Differentially Expressed Genes Identify FIGO Stage II Cervical Cancer Patients with a Higher Risk of Relapse in a Small Cohort
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Recruitment and Sample Selection
2.2. General View of the Study
2.3. Fluorescence-Activated Cell Sorting (FACS)
2.4. Next Generation Sequencing (NGS)
2.5. Differential Gene Expression Analysis
- x = data frame with normalized counts obtained from DESeq2;
- Mean(x) = mean expression of each DEG across all patients, calculated using the R basic function rowMeans;
- SD(x) = standard deviation across all patients, calculated using the rowSds function from the matrixStats R package (version 1.5) [23].
2.6. Statistical Analysis
2.7. Validation with an External Cohort
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CAAE | Certificate of Presentation of Ethical Appreciation |
CC | Cervical Cancer |
DEGs | Differentially Expressed Genes |
FACS | Fluorescence-activated cell sorting |
FIGO | The International Federation of Gynecology and Obstetrics |
GP | Good Prognosis |
HR | Hazard Ratio |
lncRNA | Long noncoding RNA |
log2FC | log2 Fold Change |
LOOCV | Leave-One-Out Cross-Validation |
NGS | Next Generation Sequencing |
OS | Overall Survival |
padj | p adjusted |
PP | Poor Prognosis |
PFS | Progression-free Survival |
SCC | Squamous Cell Carcinoma |
TCGA | The Cancer Genome Atlas |
References
- Cervical Cancer. Available online: https://www.who.int/news-room/fact-sheets/detail/cervical-cancer?gad_source=1&gclid=Cj0KCQjwwae1BhC_ARIsAK4JfryI8eJ5VN114LbjZ2NK4S9zZJzoNwEi5jCMEZd-o-TKtNjlsyB5wNIaAgLsEALw_wcB (accessed on 1 July 2025).
- Mohamud, A.; Høgdall, C.; Schnack, T. Prognostic Value of the 2018 FIGO Staging System for Cervical Cancer. Gynecol. Oncol. 2022, 165, 506–513. [Google Scholar] [CrossRef] [PubMed]
- Bhatla, N.; Singhal, S.; Dhamija, E.; Mathur, S.; Natarajan, J.; Maheshwari, A. Implications of the Revised Cervical Cancer FIGO Staging System. Indian J. Med. Res. 2021, 154, 273–283. [Google Scholar] [CrossRef]
- Salib, M.Y.; Russell, J.H.B.; Stewart, V.R.; Sudderuddin, S.A.; Barwick, T.D.; Rockall, A.G.; Bharwani, N. 2018 FIGO Staging Classification for Cervical Cancer: Added Benefits of Imaging. Radiographics 2020, 40, 1807–1822. [Google Scholar] [CrossRef]
- Grigsby, P.W.; Massad, L.S.; Mutch, D.G.; Powell, M.A.; Thaker, P.H.; McCourt, C.; Hagemann, A.; Fuh, K.; Kuroki, L.; Schwarz, J.K.; et al. FIGO 2018 Staging Criteria for Cervical Cancer: Impact on Stage Migration and Survival. Gynecol. Oncol. 2020, 157, 639–643. [Google Scholar] [CrossRef]
- Tang, X.; Guo, C.; Liu, S.; Guo, J.; Hua, K.; Qiu, J. A Novel Prognostic Nomogram Utilizing the 2018 FIGO Staging System for Cervical Cancer: A Large Multicenter Study. Int. J. Gynecol. Obstet. 2021, 155, 86–94. [Google Scholar] [CrossRef]
- Berek, J.S.; Matsuo, K.; Grubbs, B.H.; Gaffney, D.K.; Lee, S.I.; Kilcoyne, A.; Cheon, G.J.; Yoo, C.W.; Li, L.; Shao, Y.; et al. Multidisciplinary Perspectives on Newly Revised 2018 FIGO Staging of Cancer of the Cervix Uteri. J. Gynecol. Oncol. 2018, 30, e40. [Google Scholar] [CrossRef]
- Vallejo-Ruiz, V.; Gutiérrez-Xicotencatl, L.; Medina-Contreras, O.; Lizano, M. Molecular Aspects of Cervical Cancer: A Pathogenesis Update. Front. Oncol. 2024, 14, 1356581. [Google Scholar] [CrossRef] [PubMed]
