Features of Heart Failure with Preserved Ejection Fraction in Patients with Chronic Obstructive Pulmonary Disease and Systemic Sclerosis-Associated Interstitial Lung Diseases
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Clinical and Anthropometric Measurements
2.3. Laboratory Studies
2.4. Echocardiography
2.5. Capnography
2.6. Spirography
2.7. Statistical Analysis
3. Results
3.1. Study Group
3.2. Analysis of Differences Between Groups
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CLD | Chronic lung disease; |
CHF | Chronic heart failure; |
HFrEF | HF with reduced ejection fraction; |
HFpEF | HF with preserved ejection fraction; |
6MWT | 6 min walk test; |
SBP | Systolic blood pressure; |
DBP | Diastolic blood pressure; |
CAT | COPD Assessment Test; |
WHOQOL:1 | Physical health dimension of the World Health Organization Quality of Life questionnaire; |
WHOQOL:2 | Psychological health dimension of the World Health Organization Quality of Life questionnaire; |
WHOQOL:3 | Social relationships dimension of the World Health Organization Quality of Life questionnaire; |
WHOQOL:4 | Environment dimension of the World Health Organization Quality of Life questionnaire; |
HR | Heart rate; |
RR | Respiratory rate; |
FVC | Forced vital capacity; |
FEV1 | Forced expiratory volume in 1 s; |
MEF | Maximum expiratory flow rate; |
LV | Left ventricle; |
LA | Left atrium; |
RA | Right atrium; |
RV | Right ventricle; |
EDV | End diastolic volume; |
ESV | End systolic volume; |
SV | Stroke volume; |
eSPPA | Estimated systolic pressure in the pulmonary artery; |
TAPSE | Tricuspid annular plane systolic excursion; |
BODE-index | B—body mass index; O—obstruction (obstruction); D—dyspnea (shortness of breath); E—exercise tolerance (tolerance to physical activity); |
ADO index | Age, dyspnea, and airflow obstruction; |
pCO2 | Partial pressure of carbon dioxide; |
pO2 | Partial pressure of oxygen. |
References
- Lin, C.H.; Yeh, J.K.; Lin, T.Y.; Lo, Y.L.; Chang, B.J.; Ju, J.S.; Chiu, T.H.; Tung, P.H.; Huang, Y.J.; Lin, S.M. Influence of chronic obstructive pulmonary disease on long-term hospitalization and mortality in patients with heart failure with reduced ejection fraction. BMC Pulm. Med. 2023, 23, 67. [Google Scholar] [CrossRef] [PubMed]
- Ehteshami-Afshar, S.; Mooney, L.; Dewan, P.; Desai, A.S.; Lang, N.N.; Lefkowitz, M.P.; Petrie, M.C.; Rizkala, A.R.; Rouleau, J.L.; Solomon, S.D.; et al. Clinical characteristics and outcomes of patients with heart failure with reduced ejection fraction and chronic obstructive pulmonary disease: Insights from PARADIGM-HF. J. Am. Heart Assoc. 2021, 10, e019238. [Google Scholar] [CrossRef] [PubMed]
- Zhu, A.; Hu, M.; Ge, D.; Zhang, X.; Zhang, J.; Wang, Y.; Yao, X.; Liu, J. Prevalence and clinical correlates of chronic obstructive pulmonary disease in heart failure patients: A cross-sectional study in China. Front. Med. 2025, 12, 1477388. [Google Scholar] [CrossRef]
- Hesse, K.; Bourke, S.; Steer, J. Heart failure in patients with COPD exacerbations: Looking below the tip of the iceberg. Respir. Med. 2022, 196, 106800. [Google Scholar] [CrossRef] [PubMed]
