Personalizing Antidepressant Therapy: Integrating Pharmacogenomics, Therapeutic Drug Monitoring, and Digital Tools for Improved Depression Outcomes
Abstract
1. Introduction
2. Research Objective
3. Global Burden and Socioeconomic Determinants of Major Depressive Disorder
3.1. Understanding of MDD Pathophysiology
3.2. Multifactorial Variability in the Choice of Antidepressant
4. Advancement in Personalized Medicine for MDD
4.1. Therapeutic Drug Monitoring (TDM)
4.2. Analytical Methods and Clinical Imperative
5. Pharmacogenetics Testing for Antidepressant Response
6. Future Directions and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Depressive Disorder (Depression). WHO Fact Sheets. [Published February 2024]. Available online: https://www.who.int/news-room/fact-sheets/detail/depression (accessed on 29 August 2025).
- Centers for Disease Control and Prevention. Depression Prevalence in Adolescents and Adults: United States, August 2021–August 2023. NCHS Data Brief No. 527. [Published 16 April 2025]. Available online: https://www.cdc.gov/nchs/products/databriefs/db527.htm (accessed on 17 July 2025).
- Marx, W.; Penninx, B.W.J.H.; Solmi, M.; Furukawa, T.A.; Firth, J.; Carvalho, A.F.; Berk, M. Major depressive disorder. Nat. Rev. Dis. Prim. 2023, 9, 44. [Google Scholar] [CrossRef]
- Edinoff, A.N.; Raveendran, K.; Colon, M.A.; Thomas, B.H.; Trettin, K.A.; Hunt, G.W.; Kaye, A.M.; Cornett, E.M.; Kaye, A.D. Selective Serotonin Reuptake Inhibitors and Associated Bleeding Risks: A Narrative and Clinical Review. Heath Psychol. Res. 2022, 10, 39580. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Al-Harbi, K.S. Treatment-resistant depression: Therapeutic trends, challenges, and future directions. Patient Prefer. Adherence 2012, 6, 369–388. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bains, N.; Abdijadid, S. Major Depressive Disorder. [Updated 10 April 2023]. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK559078/ (accessed on 27 November 2025).
- Zelek-Molik, A.; Litwa, E. Trends in research on novel antidepressant treatments. Front. Pharmacol. 2025, 16, 1544795. [Google Scholar] [CrossRef] [PubMed]
- Leuchter, A.F.; Cook, I.A.; Hunter, A.M.; Korb, A.S.; As, K. A new paradigm for the prediction of antidepressant treatment response. Dialog- Clin. Neurosci. 2009, 11, 435–446. [Google Scholar] [CrossRef]
- Gutsmiedl, K.; Krause, M.; Bighelli, I.; Schneider-Thoma, J.; Leucht, S. How well do elderly patients with major depressive disorder respond to antidepressants: A systematic review and single-group meta-analysis. BMC Psychiatry 2020, 20, 102. [Google Scholar] [CrossRef]
- Cui, L.; Li, S.; Wang, S.; Wu, X.; Liu, Y.; Yu, W.; Wang, Y.; Tang, Y.; Xia, M.; Li, B. Major depressive disorder: Hypothesis, mechanism, prevention and treatment. Signal Transduct. Target. Ther. 2024, 9, 30. [Google Scholar] [CrossRef]
- Gao, K.; Oruc, E.B.; Koparal, B. Pharmacological Monotherapy for Depressive Disorders: Current and Future—A Narrative Review. Medicina 2025, 61, 558. [Google Scholar] [CrossRef]
- Axsome Therapeutics. Axsome Therapeutics Announces FDA Approval of AUVELITYTM, the First and Only Oral NMDA Receptor Antagonist for the Treatment of Major Depressive Disorder. [Press Release. 19 August 2022]. Available online: https://axsometherapeuticsinc.gcs-web.com/news-releases/news-release-details/axsome-therapeutics-announces-fda-approval-auvelitytm-first-and (accessed on 31 August 2025).
- Pardiñas, A.F.; Owen, M.J.; Walters, J.T. Pharmacogenomics: A road ahead for precision medicine in psychiatry. Neuron 2021, 109, 3914–3929. [Google Scholar] [CrossRef]
- Jamalinia, M.; Weiskirchen, R. Advances in personalized medicine: Translating genomic insights into targeted therapies for cancer treatment. Ann. Transl. Med. 2025, 13, 18. [Google Scholar] [CrossRef]
- Cruz-Gonzalez, P.; He, A.W.-J.; Lam, E.P.; Ng, I.M.C.; Li, M.W.; Hou, R.; Chan, J.N.-M.; Sahni, Y.; Guasch, N.V.; Miller, T.; et al. Artificial intelligence in mental health care: A systematic review of diagnosis, monitoring, and intervention applications. Psychol. Med. 2025, 55, e18. [Google Scholar] [CrossRef]
- Sundaram, V.A.; Saravanan, B.; Balamurugan, B.S.; Marimuthu, M.M.C.; Munjal, K.; Chopra, H. The impact of artificial intelligence on drug discovery for neuropsychiatric disorders. EXCLI J. 2025, 24, 728–748. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wouters, O.J.; McKee, M.; Luyten, J. Estimated Research and Development Investment Needed to Bring a New Medicine to Market, 2009–2018. JAMA 2020, 323, 844–853, Erratum in JAMA 2022, 328, 1110. https://doi.org/10.1001/jama.2022.14317. Erratum in JAMA 2022, 328, 1111. https://doi.org/10.1001/jama.2022.14733. [Google Scholar] [CrossRef]
- Kokudeva, M.; Vichev, M.; Naseva, E.; Miteva, D.G.; Velikova, T. Artificial intelligence as a tool in drug discovery and development. World J. Exp. Med. 2024, 14, 96042. [Google Scholar] [CrossRef]
- Dzhahagirdar, R. Prevalence of depression among patients with oncological disease: A cross-sectional study. RUDN J. Med. 2022, 26, 103–108. (In Russian) [Google Scholar] [CrossRef]
- New Global Burden of Disease Analyses Show Depression and Anxiety Among the Top Causes of Health Loss Worldwide, and a Significant Increase Due to the COVID-19 Pandemic. 2021. Available online: https://www.healthdata.org/news-events/insights-blog/acting-data/new-global-burden-disease-analyses-show-depression-and (accessed on 6 September 2025).
