Genetic Association of Mood Swings with Lung Function and Respiratory Diseases
Abstract
1. Introduction
2. Methods
2.1. GWAS Summary Statistics
2.2. Statistical Analysis
2.2.1. Genetic Correlation Analysis
2.2.2. Local Genetic Correlation Analysis
2.2.3. Partitioned LDSC Analysis
2.2.4. Cross-Trait Meta-Analysis
2.2.5. Colocalization Analysis
2.2.6. Transcriptome-Wide Association Study (TWAS)
2.2.7. Mendelian Randomization Analysis
3. Results
3.1. Global Genetic Correlation
3.2. Local Genetic Correlation
3.3. Partitioned LDSC Correlation
3.4. Cross-Trait Meta-Analysis
3.5. Colocalization Analysis
3.6. Transcriptome-Wide Association Study
3.7. Mendelian Randomization Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
List of Abbreviations
| Abbreviation | Full Name |
| COPD | Chronic Obstructive Pulmonary Disease |
| CVD | Cardiovascular Disease |
| GWAS | Genome-Wide Association Study |
| MR | Mendelian Randomization |
| FEV1 | Forced Expiratory Volume In 1 Second |
| FVC | Forced Vital Capacity |
| PEF | Peak Expiratory Flow |
| LD | Linkage Disequilibrium |
| LDSC | Linkage Disequilibrium Score Regression |
| DHS | Dnase I Hypersensitivity Site |
| DGF | Digital Genomic Footprinting |
| TFBS | Transcription Factor Binding Site |
| CPASSOC | Cross Phenotype Association |
| VEP | Variant Effect Predictor |
| TWAS | Transcriptome-Wide Association Study |
| GTEx | Genotype-Tissue Expression |
| FDR | False Discovery Rate |
| IVs | Instrumental Variables |
| IVW | Inverse-Variance Weighted |
| BMI | Body Mass Index |
References
- Fristad, M.A. Editorial: Mood Instability: What It Is, Why It Matters, and What to Do About It. J. Am. Acad. Child Adolesc. Psychiatry 2022, 61, 1224–1226. [Google Scholar] [CrossRef]
- Rusk, N. The UK Biobank. Nat. Methods 2018, 15, 1001. [Google Scholar] [CrossRef]
- Zwir, I.; Arnedo, J.; Del-Val, C.; Pulkki-Råback, L.; Konte, B.; Yang, S.S.; Romero-Zaliz, R.; Hintsanen, M.; Cloninger, K.M.; Garcia, D.; et al. Uncovering the complex genetics of human temperament. Mol. Psychiatry 2020, 25, 2275–2294. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, H.; Yang, Z.; Lu, Y.; Wang, J.; Zou, C. Genetically predicted mood swings increased risk of cardiovascular disease: Evidence from a Mendelian randomization analysis. J. Affect. Disord. 2024, 354, 463–472. [Google Scholar] [CrossRef] [PubMed]
- Zhong, H.; Huan, X.; Jiao, K.; He, S.; Wen, Z.; Zhao, R.; Goh, L.-Y.; Su, M.; Song, J.; Yan, C.; et al. Causal relationships between mood instability and autoimmune diseases: A mendelian randomization analysis. Autoimmun. Rev. 2023, 22, 103214. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.; Jung, J.Y.; Kim, Y.S.; Chung, K.S.; Song, J.H.; Kim, S.Y.; Kim, E.Y.; Kang, Y.A.; Park, M.S.; Chang, J.; et al. Relationship between depression and lung function in the general population in Korea: A retrospective cross-sectional study. Int. J. Chronic Obstr. Pulm. Dis. 2018, 13, 2207–2213. [Google Scholar] [CrossRef]
- Hsu, J.H.; Chien, I.C.; Lin, C.H. Increased risk of chronic obstructive pulmonary disease in patients with bipolar disorder: A population-based study. J. Affect. Disord. 2017, 220, 43–48. [Google Scholar] [CrossRef]