- Becher, P.M.; Lindberg, F.; Benson, L.; Hage, C.; Dahlström, U.; Rosenkranz, S.; Cosentino, F.; Rosano, G.M.; Blankenberg, S.; Kirchhof, P.; et al. Phenotyping patients with chronic obstructive pulmonary disease and heart failure. ESC Heart Fail. 2024, 12, 900–911. [Google Scholar] [CrossRef]
- Plachi, F.; Balzan, F.M.; Sanseverino, R.A.; Palombini, D.V.; Marques, R.D.; Clausell, N.O.; Knorst, M.M.; Neder, J.A.; Berton, D.C. Characteristics associated with mortality in patients with chronic obstructive pulmonary disease (COPD)-heart failure coexistence. Prim. Health Care Res. Dev. 2018, 19, 570–574. [Google Scholar] [CrossRef]
- Mooney, L.; Hawkins, N.M.; Jhund, P.S.; Redfield, M.M.; Vaduganathan, M.; Desai, A.S.; Rouleau, J.L.; Minamisawa, M.; Shah, A.M.; Lefkowitz, M.P.; et al. Impact of Chronic Obstructive Pulmonary Disease in Patients With Heart Failure With Preserved Ejection Fraction: Insights From PARAGON-HF. J. Am. Heart Assoc. 2021, 10, e021494. [Google Scholar] [CrossRef]
- Khalid, K.; Padda, J.; Komissarov, A.; Colaco, L.B.; Padda, S.; Khan, A.S.; Campos, V.M.; Jean-Charles, G. The Coexistence of Chronic Obstructive Pulmonary Disease and Heart Failure. Cureus 2021, 13, e17387. [Google Scholar] [CrossRef]
- Oliveira, F.M.; Rei, A.L.; Oliveira, M.I.; Almeida, I.; Santos, M. Prevalence and prognostic significance of heart failure with preserved ejection fraction in systemic sclerosis. Future Cardiol. 2022, 18, 17–25. [Google Scholar] [CrossRef]
- Fell, B.L.; Hanekom, S.; Heine, M. Six-minute walk test protocol variations in low-resource settings—A scoping review. S. Afr. J. Physiother. 2021, 77, 9. [Google Scholar] [CrossRef]
- Egashira, K.; Sueta, D.; Komorita, T.; Yamamoto, E.; Usuku, H.; Tokitsu, T.; Fujisue, K.; Nishihara, T.; Oike, F.; Takae, M.; et al. HFA-PEFF scores: Prognostic value in heart failure with preserved left ventricular ejection fraction. Korean J. Intern. Med. 2022, 37, 96–108. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.S.; Kalhan, R. Comorbid Chronic Obstructive Pulmonary Disease and Heart Failure: Shared Risk Factors and Opportunities to Improve Outcomes. Ann. Am. Thorac. Soc. 2022, 19, 897–899. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Gu, Z.; Zhu, W.; Feng, S. Association of COPD with adverse outcomes in heart failure patients with preserved ejection fraction. ESC Heart Fail. 2024, 12, 799–808. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.; Obeid, M.J.; Yenigalla, S.; Paravathaneni, M.; Gadela, N.V.; Singh, G.; Kulkarni, V.; Kondaveety, S.; Gade, K.C.; Lee, J.; et al. Impact of chronic obstructive pulmonary disease in heart failure with preserved ejection fraction. Am. J. Cardiol. 2021, 149, 47–56. [Google Scholar] [CrossRef]
- Borlaug, B.A.; Kass, D.A. Ventricular–vascular interaction in heart failure. Heart Fail. Clin. 2008, 4, 23–36. [Google Scholar] [CrossRef]
- Myronenko, O.; Foris, V.; Crnkovic, S.; Olschewski, A.; Rocha, S.; Nicolls, M.R.; Olschewski, H. Endotyping COPD: Hypoxia-inducible factor-2 as a molecular “switch” between the vascular and airway phenotypes? Eur. Respir. Rev. 2023, 32, 220173. [Google Scholar] [CrossRef]