- The Lancet Global Health. Mental health matters. Lancet Glob. Health 2020, 8, e1352. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, X.-D.; Li, F.; Zuo, H.; Zhu, F. Trends in Prevalent Cases and Disability-Adjusted Life-Years of Depressive Disorders Worldwide: Findings From the Global Burden of Disease Study from 1990 to 2021. Depress. Anxiety 2025, 2025, 5553491. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, Z.; Feng, Q.; Xu, Y.; Yu, R.; Chen, J.; Gao, Z.; Miao, Z.; Xu, X.; Yang, Y. Global, regional and national burdens of major depression disorders and its attributable risk factors in adolescents and young adults aged 10–24 years from 1990 to 2021. BMC Psychiatry 2025, 25, 399. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Xu, Y.; Zheng, L.; Pang, H.; Zhang, Q.; Lou, L.; Huang, X. Sex Difference in Global Burden of Major Depressive Disorder: Findings From the Global Burden of Disease Study 2019. Front. Psychiatry 2022, 13, 789305. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, A.J.; Somerville, A.J.; Baxter, A.J.; Norman, R.; Patten, S.B.; Vos, T.; Whiteford, H.A. Global variation in the prevalence and incidence of major depressive disorder: A systematic review of the epidemiological literature. Psychol. Med. 2012, 43, 471–481. [Google Scholar] [CrossRef]
- Jespersen, A.; A Madden, R.; Whalley, H.C.; Reynolds, R.M.; Lawrie, S.M.; McIntosh, A.M.; Iveson, M.H. Socioeconomic Status and Depression—A Systematic review. Epidemiol. Rev. 2025, 47, mxaf011. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; Guo, X.; Cai, H.; Luo, L. The relation between family socioeconomic status and depressive symptoms among children and adolescents in mainland China: A meta-analysis. Front. Public Heath 2024, 11, 1292411. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Ding, L.; Peng, K. Global burden of major depressive disorders attributable to intimate partner violence against women: Magnitude, temporal trends, and regional inequalities. J. Affect. Disord. 2024, 363, 182–191. [Google Scholar] [CrossRef] [PubMed]
- WHO. COVID-19 Pandemic Triggers 25% Increase in Prevalence of Anxiety and Depression Worldwide. 2022. Available online: https://www.who.int/news/item/02-03-2022-covid-19-pandemic-triggers-25-increase-in-prevalence-of-anxiety-and-depression-worldwide (accessed on 1 September 2025).
- Mahesarajah, S.; El Asmar, M.L.; Irwin, R.; Vallejo-Vaz, A.J.; Mastellos, N.; I Dharmayat, K. Impact of the COVID-19 pandemic on psychotropic prescribing: A systematic review. BMJ Open 2024, 14, e076791, Erratum in BMJ Open 2025, 15, e076791corr1. https://doi.org/10.1136/bmjopen-2023-076791corr1. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Di Valerio, Z.; Fortuna, D.; Montalti, M.; Alberghini, L.; Leucci, A.C.; Saponaro, A.; Sangiorgi, E.; Berti, E.; Rolli, M.; Tedesco, D. Surge in antidepressant usage among adolescents and young adults during the COVID-19 pandemic: Insights from an interrupted time series analysis. Epidemiol. Psychiatr. Sci. 2024, 33, e62. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Srivastava, S.; Kacker, S.; Saboo, N. Effect of pranayam on stress and cardiorespiratory fitness. Rudn. J. Med. 2025, 29, 222–232. (In Russian) [Google Scholar] [CrossRef]
- Hirschfeld, R.M. History and evolution of the monoamine hypothesis of depression. J. Clin. Psychiatry 2000, 61 (Suppl. S6), 4–6. [Google Scholar] [PubMed]
- Heninger, G.R.; Delgado, P.L.; Charney, D.S. The revised monoamine theory of depression: A modulatory role for monoamines, based on new findings from monoamine depletion experiments in humans. Pharmacopsychiatry 1996, 29, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Rotenberg, V.S. The revised monoamine hypothesis: Mechanism of antidepressant treatment in the context of behavior. Integr. Psychol. Behav. Sci. 1994, 29, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Moncrieff, J.; Cooper, R.E.; Stockmann, T.; Amendola, S.; Hengartner, M.P.; Horowitz, M.A. The serotonin theory of depression: A systematic umbrella review of the evidence. Mol. Psychiatry 2022, 28, 3243–3256. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Möller, H.-J.; Falkai, P. Is the serotonin hypothesis/theory of depression still relevant? Methodological reflections motivated by a recently published umbrella review. Eur. Arch. Psychiatry Clin. Neurosci. 2023, 273, 1–3. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zakaraya, Z.; Abu Assab, M.; Tamimi, L.N.; Karameh, N.; Hailat, M.; Al-Omari, L.; Abu Dayyih, W.; Alasasfeh, O.; Awad, M.; Awad, R. Pharmacokinetics and Pharmacodynamics: A Comprehensive Analysis of the Absorption, Distribution, Metabolism, and Excretion of Psychiatric Drugs. Pharmaceuticals 2024, 17, 280. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rădulescu, I.; Drăgoi, A.M.; Trifu, S.C.; Cristea, M.B. Neuroplasticity and depression: Rewiring the brain’s networks through pharmacological therapy (Review). Exp. Ther. Med. 2021, 22, 1131. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Barlati, S.; Minelli, A.; Nibbio, G.; Bertoni, L.; Necchini, N.; Paolini, S.; Muscarella, A.; Ubertino, U.B.; Calzavara-Pinton, I.; Vita, A.; et al. The role of pharmacogenetics in the treatment of major depressive disorder: A critical review. Front. Psychiatry 2023, 14, 1307473. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, M.; Chen, T.; Lu, X.; Lan, X.; Chen, Z.; Lu, S. G protein-coupled receptors (GPCRs): Advances in structures, mechanisms and drug discovery. Signal Transduct. Target. Ther. 2024, 9, 88. [Google Scholar] [CrossRef]
