CrossRef] [PubMed]
- Saburi, M.; Ogata, M.; Satou, T.; Yoshida, N.; Nagamatsu, K.; Nashimoto, Y.; Moroga, Y.; Takano, K.; Kohno, K.; Shirao, K. Successful cord blood stem cell transplantation for an adult case of chronic active epstein-barr virus infection. Intern. Med. 2016, 55, 3499–3504. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.J.; Li, J.; Song, H.M.; Li, Z.H.; Dong, M.; Zhou, X.G. Epstein-Barr virus-positive T/NK-cell lymphoproliferative disorders manifested as gastrointestinal perforations and skin lesions a case report. Medicine 2016, 95, e2676. [Google Scholar] [CrossRef] [PubMed]
- Wei, A.; Ma, H.; Zhang, L.; Li, Z.; Guan, Y.; Zhang, Q.; Wang, D.; Lian, H.; Zhang, R.; Wang, T. Clinical analysis of chronic active EBV infection with coronary artery dilatation and a matched case–control study. Orphanet. J. Rare Dis. 2021, 16, 50. [Google Scholar] [CrossRef] [PubMed]
- Ochs, H.D.; Smith, C.I.E. X-Linked Agammaglobulinemia A Clinical and Molecular Analysis. Rev. Med. Virol. 1996, 75, 287–299. [Google Scholar] [CrossRef]
- Lee, J.L.; Streuli, C.H. Integrins and epithelial cell polarity. J. Cell Sci. 2014, 127, 3217–3225. [Google Scholar] [CrossRef]
- Wang, X.; Kenyon, W.J.; Li, Q.; Müllberg, J.; Hutt-Fletcher, L.M. Epstein-Barr Virus Uses Different Complexes of Glycoproteins gH and gL To Infect B Lymphocytes and Epithelial Cells. J. Virol. 1998, 72, 5552–5558. [Google Scholar] [CrossRef] [PubMed]
- Gratama, J.W.; Oosterveer, M.A.; Zwaan, F.E.; Lepoutre, J.; Klein, G.; Ernberg, I. Eradication of Epstein-Barr virus by allogeneic bone marrow transplantation: Implications for sites of viral latency. Proc. Natl. Acad. Sci. USA 1988, 85, 8693–8696. [Google Scholar] [CrossRef] [PubMed]
- Anagnostopoulos, L.; Hummel, M.; Kreschel, C.; Stein, H. Morphology, Immunophenotype, and Distribution of Latently and/or Productively Epstein-Barr Virus-Infected Cells in Acute Infectious Mononucleosis: Implications for the Interindividual Infection Route of Epstein-Barr Virus. Blood 1995, 85, 744–750. [Google Scholar] [CrossRef]
- Arai, A.; Yamaguchi, T.; Komatsu, H.; Imadome, K.I.; Kurata, M.; Nagata, K.; Miura, O. Infectious mononucleosis accompanied by clonal proliferation of EBV-infected cells and infection of CD8-positive cells. Int. J. Hematol. 2014, 99, 671–675. [Google Scholar] [CrossRef]
- Tabiasco, J.; Vercellone, A.; Meggetto, F.; Hudrisier, D.; Brousset, P.; Fournié, J.J. Acquisition of Viral Receptor by NK Cells Through Immunological Synapse. J. Immunol. 2003, 170, 5993–5998. [Google Scholar] [CrossRef]
- Fernandes, A.; Guedes, M.; Vasconcelos, J.; Neves, E.; Fernandes, S.; Marques, L. Agammaglobulinemia ligada al cromosoma X: Experiencia en un hospital portugués. An. Pediatr. (Engl. Ed.) 2015, 82, 166–171. [Google Scholar] [CrossRef]
- Jacobs, Z.D.; Guajardo, J.R.; Anderson, K.M. XLA-associated Neutropenia Treatment. J. Pediatr. Hematol. Oncol. 2008, 30, 631–634. [Google Scholar] [CrossRef]
- Farrar, J.E.; Rohrer, J.; Conley, M.E. Neutropenia in X-linked agammaglobulinemia. Clin. Immunol. Immunopathol. 1996, 81, 271–276. [Google Scholar] [CrossRef]
- Wierda, W.G.; Shah, N.N.; Cheah, C.Y.; Lewis, D.; Hoffmann, M.S.; Coombs, C.C.; Lamanna, N.; Ma, S.; Jagadeesh, D.; Munir, T.; et al. Pirtobrutinib, a highly selective, non-covalent (reversible) BTK inhibitor in patients with B-cell malignancies: Analysis of the Richter transformation subgroup from the multicentre, open-label, phase 1/2 BRUIN study. Lancet Haematol 2024, 11, e682–e692. [Google Scholar] [CrossRef]