- Abdo, W.F.; Heunks, L.M. Oxygen-induced hypercapnia in COPD: Myths and facts. Crit. Care 2012, 16, 323. [Google Scholar] [CrossRef]
- Pugliese, N.R.; Pellicori, P.; Filidei, F.; De Biase, N.; Maffia, P.; Guzik, T.J.; Masi, S.; Taddei, S.; Cleland, J.G.F. Inflammatory pathways in heart failure with preserved left ventricular ejection fraction: Implications for future interventions. Cardiovasc. Res. 2022, 118, 3536–3555. [Google Scholar] [CrossRef]
- Peh, Z.H.; Dihoum, A.; Hutton, D.; Arthur, J.S.C.; Rena, G.; Khan, F.; Lang, C.C.; Mordi, I.R. Inflammation as a therapeutic target in heart failure with preserved ejection fraction. Front. Cardiovasc. Med. 2023, 10, 1125687. [Google Scholar] [CrossRef]
- Nakamura, K.; Akagi, S.; Ejiri, K.; Taya, S.; Saito, Y.; Kuroda, K.; Takaya, Y.; Toh, N.; Nakayama, R.; Katanosaka, Y.; et al. Pathophysiology of Group 3 Pulmonary Hypertension Associated with Lung Diseases and/or Hypoxia. Int. J. Mol. Sci. 2025, 26, 835. [Google Scholar] [CrossRef]
- Barnes, P.J. Oxidative Stress in Chronic Obstructive Pulmonary Disease. Antioxidants 2022, 11, 965. [Google Scholar] [CrossRef] [PubMed]
- McGuinness, A.J.A.; Sapey, E. Oxidative stress in COPD: Sources, markers, and potential mechanisms. J. Clin. Med. 2017, 6, 21. [Google Scholar] [CrossRef] [PubMed]
- Theodorakopoulou, M.P.; Alexandrou, M.E.; Bakaloudi, D.R.; Pitsiou, G.; Stanopoulos, I.; Kontakiotis, T.; Boutou, A.K. Endothelial dysfunction in COPD: A systematic review and meta-analysis of studies using different functional assessment methods. ERJ Open Res. 2021, 7, 00983–2020. [Google Scholar] [CrossRef] [PubMed]
- Higham, A.; Quinn, A.M.; Cançado, J.E.D.; Singh, D. The pathology of small airways disease in COPD: Historical aspects and future directions. Respir. Res. 2019, 20, 49. [Google Scholar] [CrossRef]
- Papandrinopoulou, D.; Tzouda, V.; Tsoukalas, G. Lung compliance and chronic obstructive pulmonary disease. Pulm. Med. 2012, 2012, 542769. [Google Scholar] [CrossRef]
- O’donnell, D.E.; Webb, K.A.; Neder, J.A. Lung hyperinflation in COPD: Applying physiology to clinical practice. COPD Res. Pract. 2015, 1, 4. [Google Scholar] [CrossRef]
- Screm, G.; Mondini, L.; Salton, F.; Confalonieri, P.; Trotta, L.; Barbieri, M.; Romallo, A.; Galantino, A.; Hughes, M.; Lerda, S.; et al. Vascular Endothelial Damage in COPD: Where Are We Now, Where Will We Go? Diagnostics 2024, 14, 950. [Google Scholar] [CrossRef]
- Siragusa, S.; Natali, G.; Nogara, A.M.; Trevisani, M.; Lagrasta, C.A.M.; Pontis, S. The role of pulmonary vascular endothelium in chronic obstructive pulmonary disease (COPD): Does endothelium play a role in the onset and progression of COPD? Explor. Med. 2023, 4, 1116–1134. [Google Scholar] [CrossRef]
- Weir-McCall, J.R.; Struthers, A.D.; Lipworth, B.J.; Houston, J.G. The role of pulmonary arterial stiffness in COPD. Respir. Med. 2015, 109, 1381–1390. [Google Scholar] [CrossRef]