- Tartt, A.N.; Mariani, M.B.; Hen, R.; Mann, J.J.; Boldrini, M. Dysregulation of adult hippocampal neuroplasticity in major depression: Pathogenesis and therapeutic implications. Mol. Psychiatry 2022, 27, 2689–2699. [Google Scholar] [CrossRef]
- Halberstadt, A.L.; Koedood, L.; Powell, S.B.; A Geyer, M. Differential contributions of serotonin receptors to the behavioral effects of indoleamine hallucinogens in mice. J. Psychopharmacol. 2011, 25, 1548–1561. [Google Scholar] [CrossRef]
- Krystal, J.H.; Kavalali, E.T.; Monteggia, L.M. Ketamine and rapid antidepressant action: New treatments and novel synaptic signaling mechanisms. Neuropsychopharmacology 2024, 49, 41–50. [Google Scholar] [CrossRef]
- Shanks, H.R.C.; Chen, K.; Reiman, E.M.; Blennow, K.; Cummings, J.L.; Massa, S.M.; Longo, F.M.; Börjesson-Hanson, A.; Windisch, M.; Schmitz, T.W. p75 neurotrophin receptor modulation in mild to moderate Alzheimer disease: A randomized, placebo-controlled phase 2a trial. Nat. Med. 2024, 30, 1761–1770. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.T.; Peng, W.-H.; Kan, H.-W.; Wu, C.-C.; Wang, D.-W.; Ho, Y.-C. Neurobiology of Depression: Chronic Stress Alters the Glutamatergic System in the Brain—Focusing on AMPA Receptor. Biomedicines 2022, 10, 1005. [Google Scholar] [CrossRef] [PubMed]
- Luscher, B.; Maguire, J.L.; Rudolph, U.; Sibille, E. GABAA receptors as targets for treating affective and cognitive symptoms of depression. Trends Pharmacol. Sci. 2023, 44, 586–600. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Jian, L.; Qiu, H.; Zhang, C.; Cheng, S.; Ji, J.; Li, T.; Wang, Y.; Li, J.; Li, K. Understanding complex functional wiring patterns in major depressive disorder through brain functional connectome. Transl. Psychiatry 2021, 11, 526. [Google Scholar] [CrossRef]
- Shi, Y.; Luan, D.; Song, R.; Zhang, Z. Value of peripheral neurotrophin levels for the diagnosis of depression and response to treatment: A systematic review and meta-analysis. Eur. Neuropsychopharmacol. 2020, 41, 40–51. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Zhu, L.; Cai, W.; Zhu, L. Research Progress on BDNF and Depression. ACS Chem. Neurosci. 2025, 16, 2013–2023. [Google Scholar] [CrossRef]
- Rana, T.; Behl, T.; Sehgal, A.; Srivastava, P.; Bungau, S. Unfolding the Role of BDNF as a Biomarker for Treatment of Depression. J. Mol. Neurosci. 2021, 71, 2008–2021. [Google Scholar] [CrossRef]
- Pastis, I.; Santos, M.G.; Paruchuri, A. Exploring the role of inflammation in major depressive disorder: Beyond the monoamine hypothesis. Front. Behav. Neurosci. 2024, 17, 1282242. [Google Scholar] [CrossRef]
- Maes, M.; Almulla, A.F.; You, Z.; Zhang, Y. Neuroimmune, metabolic and oxidative stress pathways in major depressive disorder. Nat. Rev. Neurol. 2025, 21, 473–489. [Google Scholar] [CrossRef]
- Giallongo, S.; Longhitano, L.; Denaro, S.; D’aprile, S.; Torrisi, F.; La Spina, E.; Giallongo, C.; Mannino, G.; Furno, D.L.; Zappalà, A.; et al. The Role of Epigenetics in Neuroinflammatory-Driven Diseases. Int. J. Mol. Sci. 2022, 23, 15218. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Gao, C.; Tan, T.; Jiang, W.; Wang, T.; Chen, Z.; Shen, T.; Chen, L.; Tang, H.; Chen, W.; et al. Combined HTR1A/1B methylation and human functional connectome to recognize patients with MDD. Psychiatry Res. 2022, 317, 114842. [Google Scholar] [CrossRef]
- Stetler, C.; Miller, G.E. Depression and hypothalamic-pituitary-adrenal activation: A quantitative summary of four decades of research. Psychosom. Med. 2011, 73, 114–126. [Google Scholar] [CrossRef]
- Malhi, G.S.; Mann, J.J. Depression. Lancet 2018, 392, 2299–2312. [Google Scholar] [CrossRef]
- Milaneschi, Y.; Lamers, F.; Berk, M.; Penninx, B.W. Depression Heterogeneity and Its Biological Underpinnings: Toward Immunometabolic Depression. Biol. Psychiatry 2020, 88, 369–380. [Google Scholar] [CrossRef]