- Miklowitz, D.J.; Weintraub, M.J.; Singh, M.K.; Walshaw, P.D.; Merranko, J.A.; Birmaher, B.; Chang, K.D.; Schneck, C.D. Mood Instability in Youth at High Risk for Bipolar Disorder. J. Am. Acad. Child Adolesc. Psychiatry 2022, 61, 1285–1295. [Google Scholar] [CrossRef] [PubMed]
- Ward, J.; Strawbridge, R.J.; Bailey, M.E.S.; Graham, N.; Ferguson, A.; Lyall, D.M.; Cullen, B.; Pidgeon, L.M.; Cavanagh, J.; Mackay, D.F.; et al. Genome-wide analysis in UK Biobank identifies four loci associated with mood instability and genetic correlation with major depressive disorder, anxiety disorder and schizophrenia. Transl. Psychiatry 2017, 7, 1264. [Google Scholar] [CrossRef]
- Sudlow, C.; Gallacher, J.; Allen, N.; Beral, V.; Burton, P.; Danesh, J.; Downey, P.; Elliott, P.; Green, J.; Landray, M.; et al. UK biobank: An open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015, 12, e1001779. [Google Scholar] [CrossRef]
- Zhu, Z.; Zheng, Z.; Zhang, F.; Wu, Y.; Trzaskowski, M.; Maier, R.; Robinson, M.R.; McGrath, J.J.; Visscher, P.M.; Wray, N.R.; et al. Causal associations between risk factors and common diseases inferred from GWAS summary data. Nat. Commun. 2018, 9, 224. [Google Scholar] [CrossRef]
- Nagel, M.; Watanabe, K.; Stringer, S.; Posthuma, D.; van der Sluis, S. Item-level analyses reveal genetic heterogeneity in neuroticism. Nat. Commun. 2018, 9, 905. [Google Scholar] [CrossRef] [PubMed]
- Shrine, N.; Guyatt, A.L.; Erzurumluoglu, A.M.; Jackson, V.E.; Hobbs, B.D.; Melbourne, C.A.; Batini, C.; Fawcett, K.A.; Song, K.; Sakornsakolpat, P.; et al. New genetic signals for lung function highlight pathways and chronic obstructive pulmonary disease associations across multiple ancestries. Nat. Genet. 2019, 51, 481–493. [Google Scholar] [CrossRef]
- Valette, K.; Li, Z.; Bon-Baret, V.; Chignon, A.; Bérubé, J.C.; Eslami, A.; Lamothe, J.; Gaudreault, N.; Joubert, P.; Obeidat, M.; et al. Prioritization of candidate causal genes for asthma in susceptibility loci derived from UK Biobank. Commun. Biol. 2021, 4, 700. [Google Scholar] [CrossRef] [PubMed]
- Bulik-Sullivan, B.K.; Loh, P.R.; Finucane, H.K.; Ripke, S.; Yang, J.; Schizophrenia Working Group of the Psychiatric Genomics Consortium; Patterson, N.; Daly, M.J.; Price, A.L.; Neale, B.M. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 2015, 47, 291–295. [Google Scholar] [CrossRef]
- Bulik-Sullivan, B.; Finucane, H.K.; Anttila, V.; Gusev, A.; Day, F.R.; Loh, P.R.; ReproGen Consortium; Psychiatric Genomics Consortium; Genetic Consortium for Anorexia Nervosa of the Wellcome Trust Case Control Consortium; Duncan, L.; et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 2015, 47, 1236–1241. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Lu, Q.; Ye, Y.; Huang, K.; Liu, W.; Wu, Y.; Zhong, X.; Li, B.; Yu, Z.; Travers, B.G.; et al. SUPERGNOVA: Local genetic correlation analysis reveals heterogeneous etiologic sharing of complex traits. Genome Biol. 2021, 22, 262. [Google Scholar] [CrossRef]
- Finucane, H.K.; Bulik-Sullivan, B.; Gusev, A.; Trynka, G.; Reshef, Y.; Loh, P.R.; Anttila, V.; Xu, H.; Zang, C.; Far, K.h; et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat. Genet. 2015, 47, 1228–1235. [Google Scholar] [CrossRef]