- Rabe, K.F.; Hurst, J.R.; Suissa, S. Cardiovascular disease and COPD: Dangerous liaisons? Eur. Respir. Rev. 2018, 27, 180057. [Google Scholar] [CrossRef]
- Pelà, G.; Calzi, M.L.; Pinelli, S.; Andreoli, R.; Sverzellati, N.; Bertorelli, G.; Goldoni, M.; Chetta, A.A. Left ventricular structure and remodeling in patients with COPD. Int. J. Chronic Obstr. Pulm. Dis. 2016, 11, 1015–1022. [Google Scholar] [CrossRef] [PubMed]
- Leonardi, N.T.; Tomaz, C.d.S.R.; Kabbach, E.Z.; Heubel, A.D.; Schafauser, N.S.; Kawakami, D.M.d.O.; Borghi-Silva, A.; Roscani, M.G.; Castello-Simões, V.; Mendes, R.G. Left ventricular concentric remodeling in COPD patients: A cross-sectional observational study. Med. Clin. (Engl. Ed.) 2024, 163, 8–13. [Google Scholar] [CrossRef]
- Zeder, K.; Marsh, L.M.; Avian, A.; Brcic, L.; Birnhuber, A.; Douschan, P.; Foris, V.; Sassmann, T.; Hoetzenecker, K.; Boehm, P.M.; et al. Compartment-specific remodeling patterns in end-stage chronic obstructive pulmonary disease with and without severe pulmonary hypertension. J. Heart Lung Transplant. 2024, 43, 1090–1101. [Google Scholar] [CrossRef] [PubMed]
- Alvarado, A.C.; Pinsky, M.R. Cardiopulmonary interactions in left heart failure. Front. Physiol. 2023, 14, 1237741. [Google Scholar] [CrossRef] [PubMed]
- Ackermann, M.; Werlein, C.; Plucinski, E.; Leypold, S.; Kühnel, M.P.; Verleden, S.E.; Khalil, H.A.; Länger, F.; Welte, T.; Mentzer, S.J.; et al. The role of vasculature and angiogenesis in respiratory diseases. Angiogenesis 2024, 27, 293–310. [Google Scholar] [CrossRef]
- Pulito-Cueto, V.; Genre, F.; López-Mejías, R.; Mora-Cuesta, V.M.; Iturbe-Fernández, D.; Portilla, V.; Mora-Gil, M.S.; Ocejo-Vinyals, J.G.; Gualillo, O.; Blanco, R.; et al. Endothelin-1 as a Biomarker of Idiopathic Pulmonary Fibrosis and Interstitial Lung Disease Associated with Autoimmune Diseases. Int. J. Mol. Sci. 2023, 24, 1275. [Google Scholar] [CrossRef]
- Low, A.; George, S.; Howard, L.; Bell, N.; Millar, A.; Tulloh, R.M.R. Lung Function, Inflammation, and Endothelin-1 in Congenital Heart Disease–Associated Pulmonary Arterial Hypertension. J. Am. Heart Assoc. 2018, 7, e007249. [Google Scholar] [CrossRef]
- Bian, F.; Lan, Y.-W.; Zhao, S.; Deng, Z.; Shukla, S.; Acharya, A.; Donovan, J.; Le, T.; Milewski, D.; Bacchetta, M.; et al. Lung endothelial cells regulate pulmonary fibrosis through FOXF1/R-Ras signaling. Nat. Commun. 2023, 14, 2560. [Google Scholar] [CrossRef]
- Sakao, S.; Tanabe, N.; Tatsumi, K. Hypoxic Pulmonary Vasoconstriction and the Diffusing Capacity in Pulmonary Hypertension Secondary to Idiopathic Pulmonary Fibrosis. J. Am. Heart Assoc. 2019, 8, e013310. [Google Scholar] [CrossRef]
- Ruffenach, G.; Hong, J.; Vaillancourt, M.; Medzikovic, L.; Eghbali, M. Pulmonary hypertension secondary to pulmonary fibrosis: Clinical data, histopathology and molecular insights. Respir. Res. 2020, 21, 303. [Google Scholar] [CrossRef]
- Bech-Hanssen, O.; Astengo, M.; Fredholm, M.; Bergh, N.; Hjalmarsson, C.; Polte, C.L.; Ricksten, S.; Bollano, E. Grading right ventricular dysfunction in left ventricular disease using echocardiography: A proof of concept using a novel multiparameter strategy. ESC Heart Fail. 2021, 8, 3223–3236. [Google Scholar] [CrossRef]