- Keller, J.; Gomez, R.; Williams, G.; Lembke, A.; Lazzeroni, L.; Murphy, G.M., Jr.; Schatzberg, A.F. HPA axis in major depression: Cortisol, clinical symptomatology and genetic variation predict cognition. Mol. Psychiatry 2017, 22, 527–536. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nandam, L.S.; Brazel, M.; Zhou, M.; Jhaveri, D.J. Cortisol and Major Depressive Disorder—Translating Findings From Humans to Animal Models and Back. Front. Psychiatry 2020, 10, 974. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yang, W.; Li, H.; Cheng, Z.; Lu, Y.; Li, W.; Feng, J.; Wang, L.; Cheng, J. Dex modulates the balance of water-electrolyte metabolism by depressing the expression of AVP in PVN. Front. Pharmacol. 2022, 13, 919032. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, L. Forebrain glucocorticoid receptor gene deletion attenuates behavioral changes and antidepressant responsiveness during chronic stress. Brain Res. 2014, 1583, 109–121. [Google Scholar] [CrossRef] [PubMed]
- Torres-Platas, S.G.; Hercher, C.; Davoli, M.A.; Maussion, G.; Labonté, B.; Turecki, G.; Mechawar, N. Astrocytic hypertrophy in anterior cingulate white matter of depressed suicides. Neuropsychopharmacology 2011, 36, 2650–2658. [Google Scholar] [CrossRef]
- Miguel-Hidalgo, J.J.; Baucom, C.; Dilley, G.; Overholser, J.C.; Meltzer, H.Y.; A Stockmeier, C.; Rajkowska, G. Glial fibrillary acidic protein immunoreactivity in the prefrontal cortex distinguishes younger from older adults in major depressive disorder. Biol. Psychiatry 2000, 48, 861–873. [Google Scholar] [CrossRef] [PubMed]
- Miguel-Hidalgo, J.J. Astroglia in the Vulnerability to and Maintenance of Stress-Mediated Neuropathology and Depression. Front. Cell. Neurosci. 2022, 16, 869779. [Google Scholar] [CrossRef]
- Andersen, J.V.; Schousboe, A.; Verkhratsky, A. Astrocyte energy and neurotransmitter metabolism in Alzheimer’s disease: Integration of the glutamate/GABA-glutamine cycle. Prog. Neurobiol. 2022, 217, 102331. [Google Scholar] [CrossRef]
- Andersen, J.V.; Schousboe, A. Glial Glutamine Homeostasis in Health and Disease. Neurochem. Res. 2023, 48, 1100–1128. [Google Scholar] [CrossRef]
- Lanni, C.; Govoni, S.; Lucchelli, A.; Boselli, C. Depression and antidepressants: Molecular and cellular aspects. Cell. Mol. Life Sci. 2009, 66, 2985–3008. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jeppesen, U.; Gram, L.F.; Vistisen, K.; Loft, S.; Poulsen, H.E.; Brøsen, K. Dose-dependent inhibition of CYP1A2, CYP2C19 and CYP2D6 by citalopram, fluoxetine, fluvoxamine and paroxetine. Eur. J. Clin. Pharmacol. 1996, 51, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Dean, L.; Kane, M. Amitriptyline Therapy and CYP2D6 and CYP2C19 Genotype. 23 March 2017 [Updated 23 June 2025]. In Medical Genetics Summaries [Internet]; National Center for Biotechnology Information (US): Bethesda, MD, USA, 2017. Available online: https://www.ncbi.nlm.nih.gov/books/NBK425165/ (accessed on 2 December 2025).
- Ball, S.E.; Ahern, D.; Scatina, J.; Kao, J. Venlafaxine: In vitro inhibition of CYP2D6 dependent imipramine and desipramine metabolism; comparative studies with selected SSRIs, and effects on human hepatic CYP3A4, CYP2C9 and CYP1A2. Br. J. Clin. Pharmacol. 1997, 43, 619–626. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mangoni, A.A.; Jackson, S.H.D. Age-related changes in pharmacokinetics and pharmacodynamics: Basic principles and practical applications. Br. J. Clin. Pharmacol. 2003, 57, 6–14. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Strawn, J.R.; Mills, J.A.; Suresh, V.; Mayes, T.; Gentry, M.T.; Trivedi, M.; Croarkin, P.E. The impact of age on antidepressant response: A mega-analysis of individuals with major depressive disorder. J. Psychiatr. Res. 2023, 159, 266–273. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yang, L.; Li, Y.; Hong, H.; Chang, C.W.; Guo, L.W.; Lyn-Cook, B.; Shi, L.; Ning, B. Sex Differences in the Expression of Drug-Metabolizing and Transporter Genes in Human Liver. J. Drug Metab Toxicol. 2012, 3, 1000119. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bleibel, L.; Sokołowska, P.; Henrykowska, G.; Owczarek, J.; Wiktorowska-Owczarek, A. Unveiling the Anti-Inflammatory Effects of Antidepressants: A Systematic Review of Human Studies over the Last Decade. Pharmaceuticals 2025, 18, 867. [Google Scholar] [CrossRef]
- Cătălina, G.R.; Gheorman, V.; Gheorman, V.; Forțofoiu, M.-C. The Role of Neuroinflammation in the Comorbidity of Psychiatric Disorders and Internal Diseases. Healthcare 2025, 13, 837. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hiemke, C.; Bergemann, N.; Clement, H.; Conca, A.; Deckert, J.; Domschke, K.; Eckermann, G.; Egberts, K.; Gerlach, M.; Greiner, C.; et al. Consensus Guidelines for Therapeutic Drug Monitoring in Neuropsychopharmacology: Update 2017. Pharmacopsychiatry 2018, 51, 9–62, Erratum in Pharmacopsychiatry 2018, 51, e1. https://doi.org/10.1055/s-0037-1600991. [Google Scholar] [CrossRef]
- Xiao, Y.; Xu, L.; Qian, Y.; Xu, Y. Identification and characterization of critical values in therapeutic drug monitoring: A retrospective analysis. Sci. Rep. 2024, 14, 11520. [Google Scholar] [CrossRef] [PubMed]
- Goyal, N.; Gomeni, R. Exposure–Response modeling of anti-depressant treatments: The confounding role of placebo effect. J. Pharmacokinet. Pharmacodyn. 2012, 40, 389–399. [Google Scholar] [CrossRef] [PubMed]
