Mood and Metabolism: A Bayesian Network Analysis of Depressive Symptoms in Major Depressive Disorder and Metabolic Syndrome
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants, Procedures, and Measures
2.2. Statistical Analysis
3. Results
3.1. Participants
3.2. Bayesian Network Analysis—Directed Acyclic Graphs (DAGs)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Saklayen, M.G. The Global Epidemic of the Metabolic Syndrome. Curr. Hypertens. Rep. 2018, 20, 12. [Google Scholar] [CrossRef] [PubMed]
- Arias-de la Torre, J.; Vilagut, G.; Ronaldson, A.; Serrano-Blanco, A.; Martín, V.; Peters, M.; Valderas, J.M.; Dregan, A.; Alonso, J. Prevalence and variability of current depressive disorder in 27 European countries: A population-based study. Lancet Public Health 2021, 6, e729–e738. [Google Scholar] [CrossRef] [PubMed]
- Pan, A.; Keum, N.; Okereke, O.I.; Sun, Q.; Kivimaki, M.; Rubin, R.R.; Hu, F.B. Bidirectional association between depression and metabolic syndrome: A systematic review and meta-analysis of epidemiological studies. Diabetes Care 2012, 35, 1171–1180. [Google Scholar] [CrossRef] [PubMed]
- McIntyre, R.S.; Soczynska, J.K.; Konarski, J.Z.; Woldeyohannes, H.O.; Law, C.W.; Miranda, A.; Fulgosi, D.; Kennedy, S.H. Should Depressive Syndromes Be Reclassified as “Metabolic Syndrome Type II”? Ann. Clin. Psychiatry 2007, 19, 257–264. [Google Scholar] [CrossRef]
- Silić, A.; Vukojević, J.; Peitl, V.; De Hert, M.; Karlović, D. Major depressive disorder: A possible typisation according to serotonin, inflammation, and metabolic syndrome. Acta Neuropsychiatr. 2022, 34, 15–23. [Google Scholar] [CrossRef]
- Marazziti, D.; Arone, A.; Palermo, S.; Annuzzi, E.; Cappellato, G.; Chiarantini, I.; Prete, L.D.; Dell’Osso, L. The Wicked Relationship between Depression and Metabolic Syndrome. Clin. Neuropsychiatry 2023, 20, 100–108. [Google Scholar] [CrossRef]
- Ljubicic, R.; Jakovac, H.; Bistrović, I.L.; Franceski, T.; Mufić, A.K.; Karlović, D. Prevalence of metabolic syndrome among patients with major depressive disorder—Differences between newly diagnosed first episode and recurrent disease. Coll. Antropol. 2013, 37, 1065–1069. [Google Scholar]
- Capuron, L.; Su, S.; Miller, A.H.; Bremner, J.D.; Goldberg, J.; Vogt, G.J.; Maisano, C.; Jones, L.; Murrah, N.V.; Vaccarino, V. Depressive symptoms and metabolic syndrome: Is inflammation the underlying link? Biol. Psychiatry 2008, 64, 896–900. [Google Scholar] [CrossRef]
- Moreira, F.P.; Jansen, K.; Cardoso, T.A.; Mondin, T.C.; Vieira, I.S.; Magalhães, P.; Kapczinski, F.; Souza, L.D.M.; da Silva, R.A.; Oses, J.P.; et al. Metabolic syndrome, depression and anhedonia among young adults. Psychiatry Res. 2019, 271, 306–310. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, J.; Yin, Z.; Wang, L.; Peng, L. The association between depression and metabolic syndrome and its components: A bidirectional two-sample Mendelian randomization study. Transl. Psychiatry 2021, 11, 633. [Google Scholar] [CrossRef]
- Scutari, M. Learning Bayesian networks with the bnlearn R package. J. Stat. Softw. 2010, 35, 1–22. [Google Scholar] [CrossRef]
- Scutari, M.; Denis, J.-B. Bayesian Networks: With Examples in R; Chapman and Hall/CRC: Boca Raton, FL, USA, 2021. [Google Scholar]