- D’andrea, A.; D’alto, M.; Di Maio, M.; Vettori, S.; Benjamin, N.; Cocchia, R.; Argiento, P.; Romeo, E.; Di Marco, G.; Russo, M.G.; et al. Right atrial morphology and function in patients with systemic sclerosis compared to healthy controls: A two-dimensional strain study. Clin. Rheumatol. 2016, 35, 1733–1742. [Google Scholar] [CrossRef] [PubMed]
- Vos, J.L.; Butcher, S.C.; Fortuni, F.; Galloo, X.; Rodwell, L.; Vonk, M.C.; Bax, J.J.; van Leuven, S.I.; de Vries-Bouwstra, J.K.; Snoeren, M.; et al. The prognostic value of right atrial and right ventricular functional parameters in systemic sclerosis. Front. Cardiovasc. Med. 2022, 9, 845359. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Bhatt, K.S.; Nguyen, H.C.; Frisbee, J.C.; Singh, K.K. Endothelial-to-mesenchymal transition in cardiovascular pathophysiology. Int. J. Mol. Sci. 2024, 25, 6180. [Google Scholar] [CrossRef] [PubMed]
Indicator | Without HFpEF | With HFpEF | p |
---|---|---|---|
Age, years | 54 (48; 59) | 58 (51.5; 62.5) | 0.041 |
Weight, kg | 65 (56; 80) | 65 (60; 71.5) | 0.908 |
Height, cm | 167 (160; 172) | 167.5 (161; 174) | 0.956 |
BMI, kg/m2 | 23.505 (20.72; 28.7) | 24.26 (21.415; 28.25) | 0.631 |
RR up to 6MWT | 19 (18; 20) | 19 (18; 21.5) | 0.600 |
RR after 6MWT | 23 (21; 26) | 23.5 (21; 26) | 0.768 |
Distance 6MWT, meters | 265 (200; 340) | 265 (182.5; 330) | 0.464 |
SaO2 up to 6MWT | 96 (95; 97) | 95.5 (94; 97.5) | 0.697 |
SaO2 after 6MWT | 94 (89; 96) | 94 (89; 96) | 0.647 |
HR up to 6MWT | 80 (73; 86) | 77 (73; 83) | 0.347 |
HR after 6MWT | 91 (85; 100) | 90.5 (88; 98) | 0.945 |
SBP up to 6MWT | 120 (110; 120) | 120 (110; 130) | 0.343 |
SBP after 6MWT | 120 (120; 130) | 130 (120; 140) | 0.067 |
DBP up to 6MWT | 70 (70; 80) | 75 (70; 80) | 0.911 |
DBP after 6MWT | 80 (80; 90) | 80 (70; 90) | 0.816 |
Borg scale up to 6MWT, points | 1 (0.5; 2) | 2 (1; 2.5) | 0.075 |
Borg scale after 6MWT, points | 3 (2; 4) | 3 (3; 5) | 0.359 |
WHOQOL:1, points | 21 (19; 24) | 21 (18; 22.5) | 0.397 |
WHOQOL:2, points | 20 (17; 22) | 20.5 (17.5; 22.5) | 0.625 |
WHOQOL:3, points | 11 (9; 12) | 11 (8.5; 12) | 0.706 |
WHOQOL:4, points | 26 (23; 31) | 29.5 (25.5; 34) | 0.117 |
FVC, % | 71.75 (54.6; 95.1) | 64.3 (46.5; 76.3) | 0.104 |
FEV1, % | 61.7 (41.2; 84) | 49.45 (31.45; 82.9) | 0.178 |
FVC/FEV1, % | 75.8 (54.3; 87) | 73.45 (48.85; 89.7) | 0.801 |
MEF 25, % | 49.55 (21; 92.1) | 38.75 (12.75; 76.05) | 0.325 |
MEF 50, % | 46.05 (18.7; 77) | 31.2 (13.25; 73.15) | 0.488 |
MEF 75, % | 38.1 (21.9; 65.7) | 28.85 (17.6; 60.75) | 0.440 |
Galectin-3, ng/mL | 17.1 (14; 21.2) | 19.65 (15.8; 25.65) | 0.177 |
Endothelin-1, pg/mL | 33.637 (17.7869; 50.026) | 35.0815 (15.8977; 58.274) | 0.864 |
MR-proANP, pmol/L | 22.4324 (9.1228; 40.6368) | 52.4565 (22.0088; 93.6059) | 0.010 |
hsTnT, pg/mL | 1.0706 (0.632; 1.7866) | 1.6383 (1.0825; 3.0588) | 0.015 |
LVEF | 63 (58; 67) | 64.5 (58; 67.5) | 0.694 |
LV cavity size, mm | 39 (35; 43.5) | 40 (36; 45) | 0.324 |