- Zhu, X.; Feng, T.; Tayo, B.O.; Liang, J.; Young, J.H.; Franceschini, N.; Smith, J.A.; Yanek, L.R.; Sun, Y.V.; Edwards, T.L.; et al. Meta-analysis of correlated traits via summary statistics from GWASs with an application in hypertension. Am. J. Hum. Genet. 2015, 96, 21–36. [Google Scholar] [CrossRef]
- McLaren, W.; Gil, L.; Hunt, S.E.; Riat, H.S.; Ritchie, G.R.; Thormann, A.; Flicek, P.; Cunningham, F. The Ensembl Variant Effect Predictor. Genome Biol. 2016, 17, 122. [Google Scholar] [CrossRef]
- Giambartolomei, C.; Vukcevic, D.; Schadt, E.E.; Franke, L.; Hingorani, A.D.; Wallace, C.; Plagnol, V. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 2014, 10, e1004383. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Xiao, C.; Han, Z.; Zhang, L.; Zhao, X.; Hao, Y.; Xiao, J.; Gallagher, C.S.; Kraft, P.; Morton, C.C.; et al. Investigating the shared genetic architecture of uterine leiomyoma and breast cancer: A genome-wide cross-trait analysis. Am. J. Hum. Genet. 2022, 109, 1272–1285. [Google Scholar] [CrossRef]
- Gusev, A.; Ko, A.; Shi, H.; Bhatia, G.; Chung, W.; Penninx, B.W.; Jansen, R.; de Geus, E.J.C.; Boomsma, D.I.; Wright, F.A.; et al. Integrative approaches for large-scale transcriptome-wide association studies. Nat. Genet. 2016, 48, 245–252. [Google Scholar] [CrossRef]
- GTEx Consortium. The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 2013, 45, 580–585. [Google Scholar] [CrossRef] [PubMed]
- Gusev, A.; Mancuso, N.; Won, H.; Kousi, M.; Finucane, H.K.; Reshef, Y.; Song, L.; Safi, A.; Schizophrenia Working Group of the Psychiatric Genomics Consortium; McCarroll, S.; et al. Transcriptome-wide association study of schizophrenia and chromatin activity yields mechanistic disease insights. Nat. Genet. 2018, 50, 538–548. [Google Scholar] [CrossRef]
- Lutz, S.M.; Voorhies, K.; Wu, A.C.; Hokanson, J.; Vansteelandt, S.; Lange, C. The influence of unmeasured confounding on the MR Steiger approach. Genet. Epidemiol. 2022, 46, 139–141. [Google Scholar] [CrossRef]
- Burgess, S.; Thompson, S.G. Multivariable Mendelian randomization: The use of pleiotropic genetic variants to estimate causal effects. Am. J. Epidemiol. 2015, 181, 251–260. [Google Scholar] [CrossRef]
- Pulit, S.L.; Stoneman, C.; Morris, A.P.; Wood, A.R.; Glastonbury, C.A.; Tyrrell, J.; Yengo, L.; Ferreira, T.; Marouli, E.; Ji, Y.; et al. Meta-analysis of genome-wide association studies for body fat distribution in 694 649 individuals of European ancestry. Hum. Mol. Genet. 2019, 28, 166–174. [Google Scholar] [CrossRef]
- Liu, M.; Jiang, Y.; Wedow, R.; Li, Y.; Brazel, D.M.; Chen, F.; Datta, G.; Davila-Velderrain, J.; McGuire, D.; Tian, C.; et al. Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use. Nat. Genet. 2019, 51, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Klimentidis, Y.C.; Raichlen, D.A.; Bea, J.; Garcia, D.O.; Wineinger, N.E.; Mandarino, L.J.; Alexander, G.E.; Chen, Z.; Going, S.B. Genome-wide association study of habitual physical activity in over 377,000 UK Biobank participants identifies multiple variants including CADM2 and APOE. Int. J. Obes. 2018, 42, 1161–1176. [Google Scholar] [CrossRef]