- Jannini, T.B.; Murri, M.B.; Ossola, P.; Pettorruso, M.; Martinotti, G.; Di Lorenzo, G.; Rossi, R. Unraveling the Link Between Complex Post-traumatic Stress Symptoms and Addictive Behaviors in Adolescents: A Network Analysis. Int. J. Ment. Health Addict. 2024, 23, 2839–2848. [Google Scholar] [CrossRef]
- Jannini, T.B.; Socci, V.; Schimmenti, A.; Terrone, G.; Sideli, L.; Alameda, L.; Aas, M.; Di Lorenzo, G.; Niolu, C.; Rossi, R. Mapping connections between complex post-traumatic stress disorder and psychotic-like experiences among adolescents: A Gaussian and Bayesian network study. Psychol. Med. 2025, 55, e61. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhao, Y.; Sun, J.; Jiang, Y.; Tang, Y. Identification of metabolic syndrome using lipid accumulation product and cardiometabolic index based on NHANES data from 2005 to 2018. Nutr. Metab. 2024, 21, 96. [Google Scholar] [CrossRef] [PubMed]
- Kroenke, K.; Spitzer, R.L.; Williams, J.B. The PHQ-9: Validity of a brief depression severity measure. J. Gen. Intern. Med. 2001, 16, 606–613. [Google Scholar] [CrossRef]
- Zafar, U.; Khaliq, S.; Ahmad, H.U.; Manzoor, S.; Lone, K.P. Metabolic syndrome: An update on diagnostic criteria, pathogenesis, and genetic links. Hormones 2018, 17, 299–313. [Google Scholar] [CrossRef]
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.D.A.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J. Welcome to the Tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
- Foley, D.L.; Morley, K.I.; Madden, P.A.; Heath, A.C.; Whitfield, J.B.; Martin, N.G. Major depression and the metabolic syndrome. Twin Res. Hum. Genet. 2010, 13, 347–358. [Google Scholar] [CrossRef]
- Penninx, B.W.; Lamers, F.; Jansen, R.; Berk, M.; Khandaker, G.M.; De Picker, L.; Milaneschi, Y. Immuno-metabolic depression: From concept to implementation. Lancet Reg. Health–Eur. 2025, 48, 101166. [Google Scholar] [CrossRef]
- Ferri, F.; Deschênes, S.S.; Power, N.; Schmitz, N. Associations between cognitive function, metabolic factors and depression: A prospective study in Quebec, Canada. J. Affect Disord. 2021, 283, 77–83. [Google Scholar] [CrossRef]
- Koutsonida, M.; Markozannes, G.; Bouras, E.; Aretouli, E.; Tsilidis, K.K. Metabolic syndrome and cognition: A systematic review across cognitive domains and a bibliometric analysis. Front. Psychol. 2022, 13, 981379. [Google Scholar] [CrossRef]
- Otani, K.; Suzuki, A.; Matsumoto, Y.; Shirata, T. Relationship of negative and positive core beliefs about the self with dysfunctional attitudes in three aspects of life. Neuropsychiatr. Dis. Treat. 2017, 13, 2585–2588. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Velu, P.; Rohani, P.; Sohouli, M.H. Changes in lipid profile and glucose metabolism following administration of bupropion alone or in combination with naltrexone: A systematic review and meta-regression analysis. Eur. J. Clin. Investig. 2024, 54, e14122. [Google Scholar] [CrossRef] [PubMed]
- Sankar, K.; Viswanathan, S.; Nazar, R.K.; Ramasamy, S.; Ganesan, R.M. A systematic review of randomized controlled trials assessing the effect of Vortioxetine on metabolic syndrome risk indicators in patients with depression. Health Sci. Rev. 2023, 9, 100129. [Google Scholar] [CrossRef]