- Schoretsanitis, G.; Paulzen, M. Utility of therapeutic drug monitoring in the treatment of major depressive disorder. Curr. Opin. Psychiatry 2025, 39, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Schoretsanitis, G.; Paulzen, M.; Unterecker, S.; Schwarz, M.; Conca, A.; Zernig, G.; Gründer, G.; Haen, E.; Baumann, P.; Bergemann, N.; et al. TDM in psychiatry and neurology: A comprehensive summary of the consensus guidelines for therapeutic drug monitoring in neuropsychopharmacology, update 2017; a tool for clinicians. World J. Biol. Psychiatry 2018, 19, 162–174. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Seidlitz, J.; Suckling, J.; Fan, F.; Ji, G.-J.; Meng, Y.; Yang, S.; Wang, K.; Qiu, J.; Chen, H.; et al. Cortical structural differences in major depressive disorder correlate with cell type-specific transcriptional signatures. Nat. Commun. 2021, 12, 1647. [Google Scholar] [CrossRef]
- O’Leary, L.A.; Mechawar, N. Implication of cerebral astrocytes in major depression: A review of fine neuroanatomical evidence in humans. Glia 2021, 69, 2077–2099. [Google Scholar] [CrossRef]
- Kee, P.S.; Maggo, S.D.S.; Kennedy, M.A.; Chin, P.K.L. The pharmacogenetics of CYP2D6 and CYP2C19 in a case series of antidepressant responses. Front. Pharmacol. 2023, 14, 1080117. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Papp, M.; Cubała, W.J.; Swiecicki, L.; Newman-Tancredi, A.; Willner, P. Perspectives for therapy of treatment-resistant depression. Br. J. Pharmacol. 2022, 179, 4181–4200. [Google Scholar] [CrossRef] [PubMed]
- Magalhães, P.; Alves, G.; Fortuna, A.; Llerena, A.; Falcão, A. Real-world clinical characterization of subjects with depression treated with antidepressant drugs focused on (non-)genetic factors, pharmacokinetics, and clinical outcomes: GnG-PK/PD-AD study. Exp. Clin. Psychopharmacol. 2020, 28, 202–215. [Google Scholar] [CrossRef]
- Alagga, A.A.; Pellegrini, M.V.; Gupta, V. Drug Absorption. [Updated 27 February 2024]. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK557405 (accessed on 11 September 2025).
- Mansoor, A.; Mahabadi, N. Volume of Distribution. [Updated 24 July 2023]. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK545280/ (accessed on 20 November 2025).
- Price, G.; Patel, D.A. Drug Bioavailability. [Updated 30 July 2023]. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK557852/ (accessed on 20 November 2025).
- Hallare, J.; Gerriets, V. Elimination Half-Life of Drugs. [Updated 3 May 2025]. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK554498/ (accessed on 21 November 2025).
- Jang, Y.; Yoon, S.; Kim, T.-J.; Lee, S.; Yu, K.-S.; Jang, I.-J.; Chu, K.; Lee, S.K. Population pharmacokinetic model development and its relationship with adverse events of oxcarbazepine in adult patients with epilepsy. Sci. Rep. 2021, 11, 6370. [Google Scholar] [CrossRef]
- Ter Hark, S.; Vos, N. Pharmacogenetics to Personalize Dosing of Tricyclic Antidepressants in Major Depressive Disorder: A Randomized Clinical Trial (PITA study). Eur. Psychiatry 2023, 66 (Suppl. S1), S93. [Google Scholar] [CrossRef]
- Eap, C.B.; Gründer, G.; Baumann, P.; Ansermot, N.; Conca, A.; Corruble, E.; Crettol, S.; Dahl, M.L.; de Leon, J.; Greiner, C.; et al. Tools for optimising pharmacotherapy in psychiatry (therapeutic drug monitoring, molecular brain imaging and pharmacogenetic tests): Focus on antidepressants. World J. Biol. Psychiatry 2021, 22, 561–628. [Google Scholar] [CrossRef]
- Biso, L.; Aringhieri, S.; Carli, M.; Scarselli, M.; Longoni, B. Therapeutic Drug Monitoring in Psychiatry: Enhancing Treatment Precision and Patient Outcomes. Pharmaceuticals 2024, 17, 642. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, Z.; Li, L.; Huang, S.; Wang, X.; Liu, S.; Li, X.; Kong, W.; Ni, X.; Zhang, M.; Huang, S.; et al. Joint population pharmacokinetic modeling of venlafaxine and O-desmethyl venlafaxine in healthy volunteers and patients to evaluate the impact of morbidity and concomitant medication. Front. Pharmacol. 2022, 13, 978202. [Google Scholar] [CrossRef]
- Baldelli, S.; Cheli, S.; Montrasio, C.; Cattaneo, D.; Clementi, E. Therapeutic drug monitoring and pharmacogenetics of antipsychotics and antidepressants in real life settings: A 5-year single centre experience. World J. Biol. Psychiatry 2021, 22, 34–45. [Google Scholar] [CrossRef]
- Alexander, L.R. Pharmacogenomics-Guided Antidepressant Therapy as a Solution to Treatment-Resistant Depression: A Systematic Review. BJPsych Open 2025, 11, S19. [Google Scholar] [CrossRef]
- Dean, L. Venlafaxine Therapy and CYP2D6 Genotype. 2015 Jul 27 [Updated 29 June 2020]. In Medical Genetics Summaries [Internet]; National Center for Biotechnology Information (US): Bethesda, MD, USA, 2015. Available online: https://www.ncbi.nlm.nih.gov/books/NBK305561/ (accessed on 17 September 2025).