- Dashti, H.S.; Jones, S.E.; Wood, A.R.; Lane, J.M.; van Hees, V.T.; Wang, H.; Rhodes, J.A.; Song, Y.; Patel, K.; Anderson, S.G.; et al. Genome-wide association study identifies genetic loci for self-reported habitual sleep duration supported by accelerometer-derived estimates. Nat. Commun. 2019, 10, 1100. [Google Scholar] [CrossRef]
- Kichaev, G.; Bhatia, G.; Loh, P.R.; Gazal, S.; Burch, K.; Freund, M.K.; Schoech, A.; Pasaniuc, B.; Price, A.L. Leveraging Polygenic Functional Enrichment to Improve GWAS Power. Am. J. Hum. Genet. 2019, 104, 65–75. [Google Scholar] [CrossRef] [PubMed]
- Battaglia, C.R.; Cursano, S.; Calzia, E.; Catanese, A.; Boeckers, T.M. Corticotropin-releasing hormone (CRH) alters mitochondrial morphology and function by activating the NF-kB-DRP1 axis in hippocampal neurons. Cell Death Dis. 2020, 11, 1004. [Google Scholar] [CrossRef]
- Strang, K.H.; Golde, T.E.; Giasson, B.I. MAPT mutations, tauopathy, and mechanisms of neurodegeneration. Lab. Investig. 2019, 99, 912–928. [Google Scholar] [CrossRef]
- Liu, J.; Xiao, Q.; Xiao, J.; Niu, C.; Li, Y.; Zhang, X.; Zhou, Z.; Shu, G.; Yin, G. Wnt/beta-catenin signalling: Function, biological mechanisms, and therapeutic opportunities. Signal Transduct. Target. Ther. 2022, 7, 3. [Google Scholar] [CrossRef]
- Ishibashi, N.; Prokopenko, O.; Reuhl, K.R.; Mirochnitchenko, O. Inflammatory response and glutathione peroxidase in a model of stroke. J. Immunol. 2002, 168, 1926–1933. [Google Scholar] [CrossRef] [PubMed]
- Meunier, S.; Shvedunova, M.; Van Nguyen, N.; Avila, L.; Vernos, I.; Akhtar, A. An epigenetic regulator emerges as microtubule minus-end binding and stabilizing factor in mitosis. Nat. Commun. 2015, 6, 7889. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xu, H.L.; Kang, X.W.; Xu, S.; Mou, Z.F. MiR-2113 overexpression attenuates sepsis-induced acute pulmonary dysfunction, inflammation and fibrosis by inhibition of HMGB1. Heliyon 2024, 10, e22772. [Google Scholar] [CrossRef]
- Brafman, D.; Willert, K. Wnt/β-catenin signaling during early vertebrate neural development. Dev. Neurobiol. 2017, 77, 1239–1259. [Google Scholar] [CrossRef]
- Huang, S.X.; Green, M.D.; de Carvalho, A.T.; Mumau, M.; Chen, Y.W.; D’Souza, S.L.; Snoeck, H.-W. The in vitro generation of lung and airway progenitor cells from human pluripotent stem cells. Nat. Protoc. 2015, 10, 413–425. [Google Scholar] [CrossRef]
- Vallée, A. Neuroinflammation in Schizophrenia: The Key Role of the WNT/β-Catenin Pathway. Int. J. Mol. Sci. 2022, 23, 2810. [Google Scholar] [CrossRef]
- Kumawat, K.; Koopmans, T.; Gosens, R. β-catenin as a regulator and therapeutic target for asthmatic airway remodeling. Expert Opin. Ther. Targets 2014, 18, 1023–1034. [Google Scholar] [CrossRef]
- Karayol, R.; Medrihan, L.; Warner-Schmidt, J.L.; Fait, B.W.; Rao, M.N.; Holzner, E.B.; Greengard, P.; Heintz, N.; Schmidt, E.F. Serotonin receptor 4 in the hippocampus modulates mood and anxiety. Mol. Psychiatry 2021, 26, 2334–2349. [Google Scholar] [CrossRef] [PubMed]
- Hodge, E.; Nelson, C.P.; Miller, S.; Billington, C.K.; Stewart, C.E.; Swan, C.; Malarstig, A.; Henry, A.P.; Gowland, C.; Melén, E.; et al. HTR4 gene structure and altered expression in the developing lung. Respir. Res. 2013, 14, 77. [Google Scholar] [CrossRef] [PubMed]