- Di Lorenzo, G.; Longo, L.; Jannini, T.B.; Niolu, C.; Rossi, R.; Siracusano, A. Oxytocin in the prevention and the treatment of post-traumatic stress disorder: A systematic review of randomized controlled trials. J. Psychopathol. 2020, 26, 107–118. [Google Scholar]
- Ribolsi, M.; Fiori Nastro, F.; Pelle, M.; Esposto, E.; Jannini, T.B.; Di Lorenzo, G. Targeting Psychotic and Cognitive Dimensions in Clinical High Risk for Psychosis (CHR-P): A Narrative Review. J. Clin. Med. 2025, 14, 5432. [Google Scholar] [CrossRef]
- Miller, A.H.; Berk, M.; Bloch, G.; Briquet-Laugier, V.; Brouillon, C.; Cuthbert, B.N.; Dantzer, R.; Davis, M.C.; De Picker, L.J.; Drevets, W.C.; et al. Advancing precision psychiatry and targeted treatments: Insights from immunopsychiatry. Brain Behav. Immun. 2025, 125, 319–329. [Google Scholar] [CrossRef]
- Rethorst, C.D.; Wipfli, B.M.; Landers, D.M. The antidepressive effects of exercise: A meta-analysis of randomized trials. Sports Med. 2009, 39, 491–511. [Google Scholar] [CrossRef]
- Kouvari, M.; D’Cunha, N.M.; Travica, N.; Sergi, D.; Zec, M.; Marx, W.; Naumovski, N. Metabolic Syndrome, Cognitive Impairment and the Role of Diet: A Narrative Review. Nutrients 2022, 14, 333. [Google Scholar] [CrossRef]
- Matta, J.; Hoertel, N.; Kesse-Guyot, E.; Plesz, M.; Wiernik, E.; Carette, C.; Czernichow, S.; Limosin, F.; Goldberg, M.; Zins, M.; et al. Diet and physical activity in the association between depression and metabolic syndrome: Constances study. J. Affect. Disord. 2019, 244, 25–32. [Google Scholar] [CrossRef]
- Moodley, A.; Womersley, J.S.; Swart, P.C.; van den Heuvel, L.L.; Malan-Müller, S.; Seedat, S.; Hemmings, S.M.J. A network analysis investigating the associations between posttraumatic stress symptoms, markers of inflammation and metabolic syndrome. J. Psychiatr. Res. 2023, 165, 105–114. [Google Scholar] [CrossRef]
- Badkas, A.; Pacheco, M.P.; Sauter, T. Network modeling approaches for metabolic diseases and diabetes. Curr. Opin. Syst. Biol. 2024, 39, 100530. [Google Scholar] [CrossRef]
- Drysdale, A.T.; Grosenick, L.; Downar, J.; Dunlop, K.; Mansouri, F.; Meng, Y.; Fetcho, R.N.; Zebley, B.; Oathes, D.J.; Etkin, A.; et al. Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nat. Med. 2017, 23, 28–38. [Google Scholar] [CrossRef]

| Characteristic | MetS n = 315 1 | Non-MetS n = 1464 1 | Effect Size 2 |
|---|---|---|---|
| Gender | 0.91 | ||
| Female | 207 (66%) | 991 (68%) | |
| Male | 108 (34%) | 473 (32%) | |
| Age | 54.902 (13.877) | 53.389 (16.219) | 0.095 |
| Weight (kg) | 97.023 (23.011) | 87.198 (24.670) | 0.402 *** |
| Waist circumference (cm) | 113.984 (15.114) | 105.225 (18.059) | 0.498 *** |
| Body Mass Index (kg/m2) | 34.891 (7.782) | 31.878 (8.503) | 0.359 *** |
| Blood Pressure | |||
| Systolic | 128.671 (20.101) | 123.456 (17.429) | 0.290 *** |
| Diastolic | 73.967 (14.136) | 71.271 (11.900) | 0.218 *** |
| Fasting Glucose (mg/dL) | 134.025 (53.143) | 107.407 (33.795) | 0.635 *** |
| Triglyceride (mg/dL) | 192.397 (101.430) | 96.338 (50.621) | 1.303 *** |
| Direct HDL-Cholesterol (mg/dL) | 43.914 (12.172) | 55.397 (16.678) | −0.720 *** |