- Kringen, M.K.; Bråten, L.S.M.; Haslemo, T.; Molden, E. The Influence of Combined CYP2D6 and CYP2C19 Genotypes on Venlafaxine and O-Desmethylvenlafaxine Concentrations in a Large Patient Cohort. J. Clin. Psychopharmacol. 2020, 40, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Minichmayr, I.; Dreesen, E.; Centanni, M.; Wang, Z.; Hoffert, Y.; Friberg, L.; Wicha, S. Model-informed precision dosing: State of the art and future perspectives. Adv. Drug Deliv. Rev. 2024, 215, 115421. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Blanco, J.S.; Lanao, J.M. Model-Informed Precision Dosing (MIPD). Pharmaceutics 2022, 14, 2731. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Del Valle-Moreno, P.; Suarez-Casillas, P.; Mejías-Trueba, M.; Ciudad-Gutiérrez, P.; Guisado-Gil, A.B.; Gil-Navarro, M.V.; Herrera-Hidalgo, L. Model-Informed Precision Dosing Software Tools for Dosage Regimen Individualization: A Scoping Review. Pharmaceutics 2023, 15, 1859, Erratum in Pharmaceutics 2024, 16, 766. https://doi.org/10.3390/pharmaceutics16060766. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lyust, E.N. Determination of tianeptine in urine. RUDN J. Med. 2009, 4, 137–140. (In Russian) [Google Scholar]
- Wang, J.; Wang, J.; Zhang, C.; Li, G. High-performance liquid chromatography–tandem mass spectrometry for simultaneous determination of 23 antidepressants and active metabolites in human serum and its application in therapeutic drug monitoring. Front. Pharmacol. 2025, 16, 1531496. [Google Scholar] [CrossRef]
- El-Deen, A.K.; Magdy, G.; Shimizu, K. A reverse micelle-mediated dispersive liquid-liquid microextraction coupled to high-performance liquid chromatography for the simultaneous determination of agomelatine and venlafaxine in pharmaceuticals and human plasma. J. Chromatogr. A 2023, 1710, 464441. [Google Scholar] [CrossRef]
- de Oliveira, F.M.; Scheel, G.L.; Augusti, R.; Tarley, C.R.T.; Nascentes, C.C. Supramolecular microextraction combined with paper spray ionization mass spectrometry for sensitive determination of tricyclic antidepressants in urine. Anal. Chim. Acta 2020, 1106, 52–60. [Google Scholar] [CrossRef]
- Ates, H.C.; Roberts, J.A.; Lipman, J.; Cass, A.E.; Urban, G.A.; Dincer, C. On-Site Therapeutic Drug Monitoring. Trends Biotechnol. 2020, 38, 1262–1277. [Google Scholar] [CrossRef] [PubMed]
- Dincer, C.; Bruch, R.; Costa-Rama, E.; Fernández-Abedul, M.T.; Merkoçi, A.; Manz, A.; Urban, G.A.; Güder, F. Disposable Sensors in Diagnostics, Food, and Environmental Monitoring. Adv. Mater. 2019, 31, e1806739. [Google Scholar] [CrossRef] [PubMed]
- Kobyakova, O.S.; Eremchenko, O.A.; Kanev, A.A.; Kurakova, N.G. Quantum computing in healthcare: Case analyses and prospects. Vrach I Inf. Teh. 2025, 1, 6–21. (In Russian) [Google Scholar] [CrossRef]
- Karpov, O.E.; Khramov, A.E. Information Technologies, Computing Systems and Artificial Intelligence in Medicine; DPK Press: Moscow, Russian, 2022; 480p, ISBN 978-5-91976-232-4. (In Russian) [Google Scholar]
- Taherdoost, H.; Ghofrani, A. AI’s role in revolutionizing personalized medicine by reshaping pharmacogenomics and drug therapy. Intell. Pharm. 2024, 2, 643–650. [Google Scholar] [CrossRef]
- Schork, N.J.; Goetz, L.H. From precision interventions to precision health. Nat. Commun. 2025, 16, 5024. [Google Scholar] [CrossRef]
- Matthaei, J.; Brockmöller, J.; Tzvetkov, M.; Sehrt, D.; Sachse-Seeboth, C.; Hjelmborg, J.; Möller, S.; Halekoh, U.; Hofmann, U.; Schwab, M.; et al. Heritability of metoprolol and torsemide pharmacokinetics. Clin. Pharmacol. Ther. 2015, 98, 611–621. [Google Scholar] [CrossRef] [PubMed]
- Tansey, K.E.; Guipponi, M.; Hu, X.; Domenici, E.; Lewis, G.; Malafosse, A.; Wendland, J.R.; Lewis, C.M.; McGuffin, P.; Uher, R. Contribution of common genetic variants to antidepressant response. Biol. Psychiatry 2013, 73, 679–682. [Google Scholar] [CrossRef]
- Eichelbaum, M.; Ingelman-Sundberg, M.; Evans, W.E. Pharmacogenomics and individualized drug therapy. Annu. Rev. Med. 2006, 57, 119–137. [Google Scholar] [CrossRef]
- Guengerich, F.P.; Waterman, M.R.; Egli, M. Recent Structural Insights into Cytochrome P450 Function. Trends Pharmacol. Sci. 2016, 37, 625–640. [Google Scholar] [CrossRef]
- Riaz, S.; Din, S.M.; Tareen, M.U.; Tariq, F.; Latif, Y.; Siddiqi, S.; Sultan, A.; Mansoor, A. Genetic Polymorphism of CYP2C19 in Pakistani Population. Iran. J. Pharm. Res. 2019, 18, 1097–1102. [Google Scholar] [CrossRef] [PubMed]