- Steptoe, A.; Kivimaki, M. Stress and cardiovascular disease. Nat. Rev. Cardiol. 2012, 9, 360–370. [Google Scholar] [CrossRef] [PubMed]
- Polman, R.; Hurst, J.R.; Uysal, O.F.; Mandal, S.; Linz, D.; Simons, S. Cardiovascular disease and risk in COPD: A state of the art review. Expert Rev. Cardiovasc. Ther. 2024, 22, 177–191. [Google Scholar] [CrossRef] [PubMed]
- Partti, K.; Vasankari, T.; Kanervisto, M.; Perala, J.; Saarni, S.I.; Jousilahti, P.; Lönnqvist, J.; Suvisaari, J. Lung function and respiratory diseases in people with psychosis: Population-based study. Br. J. Psychiatry 2015, 207, 37–45. [Google Scholar] [CrossRef]
- Viejo Casas, A.; Amado Diago, C.; Aguero Calvo, J.; Gomez-Revuelta, M.; Ruiz Nunez, M.; Juncal-Ruiz, M.; Pérez-Iglesias, R.; Fuentes-Pérez, P.; Crespo-Facorro, B.; Vázquez-Bourgon, J. Individuals with psychosis present a reduced lung diffusion capacity and early spirometry alterations: Results from a cross-sectional study. J. Psychosom. Res. 2024, 176, 111554. [Google Scholar] [CrossRef]
- Vancampfort, D.; Probst, M.; Stubbs, B.; Soundy, A.; De Herdt, A.; De Hert, M. Associations between expiratory spirometry parameters and limitations in daily life activities in patients with schizophrenia. Gen. Hosp. Psychiatry 2014, 36, 172–176. [Google Scholar] [CrossRef]
- Wang, C.; Chen, H.; Shang, S. Association between depression and lung function in college students. Front. Public Health 2023, 11, 1093935. [Google Scholar] [CrossRef]





| Trait 1 | Trait 2 | Unconstrained LDSC | Constrained LDSC | ||||
|---|---|---|---|---|---|---|---|
| rg | rg_se | p Value | rg | rg_se | p Value | ||
| Mood swings | FEV1 | −0.09 | 0.02 | 3.00 × 10−5 | −0.12 | 0.01 | 6.43 × 10−16 |
| FVC | −0.09 | 0.02 | 6.69 × 10−5 | −0.12 | 0.02 | 5.93 × 10−14 | |
| FEV1/FVC | −0.02 | 0.02 | 0.256 | −0.03 | 0.01 | 0.067 | |
| PEF | −0.09 | 0.02 | 2.89 × 10−5 | −0.11 | 0.02 | 1.41 × 10−12 | |
| Asthma | 0.33 | 0.04 | 2.34 × 10−18 | 0.26 | 0.02 | 3.88 × 10−43 | |
| COPD | 0.28 | 0.03 | 2.77 × 10−18 | 0.24 | 0.02 | 9.99 × 10−42 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ku, Y.; Li, S.; Wu, D.; Luo, N.; Gong, Z.; Hu, B.; Zhao, K. Genetic Association of Mood Swings with Lung Function and Respiratory Diseases. J. Pers. Med. 2025, 15, 550. https://doi.org/10.3390/jpm15110550
Ku Y, Li S, Wu D, Luo N, Gong Z, Hu B, Zhao K. Genetic Association of Mood Swings with Lung Function and Respiratory Diseases. Journal of Personalized Medicine. 2025; 15(11):550. https://doi.org/10.3390/jpm15110550
Chicago/Turabian StyleKu, Yin, Shasha Li, Dongsheng Wu, Nanzhi Luo, Zhipeng Gong, Binbin Hu, and Kejia Zhao. 2025. "Genetic Association of Mood Swings with Lung Function and Respiratory Diseases" Journal of Personalized Medicine 15, no. 11: 550. https://doi.org/10.3390/jpm15110550
APA StyleKu, Y., Li, S., Wu, D., Luo, N., Gong, Z., Hu, B., & Zhao, K. (2025). Genetic Association of Mood Swings with Lung Function and Respiratory Diseases. Journal of Personalized Medicine, 15(11), 550. https://doi.org/10.3390/jpm15110550