- Song, Y.; Zhou, K.; Zou, D.; Zhou, J.; Hu, J.; Yang, H.; Zhang, H.; Ji, J.; Xu, W.; Jin, J.; et al. Zanubrutinib in relapsed/refractory mantle cell lymphoma: Long-term efficacy and safety results from a phase 2 study. Blood 2022, 139, 3148–3158. [Google Scholar] [CrossRef] [PubMed]
- Wan, S.; Cao, M.; Zou, J.; Bai, Y.; Shi, M.; Jiang, H. Case report of renal manifestations in X-linked agammaglobulinemia. Front. Immunol. 2024, 15, 1376258. [Google Scholar] [CrossRef] [PubMed]
- Deng, F.; Wang, H.; Wang, X. Chronic Diarrhea with Villous Blunting of the Small Intestine Under Capsule Endoscopy in Common Variable Immunodeficiency and X-Linked Agammaglobulinemia: A Case Series. J. Asthma Allergy 2023, ume 16, 997–1006. [Google Scholar] [CrossRef] [PubMed]
- Rise, N.; Touborg, T.; Lundsted, D.H.; Dalager-Pedersen, M.; Mogensen, T.H. Case report: Evolution of pulmonary manifestations and virological markers in critical COVID-19 infection in Bruton’s agammaglobulinemia. Front. Immunol. 2022, 13, 1057065. [Google Scholar] [CrossRef]
- Yamazaki, E.; Kikuchi, K.; Sasahara, Y.; Kono, M.; Akiyama, M.; Aiba, S. Atopic dermatitis without serum immunoglobulin E elevation or loss-of-function filaggrin gene mutation in a patient with X-linked agammaglobulinemia. J. Dermatol. 2020, 47, 58–60. [Google Scholar] [CrossRef]
- Chen, X.-F.; Wang, W.-F.; Zhang, Y.-D.; Zhao, W.; Wu, J.; Chen, T.-X. Clinical characteristics and genetic profiles of 174 patients with X-linked agammaglobulinemia. Medicine 2016, 95, e4544. [Google Scholar] [CrossRef]
- Liang, M.; Qu, J. Chronic active Epstein–Barr virus colitis, a rare cause of recurrent diarrhea in an immunocompetent female: A case report. BMC Infect. Dis. 2025, 25, 50. [Google Scholar] [CrossRef]
- Nakajima, K.; Hiejima, E.; Nihira, H.; Kato, K.; Honda, Y.; Izawa, K.; Kawabata, N.; Kato, I.; Ogawa, E.; Sonoda, M.; et al. Case Report: A Case of Epstein-Barr Virus-Associated Acute Liver Failure Requiring Hematopoietic Cell Transplantation After Emergent Liver Transplantation. Front. Immunol. 2022, 13, 825806. [Google Scholar] [CrossRef]
- Luo, Y.-H.; Yang, J.; Wei, A.; Zhu, G.-H.; Wang, B.; Zhang, R.; Jia, C.-G.; Yan, Y.; Wang, K.; Li, S.; et al. Haploidentical hematopoietic stem cell transplantation for pediatric patients with chronic active Epstein–Barr virus infection: A retrospective analysis of a single center. World J. Pediatr. 2021, 17, 626–636. [Google Scholar] [CrossRef] [PubMed]
- Ba, H.; Xu, L.; Peng, H.; Lin, Y.; Li, X.; Wang, H.; Qin, Y.; Wang, X. Chronic Active Epstein-Barr Virus Infection With Systemic Vasculitis and Pulmonary Arterial Hypertension in a Child. Front. Pediatr. 2019, 7, 219. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, H.; Taniwaki, M.; Matsumoto, Y.; Yoshida, M.; Shimura, K.; Fujino, T.; Uchiyama, H.; Kuroda, J. An adult-onset case of chronic active Epstein-Barr virus infection with fulminant clinical course. J. Infect. Chemother. 2018, 24, 479–482. [Google Scholar] [CrossRef]
Test | Lab Findings at Diagnosis | Lab Results After Treatment |
---|---|---|
Lymphocyte subsets (cells/μL) | ||
CD3+ (1200–2600) | 909.34 (49.4%) | 1827 |
CD3+ CD8+ (370–1100) | 371.76 (20.2%) | 698 |
CD3+ CD4+ (650–1500) | 529.48 (28.7%) | 1096 |
CD16+ CD56+ (100–480) | 745.64 (40.5%) | 155 |
CD19+ (270–860) | 7.39 (0.4%) | 4 |
Blood cytometry | ||
Hemoglobin (Hb) (11.5–13.5 g/dL) | 9.3 g/dL | 13.6 |
Hematocrit (HCT) (35–40%) | 29% | 41.5 |
Platelets (150,000–450,000/µL) | 136,000/µL | 524,000 |
White blood cells (WBCs) (4500–13,500/µL) | 1900/µL | |
Neutrophils (40–70%) | 7.6% | |
Lymphocytes (20–40%) | 46% | |
Monocytes (2–10%) | 47.7% | |