- Kariis, H.M.; Särg, D.; Krebs, K.; Jõeloo, M.; Kõiv, K.; Sirts, K.; The Estonian Biobank Research Team; Hudjashov, G.; Health Informatics Research Team; Alver, M.; et al. Genetic influences on antidepressant side effects: A CYP2C19 gene variation and polygenic risk study in the Estonian Biobank. Eur. J. Hum. Genet. 2025, 33, 1376–1385. [Google Scholar] [CrossRef] [PubMed]
- Hicks, J.K.; Bishop, J.R.; Sangkuhl, K.; Müller, D.J.; Ji, Y.; Leckband, S.G.; Leeder, J.S.; Graham, R.L.; Chiulli, D.L.; Llerena, A.; et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for CYP2D6 and CYP2C19 Genotypes and Dosing of Selective Serotonin Reuptake Inhibitors. Clin. Pharmacol. Ther. 2015, 98, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Shelton, R.C.; Parikh, S.V.; Law, R.A.; Rothschild, A.J.; Thase, M.E.; Dunlop, B.W.; DeBattista, C.; Conway, C.R.; Forester, B.P.; Macaluso, M.; et al. Combinatorial Pharmacogenomic Algorithm is Predictive of Citalopram and Escitalopram Metabolism in Patients with Major Depressive Disorder. Psychiatry Res. 2020, 290, 113017. [Google Scholar] [CrossRef] [PubMed]
- Bousman, C.A.; Stevenson, J.M.; Ramsey, L.B.; Sangkuhl, K.; Hicks, J.K.; Strawn, J.R.; Singh, A.B.; Ruaño, G.; Mueller, D.J.; Tsermpini, E.E.; et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for CYP2D6, CYP2C19, CYP2B6, SLC6A4, and HTR2A Genotypes and Serotonin Reuptake Inhibitor Antidepressants. Clin. Pharmacol. Ther. 2023, 114, 51–68. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mahajna, M.; Abu Fanne, R.; Berkovitch, M.; Tannous, E.; Vinker, S.; Green, I.; Matok, I. Effect of CYP2C19 Pharmacogenetic Testing on Predicting Citalopram and Escitalopram Tolerability and Efficacy: A Retrospective, Longitudinal Cohort Study. Biomedicines 2023, 11, 3245. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Centanni, M.; Reijnhout, N.; Thijs, A.; Karlsson, M.O.; Friberg, L.E. Pharmacogenetic Testing or Therapeutic Drug Monitoring: A Quantitative Framework. Clin. Pharmacokinet. 2024, 63, 871–884. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Calabrò, M.; Fabbri, C.; Serretti, A.; Kasper, S.; Zohar, J.; Souery, D.; Montgomery, S.; Albani, D.; Forloni, G.; Ferentinos, P.; et al. A machine learning approach to predict treatment efficacy and adverse effects in major depression using CYP2C19 and clinical-environmental predictors. Psychiatr. Genet. 2025, 35, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Lima, J.J.; Thomas, C.D.; Barbarino, J.; Desta, Z.; Van Driest, S.L.; El Rouby, N.; Johnson, J.A.; Cavallari, L.H.; Shakhnovich, V.; Thacker, D.L.; et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for CYP2C19 and Proton Pump Inhibitor Dosing. Clin. Pharmacol. Ther. 2020, 109, 1417–1423. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Alchakee, A.; Ahmed, M.; Eldohaji, L.; Alhaj, H.; Saber-Ayad, M. Pharmacogenomics in psychiatry practice: The value and the challenges. Int. J. Mol. Sci. 2022, 23, 13485. [Google Scholar] [CrossRef]
- Li, D.; Pain, O.; Fabbri, C.; Wong, W.L.E.; Lo, C.W.H.; Ripke, S.; Cattaneo, A.; Souery, D.; Dernovsek, M.Z.; Henigsberg, N.; et al. Metabolic activity of CYP2C19 and CYP2D6 on antidepressant response from 13 clinical studies using genotype imputation: A meta-analysis. Transl. Psychiatry 2024, 14, 350, Erratum in Transl. Psychiatry 2024, 14, 350. https://doi.org/10.1038/s41398-024-03064-x. [Google Scholar] [CrossRef]
- Stolfi, F.; Abreu, H.; Sinella, R.; Nembrini, S.; Centonze, S.; Landra, V.; Brasso, C.; Cappellano, G.; Rocca, P.; Chiocchetti, A. Omics approaches open new horizons in major depressive disorder: From biomarkers to precision medicine. Front. Psychiatry 2024, 15, 1422939. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Meerman, J.J.; ter Hark, S.E.; Janzing, J.G.; Coenen, M.J. The Potential of Polygenic Risk Scores to Predict Antidepressant Treatment Response in Major Depression: A Systematic Review. J. Affect. Disord. 2022, 304, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Primorac, D.; Bach-Rojecky, L.; Vađunec, D.; Juginović, A.; Žunić, K.; Matišić, V.; Skelin, A.; Arsov, B.; Boban, L.; Erceg, D.; et al. Pharmacogenomics at the center of precision medicine: Challenges and perspective in an era of big data. Pharmacogenomics 2020, 21, 141–156. [Google Scholar] [CrossRef] [PubMed]