- Su, H.-C.; Wu, S.-C.; Yen, L.-C.; Chiao, L.-K.; Wang, J.-K.; Chiu, Y.-L.; Ho, C.-L.; Huang, S.-M. Gene Expression Profiling Identifies the Role of Zac1 in Cervical Cancer Metastasis. Sci. Rep. 2020, 10, 11837. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Huang, W.; Zou, S.; Shen, Q.; Zhu, X. A Five-Genes-Based Prognostic Signature for Cervical Cancer Overall Survival Prediction. Int. J. Genom. 2020, 2020, 8347639. [Google Scholar] [CrossRef]
- Ju, M.; Qi, A.; Bi, J.; Zhao, L.; Jiang, L.; Zhang, Q.; Wei, Q.; Guan, Q.; Li, X.; Wang, L.; et al. A Five-mRNA Signature Associated with Post-translational Modifications Can Better Predict Recurrence and Survival in Cervical Cancer. J. Cell. Mol. Med. 2020, 24, 6283–6297. [Google Scholar] [CrossRef]
- Nguyen, N.N.Y.; Choi, T.G.; Kim, J.; Jung, M.H.; Ko, S.H.; Shin, Y.; Kang, I.; Ha, J.; Kim, S.S.; Jo, Y.H. A 70-Gene Signature for Predicting Treatment Outcome in Advanced-Stage Cervical Cancer. Mol. Ther. Oncol. 2020, 19, 47–56. [Google Scholar] [CrossRef]
- Changede, P. Staging of Cervical Cancer: What Has Changed? J. Obstet. Gynecol. India 2024, 74, 378–381. [Google Scholar] [CrossRef] [PubMed]
- Zuccherato, L.W.; Machado, C.M.T.; Magalhães, W.C.S.; Martins, P.R.; Campos, L.S.; Braga, L.C.; Teixeira-Carvalho, A.; Martins-Filho, O.A.; Franco, T.M.R.F.; Paula, S.O.C.; et al. Cervical Cancer Stem-Like Cell Transcriptome Profiles Predict Response to Chemoradiotherapy. Front. Oncol. 2021, 11, 639339. [Google Scholar] [CrossRef]
- Babraham Bioinformatics-FastQC A Quality Control Tool for High Throughput Sequence Data. Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 1 July 2025).
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A Flexible Trimmer for Illumina Sequence Data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast Universal RNA-Seq Aligner. Bioinformatics 2013, 29, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Dyer, S.C.; Austine-Orimoloye, O.; Azov, A.G.; Barba, M.; Barnes, I.; Barrera-Enriquez, V.P.; Becker, A.; Bennett, R.; Beracochea, M.; Berry, A.; et al. Ensembl 2025. Nucleic Acids Res. 2025, 53, D948–D957. [Google Scholar] [CrossRef] [PubMed]
- Rau, A.; Gallopin, M.; Celeux, G.; Jaffrézic, F. Data-Based Filtering for Replicated High-Throughput Transcriptome Sequencing Experiments. Bioinformatics 2013, 29, 2146–2152. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- R Core Team R: A Language and Environment for Statistical Computing. 2024. Available online: https://www.R-project.org/ (accessed on 25 February 2025).
- Kolde, R. Pheatmap: Pretty Heatmaps. Available online: https://raivokolde.r-universe.dev/pheatmap (accessed on 1 July 2025).
- Bengtsson, H. MatrixStats: Functions That Apply to Rows and Columns of Matrices (and to Vectors), R Package Version 0.52.2. 2017. Available online: https://github.com/HenrikBengtsson/matrixStats/ (accessed on 15 March 2025).
- Ren, J.; Du, Y.; Li, S.; Ma, S.; Jiang, Y.; Wu, C. Robust Network-based Regularization and Variable Selection for High-dimensional Genomic Data in Cancer Prognosis. Genet. Epidemiol. 2019, 43, 276–291. [Google Scholar] [CrossRef]
- Lánczky, A.; Győrffy, B. Web-Based Survival Analysis Tool Tailored for Medical Research (KMplot): Development and Implementation. J. Med. Internet Res. 2021, 23, e27633. [Google Scholar] [CrossRef]
- Győrffy, B. Integrated Analysis of Public Datasets for the Discovery and Validation of Survival-Associated Genes in Solid Tumors. Innovation 2024, 5, 100625. [Google Scholar] [CrossRef]
- Therneau, T. A Package for Survival Analysis in R, R Package Version 3.8-4. 2024. Available online: https://CRAN.R-project.org/package=survival/ (accessed on 15 June 2025).