Longitudinal dimension of the LA, mm | 46 (39; 52) | 49 (44; 59) | 0.112 |
LA area, mm | 15 (12.2; 18.9) | 17.1 (12.8; 19.8) | 0.473 |
Volume of LA, mm | 32.5 (25; 48) | 48 (30; 59.5) | 0.128 |
Size of the RV, mm | 29 (25; 33) | 26 (23; 30) | 0.145 |
Longitudinal size of RA, mm | 41 (38; 46) | 45.5 (43; 49) | 0.027 |
RA area, mm | 12.1 (9.6; 17.8) | 13.7 (11.3; 15) | 0.478 |
Volume of RA, mm | 23 (16; 32) | 36 (26; 38) | 0.058 |
EDV, mL | 79 (64; 91) | 79 (66; 90) | 0.784 |
ESV, mL | 28 (21; 33) | 28 (24; 34) | 0.777 |
SV, mL | 49 (40.5; 56) | 50 (38; 56) | 0.768 |
Pulmonary artery, mm | 22 (21; 24) | 24 (21.5; 25.5) | 0.321 |
eSPPA, mmHg | 20 (17; 28.75) | 33.5 (23; 53.75) | 0.063 |
Capnography SaO2, % | 95 (92; 96) | 95.5 (93.5; 96.75) | 0.496 |
Capnography of heart rate | 84 (78; 96.75) | 76 (73; 83.5) | 0.337 |
Capnography of respiratory rate | 21 (18; 22) | 24 (17.25; 27) | 0.868 |
Capnography CO2, mmHg | 30 (26.25; 35) | 25 (17.25; 35) | 0.229 |
pCO2, mmHg | 39 (34.25; 44.43) | 36.8 (31.73; 45.1) | 0.903 |
pO2, mmHg | 85 (70.23; 103.5) | 43.45 (29.6; 80.87) | 0.755 |
Indicator | Without HFpEF | With HFpEF | p |
---|---|---|---|
Volume of LA, mm | 32 (25; 46) | 59 (52; 69.5) | 0.020 |
Indicator | Without HFpEF | With HFpEF | p |
---|---|---|---|
SBP up to 6MWT | 110 (110; 120) | 120 (110; 130) | 0.040 |
SBP after 6MWT | 120 (120; 130) | 140 (120; 145) | 0.006 |
Borg scale up to 6MWT, points | 1 (0; 2) | 2 (1; 3) | 0.008 |
MR-proANP, pmol/L | 26.68 (14.64; 59.13) | 92.47 (37.67; 144.24) | 0.006 |
Longitudinal size of RA, mm | 41 (36; 43) | 46 (43; 47) | 0.005 |
Indicator | Without HFpEF | With HFpEF | p |
---|---|---|---|
Age, years | 59 (57; 63) | 57 (48; 62) | 0.361 |
Weight, kg | 67 (65; 80) | 60 (56; 71) | 0.033 |
Height, cm | 170 (168; 173) | 164 (156; 175) | 0.209 |
BMI, kg/m2 | 24.9 (21.45; 28.1) | 23.62 (19.92; 28.4) | 0.732 |
Respiratory rate up to 6MWT | 21 (19; 23) | 19 (18; 20) | 0.034 |
Respiratory rate after 6MWT | 26 (22; 26) | 22 (20; 25) | 0.107 |
Distance 6MWT, meters | 190 (101; 300) | 320 (220; 350) | 0.062 |
SaO2 up to 6MWT | 96.5 (95; 98) | 96.5 (94.5; 98) | 0.957 |
SaO2 after 6MWT | 95.5 (93; 97) | 95.5 (91; 96) | 0.706 |
HR up to 6MWT | 80 (74; 87) | 74 (72; 80) | 0.359 |
HR after 6MWT | 90 (80; 98) | 92 (88; 98) | 0.542 |
SBP up to 6MWT | 110 (101; 120) | 120 (110; 130) | 0.121 |
SBP after 6MWT | 130 (101; 130) | 140 (120; 145) | 0.044 |
DBP up to 6MWT | 80 (70; 80) | 70 (70; 80) | 0.635 |
DBP after 6MWT | 80 (70; 90) | 80 (70; 90) | 0.509 |
Borg scale up to 6MWT, points | 2 (1; 2) | 2 (1; 3) | 0.368 |
Borg scale after 6MWT, points | 4 (3; 5) | 3 (3; 6) | 0.697 |
WHOQOL:1, points | 19 (17; 21) | 22 (18; 23) | 0.223 |
WHOQOL:2, points | 11 (7; 12) | 12 (9; 14) | 0.282 |
WHOQOL:3, points | 28 (26; 31) | 32 (25; 34) | 0.338 |
WHOQOL:4, points | 65 (48; 71.9) | 62.5 (43; 92) | 0.909 |
FVC, % | 35.8 (24; 49.6) | 66.9 (38.6; 86.7) | 0.044 |
FEV1, % | 50.2 (44.3; 62.2) | 81 (73.9; 98) | 0.007 |
FVC/FEV1, % | 13.5 (9; 26) | 75.1 (41.8; 112) | 0.003 |
MEF 25, % | 14 (10.3; 15.8) | 73 (39.5; 118) | 0.004 |