- Menden, M.P.; Iorio, F.; Garnett, M.; McDermott, U.; Benes, C.H.; Ballester, P.J.; Saez-Rodriguez, J. Machine learning prediction of cancer cell sensitivity to drugs based on genomic and chemical properties. PLoS ONE 2013, 8, e61318. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kessler, R.C.; van Loo, H.M.; Wardenaar, K.J.; Bossarte, R.M.; A Brenner, L.; Cai, T.; Ebert, D.D.; Hwang, I.; Li, J.; de Jonge, P.; et al. Testing a machine-learning algorithm to predict the persistence and severity of major depressive disorder from baseline self-reports. Mol. Psychiatry 2016, 21, 1366–1371. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Taliaz, D.; Spinrad, A.; Barzilay, R.; Barnett-Itzhaki, Z.; Averbuch, D.; Teltsh, O.; Schurr, R.; Darki-Morag, S.; Lerer, B. Optimizing prediction of response to antidepressant medications using machine learning and integrated genetic, clinical, and demographic data. Transl. Psychiatry 2021, 11, 381. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bobo, W.V.; Van Ommeren, B.; Athreya, A.P. Machine learning, pharmacogenomics, and clinical psychiatry: Predicting antidepressant response in patients with major depressive disorder. Expert Rev. Clin. Pharmacol. 2022, 15, 927–944. [Google Scholar] [CrossRef] [PubMed]
- Benrimoh, D.; Whitmore, K.; Richard, M.; Golden, G.; Perlman, K.; Jalali, S.; Friesen, T.; Barkat, Y.; Mehltretter, J.; Fratila, R.; et al. Artificial Intelligence in Depression–Medication Enhancement (AID-ME): A Cluster Randomized Trial of a Deep-Learning-Enabled Clinical Decision Support System for Personalized Depression Treatment Selection and Management. J. Clin. Psychiatry 2025, 86, 24m15634. [Google Scholar] [CrossRef] [PubMed]
- Khokholov, A.; Zarubina, T.; Kotlovsky, M.; Pavlov, A.; Potapov, M.; Soldatova, O.; Gabidullina, L.; Tsybikova, E. Mechanisms of implementing artificial intelligence technologies in healthcare: New ethical challenges. Med. Ethics 2024, 12, 4–10. (In Russian) [Google Scholar] [CrossRef]
- Zack, M.; Stupichev, D.N.; Moore, A.J.; Slobodchikov, I.D.; Sokolov, D.G.; Trifonov, I.F.; Gobbs, A. Artificial Intelligence and Multi-Omics in Pharmacogenomics: A New Era of Precision Medicine. Mayo Clin. Proc. Digit. Heath 2025, 3, 100246. [Google Scholar] [CrossRef] [PubMed]
- Arloth, J.; Eraslan, G.; Andlauer, T.F.M.; Martins, J.; Iurato, S.; Kühnel, B.; Waldenberger, M.; Frank, J.; Gold, R.; Hemmer, B.; et al. DeepWAS: Multivariate genotype-phenotype associations by directly integrating regulatory information using deep learning. PLOS Comput. Biol. 2020, 16, e1007616. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Talukder, A.; Barham, C.; Li, X.; Hu, H. Interpretation of deep learning in genomics and epigenomics. Brief. Bioinform. 2021, 22, bbaa177. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Aldaz, A.; Dolores Belles, M.; Del Rio, R.; Milara, J.; Rojo, A. Using pharmacokinetics and pharmacogenetics to optimize psychiatric treatments: A systematic review. Farm Hosp. 2021, 45, 84–93. Available online: https://pubmed.ncbi.nlm.nih.gov/35379114/ (accessed on 20 November 2025). (In English) [PubMed]
- Lin, E.; Lin, C.-H.; Lane, H.-Y. Precision Psychiatry Applications with Pharmacogenomics: Artificial Intelligence and Machine Learning Approaches. Int. J. Mol. Sci. 2020, 21, 969. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Faraj, P.; Haslemo, T.; Tran, J.P.; Stingl, J.; Molden, E.; Hole, K. Combined effect of CYP2C19 and CYP2D6 genotypes on escitalopram serum concentration and its metabolic ratio in a European patient population. Br. J. Clin. Pharmacol. 2024, 90, 2630–2637. [Google Scholar] [CrossRef] [PubMed]





Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parshenkov, M.; Zyryanov, S.; Rodionova, G.; Dyakonova, A.; Shegay, P.; Kaprin, A.; Demyashkin, G. Personalizing Antidepressant Therapy: Integrating Pharmacogenomics, Therapeutic Drug Monitoring, and Digital Tools for Improved Depression Outcomes. J. Pers. Med. 2025, 15, 616. https://doi.org/10.3390/jpm15120616
Parshenkov M, Zyryanov S, Rodionova G, Dyakonova A, Shegay P, Kaprin A, Demyashkin G. Personalizing Antidepressant Therapy: Integrating Pharmacogenomics, Therapeutic Drug Monitoring, and Digital Tools for Improved Depression Outcomes. Journal of Personalized Medicine. 2025; 15(12):616. https://doi.org/10.3390/jpm15120616
Chicago/Turabian StyleParshenkov, Mikhail, Sergey Zyryanov, Galina Rodionova, Anna Dyakonova, Petr Shegay, Andrei Kaprin, and Grigory Demyashkin. 2025. "Personalizing Antidepressant Therapy: Integrating Pharmacogenomics, Therapeutic Drug Monitoring, and Digital Tools for Improved Depression Outcomes" Journal of Personalized Medicine 15, no. 12: 616. https://doi.org/10.3390/jpm15120616
APA StyleParshenkov, M., Zyryanov, S., Rodionova, G., Dyakonova, A., Shegay, P., Kaprin, A., & Demyashkin, G. (2025). Personalizing Antidepressant Therapy: Integrating Pharmacogenomics, Therapeutic Drug Monitoring, and Digital Tools for Improved Depression Outcomes. Journal of Personalized Medicine, 15(12), 616. https://doi.org/10.3390/jpm15120616