| PHQ1 (Little interest in doing things) | 1.098 (1.062) | 1.083 (1.051) | 0.014 |
| PHQ2 (Feeling down, depressed, or hopeless) | 1.219 (1.120) | 1.209 (1.062) | 0.009 |
| PHQ3 (Trouble sleeping or sleeping too much) | 1.584 (1.095) | 1.374 (1.157) | 0.183 ** |
| PHQ4 (Feeling tired or having little energy) | 1.733 (0.970) | 1.633 (1.023) | 0.098 |
| PHQ5 (Poor appetite or overeating) | 1.171 (1.092) | 1.036 (1.122) | 0.121 * |
| PHQ6 (Feeling bad about yourself) | 0.943 (1.196) | 0.850 (1.026) | 0.088 |
| PHQ7 (Trouble concentrating on things) | 0.940 (1.111) | 0.864 (1.079) | 0.069 |
| PHQ8 (Moving or speaking slowly or too fast) | 0.552 (0.990) | 0.479 (0.886) | 0.081 |
| PHQ9 (Thought you would be better off dead) | 0.222 (0.664) | 0.241 (0.627) | −0.029 |
| PHQ10 (Difficulty these problems have caused) | 0.848 (0.935) | 0.796 (0.878) | 0.057 |
| PHQ Total Score | 9.463 (5.857) | 8.769 (5.800) | 0.119 * |
| From | To | Strength |
|---|---|---|
| PHQ1 | PHQ4 | −38.3712 |
| PHQ2 | PHQ1 | −42.7230 |
| PHQ2 | PHQ6 | −38.7644 |
| PHQ2 | PHQ9 | −20.4625 |
| PHQ3 | PHQ7 | −9.5678 |
| PHQ4 | PHQ3 | −29.1284 |
| PHQ4 | PHQ5 | −28.4721 |
| PHQ4 | PHQ10 | −25.7662 |
| PHQ5 | PHQ6 | −9.1726 |
| PHQ5 | PHQ7 | −21.2129 |
| PHQ10 | PHQ8 | −22.1705 |
| From | To | Strength |
|---|---|---|
| PHQ1 | PHQ2 | −266.075336 |
| PHQ1 | PHQ4 | −58.303795 |
| PHQ1 | PHQ6 | −41.475119 |
| PHQ1 | PHQ10 | −37.837109 |
| PHQ2 | PHQ3 | −23.761115 |
| PHQ2 | PHQ6 | −73.165437 |
| PHQ2 | PHQ7 | −17.234737 |
| PHQ2 | PHQ10 | −12.176333 |
| PHQ3 | PHQ5 | −14.913171 |
| PHQ4 | PHQ3 | −82.394517 |
| PHQ4 | PHQ5 | −38.399162 |
| PHQ6 | PHQ4 | −9.286942 |
| PHQ6 | PHQ7 | −24.434691 |
| PHQ6 | PHQ8 | −33.507499 |
| PHQ6 | PHQ9 | −166.782370 |
| PHQ6 | PHQ10 | −50.954734 |
| PHQ7 | PHQ5 | −28.141069 |
| PHQ7 | PHQ8 | −68.776081 |
| PHQ8 | PHQ3 | −11.217882 |
| PHQ10 | PHQ4 | −22.107131 |
| PHQ10 | PHQ7 | −80.191290 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jannini, T.B.; Mollaioli, D.; Longo, S.; Di Lorenzo, C.; Niolu, C.; Federici, M.; Di Lorenzo, G. Mood and Metabolism: A Bayesian Network Analysis of Depressive Symptoms in Major Depressive Disorder and Metabolic Syndrome. J. Pers. Med. 2025, 15, 563. https://doi.org/10.3390/jpm15110563
Jannini TB, Mollaioli D, Longo S, Di Lorenzo C, Niolu C, Federici M, Di Lorenzo G. Mood and Metabolism: A Bayesian Network Analysis of Depressive Symptoms in Major Depressive Disorder and Metabolic Syndrome. Journal of Personalized Medicine. 2025; 15(11):563. https://doi.org/10.3390/jpm15110563
Chicago/Turabian StyleJannini, Tommaso B., Daniele Mollaioli, Susanna Longo, Cherubino Di Lorenzo, Cinzia Niolu, Massimo Federici, and Giorgio Di Lorenzo. 2025. "Mood and Metabolism: A Bayesian Network Analysis of Depressive Symptoms in Major Depressive Disorder and Metabolic Syndrome" Journal of Personalized Medicine 15, no. 11: 563. https://doi.org/10.3390/jpm15110563
APA StyleJannini, T. B., Mollaioli, D., Longo, S., Di Lorenzo, C., Niolu, C., Federici, M., & Di Lorenzo, G. (2025). Mood and Metabolism: A Bayesian Network Analysis of Depressive Symptoms in Major Depressive Disorder and Metabolic Syndrome. Journal of Personalized Medicine, 15(11), 563. https://doi.org/10.3390/jpm15110563