Eosinophils (1–6%) | 0.1% | |
Reticulocytes (0.5–1.0%) | 2.6% | |
Immunoglobulins (mg/dL) | ||
IgG (608–1572) | 105 | 920 |
IgA (45–236) | 6.25 | 6.69 |
IgM (52–242) | 17.30 | 4.54 |
IgE (0.98–57) | <18.20 | <19.48 |
Viral panel (U/mL) | ||
EBV Viral capsid antigen IgG (VCAG) (Negative: <20; Gray Zone: 20–40; Positive: >40) | Negative | |
VCAM | Negative | |
EAD (Negative: <10; Gray Zone: 10–40; Positive: >40) | Negative | |
EBNA | Negative | |
EBV viral load | ||
Leukocytes (Negative) | 640 copies/μg of DNA | |
Plasma (Negative) | Negative |
Clinical Condition/Disease | Treatment |
---|---|
Vesicular dermatosis and cellulitis with persistent fever | Dicloxacillin |
Bruton’s agammaglobulinemia (XLA) and pancitopenia | Monthly subcutaneous immunoglobulin 545 mg/kg. |
Sudden neurological deterioration and right hemiparesis | Fronto-temporoparietal decompressive craniectomy |
Chickenpox infection and atelectasis due to fungal infection | Voriconazole |
Monoclonal lymphoproliferative process (T cell lymphoma) | Systemic chemotherapy: vincristine, daunorubicin, etoposide, Ara-C. |
Neutropenic colitis and septic shock | Supportive care |
Papulovesicular lesions and necrosis on the forearm | Acyclovir (1500 mg/day) |
Pneumonia due to bocavirus (HBoV) and respiratory syncytial virus (RSV) | Supportive care |
Episodes of febrile neutropenia | Supportive care |
Hemophagocytic lymphohistiocytosis (HLH) | HLH-2004 protocol (Etoposide, dexamethasone, and cyclosporine A) |
Epstein-Barr virus (EBV) infection | Not specified (diagnosis confirmed by PCR and EBER-ISH) |
Confirmed BTK mutation | Not applicable |
SARS-CoV-2 infection (COVID-19) | Supportive care |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perez-Olais, J.H.; Mendoza-Coronel, E.; Moreno-Ortega, J.J.; Aguirre-Hernández, J.; López-Herrera, G.; Yamazaki-Nakashimada, M.A.; Baeza-Capetillo, P.; Godínez-Zamora, G.F.; Saucedo-Ramírez, O.J.; Bonifaz, L.C.; et al. EBV-Driven HLH and T Cell Lymphoma in a Child with X-Linked Agammaglobulinemia: A Genetically Confirmed Case Report and Literature Review. J. Pers. Med. 2025, 15, 365. https://doi.org/10.3390/jpm15080365
Perez-Olais JH, Mendoza-Coronel E, Moreno-Ortega JJ, Aguirre-Hernández J, López-Herrera G, Yamazaki-Nakashimada MA, Baeza-Capetillo P, Godínez-Zamora GF, Saucedo-Ramírez OJ, Bonifaz LC, et al. EBV-Driven HLH and T Cell Lymphoma in a Child with X-Linked Agammaglobulinemia: A Genetically Confirmed Case Report and Literature Review. Journal of Personalized Medicine. 2025; 15(8):365. https://doi.org/10.3390/jpm15080365
Chicago/Turabian StylePerez-Olais, Jose Humberto, Elizabeth Mendoza-Coronel, Jose Javier Moreno-Ortega, Jesús Aguirre-Hernández, Gabriela López-Herrera, Marco Antonio Yamazaki-Nakashimada, Patricia Baeza-Capetillo, Guadalupe Fernanda Godínez-Zamora, Omar Josue Saucedo-Ramírez, Laura C. Bonifaz, and et al. 2025. "EBV-Driven HLH and T Cell Lymphoma in a Child with X-Linked Agammaglobulinemia: A Genetically Confirmed Case Report and Literature Review" Journal of Personalized Medicine 15, no. 8: 365. https://doi.org/10.3390/jpm15080365
APA StylePerez-Olais, J. H., Mendoza-Coronel, E., Moreno-Ortega, J. J., Aguirre-Hernández, J., López-Herrera, G., Yamazaki-Nakashimada, M. A., Baeza-Capetillo, P., Godínez-Zamora, G. F., Saucedo-Ramírez, O. J., Bonifaz, L. C., & Fuentes-Pananá, E. M. (2025). EBV-Driven HLH and T Cell Lymphoma in a Child with X-Linked Agammaglobulinemia: A Genetically Confirmed Case Report and Literature Review. Journal of Personalized Medicine, 15(8), 365. https://doi.org/10.3390/jpm15080365