MEF 50, % | 18.1 (15.2; 20.4) | 49 (31.1; 117.7) | 0.007 |
MEF 75, % | 16 (15.6; 19.5) | 22.4 (18.7; 30.8) | 0.068 |
Galectin-3, ng/mL | 264 (136.7; 269.4) | 222 (177.2; 552.4) | 0.676 |
Endothelin-1, pg/mL | 17.6177 (15.08; 36.476) | 41.969 (31.3192; 76.59) | 0.030 |
MR-proANP, pmol/L | 23.2632 (12.5439; 66.3221) | 92.4742 (37.6731; 144.2445) | 0.030 |
hsTnT, pg/mL | 1.5062 (1.2235; 2.7529) | 1.7704 (0.9414; 3.3647) | 0.879 |
LV cavity size, mm | 45 (41; 46) | 37 (36; 41) | 0.039 |
Longitudinal dimension of the LA, mm | 52.5 (37; 56) | 48 (45; 59) | 0.953 |
LA area, mm | 18.25 (17.95; 20.35) | 14.45 (11.9; 18.7) | 0.126 |
Volume of LA, mm | 59 (52; 69.5) | 35.5 (24.5; 53.5) | 0.051 |
Size of the RV, mm | 28 (24; 31) | 26 (23; 30) | 0.556 |
Longitudinal size of RA, mm | 44 (44; 49) | 46 (43; 47) | 0.739 |
RA area, mm | 13.7 (13.1; 15) | 12.75 (11.2; 15.5) | 0.796 |
Volume of RA, mm | 36 (27; 45) | 31.5 (22; 38) | 0.519 |
EDV, mL | 84 (73; 92) | 78 (66; 88) | 0.480 |
ESV, mL | 32 (28; 38) | 25 (24; 29) | 0.195 |
SV, mL | 51 (45; 56) | 50 (38; 54) | 0.906 |
Pulmonary artery, mm | 24.5 (23; 25) | 23.5 (20.5; 26.5) | 0.799 |
eSPPA, mmHg | 27.5 (20; 35) | 46 (32; 60) | 0.567 |
Capnography CO2, mmHg | 25 (18; 32) | 26.5 (17; 36) | 0.176 |
pCO2, mmHg | 39.4 (38.9; 53) | 34.2 (31.68; 47) | 0.465 |
pO2, mmHg | 90.83 (48; 95.5) | 87 (51; 93.3) | 0.855 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibrayeva, L.; Aubakirova, M.; Bacheva, I.; Alina, A.; Bazarova, N.; Zhanabayeva, A.; Avdiyenko, O.; Borchashvili, S.; Tazhikhanova, S.; Murzabaeyev, A. Features of Heart Failure with Preserved Ejection Fraction in Patients with Chronic Obstructive Pulmonary Disease and Systemic Sclerosis-Associated Interstitial Lung Diseases. J. Pers. Med. 2025, 15, 206. https://doi.org/10.3390/jpm15050206
Ibrayeva L, Aubakirova M, Bacheva I, Alina A, Bazarova N, Zhanabayeva A, Avdiyenko O, Borchashvili S, Tazhikhanova S, Murzabaeyev A. Features of Heart Failure with Preserved Ejection Fraction in Patients with Chronic Obstructive Pulmonary Disease and Systemic Sclerosis-Associated Interstitial Lung Diseases. Journal of Personalized Medicine. 2025; 15(5):206. https://doi.org/10.3390/jpm15050206
Chicago/Turabian StyleIbrayeva, Lyazat, Meruyert Aubakirova, Irina Bacheva, Assel Alina, Nazira Bazarova, Aizhan Zhanabayeva, Olga Avdiyenko, Seda Borchashvili, Saltanat Tazhikhanova, and Askhat Murzabaeyev. 2025. "Features of Heart Failure with Preserved Ejection Fraction in Patients with Chronic Obstructive Pulmonary Disease and Systemic Sclerosis-Associated Interstitial Lung Diseases" Journal of Personalized Medicine 15, no. 5: 206. https://doi.org/10.3390/jpm15050206
APA StyleIbrayeva, L., Aubakirova, M., Bacheva, I., Alina, A., Bazarova, N., Zhanabayeva, A., Avdiyenko, O., Borchashvili, S., Tazhikhanova, S., & Murzabaeyev, A. (2025). Features of Heart Failure with Preserved Ejection Fraction in Patients with Chronic Obstructive Pulmonary Disease and Systemic Sclerosis-Associated Interstitial Lung Diseases. Journal of Personalized Medicine, 15(5), 206. https://doi.org/10.3390/jpm15050206