- Witten, I.H.; Frank, E. Data Mining: Practical Machine Learning Tools and Techniques, Second Edition, 2nd ed.; Kaufmann, M., Ed.; Elsevier Science & Technology Books, Sony Electronics [Distributor]: San Francisco, CA, USA, 2005; ISBN 0120884070. [Google Scholar]
- Cancer Genome Atlas Research Network. Integrated Genomic and Molecular Characterization of Cervical Cancer. Nature 2017, 543, 378–384. [Google Scholar] [CrossRef]
- Gagliardi, A.; Porter, V.L.; Zong, Z.; Bowlby, R.; Titmuss, E.; Namirembe, C.; Griner, N.B.; Petrello, H.; Bowen, J.; Chan, S.K.; et al. Analysis of Ugandan Cervical Carcinomas Identifies Human Papillomavirus Clade–Specific Epigenome and Transcriptome Landscapes. Nat. Genet. 2020, 52, 800–810. [Google Scholar] [CrossRef] [PubMed]
- Occhiali, T.; Poli, A.; Arcieri, M.; Driul, L.; Ditto, A.; Bogani, G.; Mariani, A.; Scambia, G.; Restaino, S.; Vizzielli, G. The Exciting Journey of Progress: Exploring FIGO 2023 Staging for Endometrial Cancer at a Leading ESGO Institution. Eur. J. Surg. Oncol. 2025, 51, 109695. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Guo, T.; He, J.; Liu, D.; Peng, S.; Xu, A. SLC35A2-Mediated Bisected GlcNAc-Modified Extracellular Vesicles Enhance Immune Regulation in Breast Cancer Lung Metastasis. Int. Immunopharmacol. 2025, 154, 114505. [Google Scholar] [CrossRef]
- Chachadi, V.B.; Ali, M.F.; Cheng, P.-W. Prostatic Cell-Specific Regulation of the Synthesis of MUC1-Associated Sialyl Lewis a. PLoS ONE 2013, 8, e57416. [Google Scholar] [CrossRef]
- Sobocińska, J.; Molenda, S.; Machnik, M.; Oleksiewicz, U. KRAB-ZFP Transcriptional Regulators Acting as Oncogenes and Tumor Suppressors: An Overview. Int. J. Mol. Sci. 2021, 22, 2212. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Li, Q.; Chen, K.; Ni, W.; Zhan, Z.; Ye, F.; Li, Y.; Fang, Y.; Zhang, F.J.; Chen, L.; et al. Zinc Finger Protein 307 Functions as a Tumor-Suppressor and Inhibits Cell Proliferation by Inducing Apoptosis in Hepatocellular Carcinoma. Oncol. Rep. 2017, 38, 2229–2236. [Google Scholar] [CrossRef]
- Zhou, M.; Zhang, Z.; Zhao, H.; Bao, S.; Sun, J. A Novel LncRNA-Focus Expression Signature for Survival Prediction in Endometrial Carcinoma. BMC Cancer 2018, 18, 39. [Google Scholar] [CrossRef]
- Luo, S.; Lu, J.Y.; Liu, L.; Yin, Y.; Chen, C.; Han, X.; Wu, B.; Xu, R.; Liu, W.; Yan, P.; et al. Divergent LncRNAs Regulate Gene Expression and Lineage Differentiation in Pluripotent Cells. Cell Stem Cell 2016, 18, 637–652. [Google Scholar] [CrossRef]
- Brito, C.; Sousa, S. Non-Muscle Myosin 2A (NM2A): Structure, Regulation and Function. Cells 2020, 9, 1590. [Google Scholar] [CrossRef]
- Schramek, D.; Sendoel, A.; Segal, J.P.; Beronja, S.; Heller, E.; Oristian, D.; Reva, B.; Fuchs, E. Direct in Vivo RNAi Screen Unveils Myosin IIa as a Tumor Suppressor of Squamous Cell Carcinomas. Science 2014, 343, 309–313. [Google Scholar] [CrossRef] [PubMed]
- Hattori, Y.; Sentani, K.; Shinmei, S.; Oo, H.Z.; Hattori, T.; Imai, T.; Sekino, Y.; Sakamoto, N.; Oue, N.; Niitsu, H.; et al. Clinicopathological Significance of RCAN2 Production in Gastric Carcinoma. Histopathology 2019, 74, 430–442. [Google Scholar] [CrossRef]
- Lee, S.-K.; Ahnn, J. Regulator of Calcineurin (RCAN): Beyond Down Syndrome Critical Region. Mol. Cells 2020, 43, 671–685. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.; Hellwig, B.; Hammad, S.; Othman, A.; Lohr, M.; Chen, Z.; Boehm, D.; Gebhard, S.; Petry, I.; Lebrecht, A.; et al. A Comprehensive Analysis of Human Gene Expression Profiles Identifies Stromal Immunoglobulin κ C as a Compatible Prognostic Marker in Human Solid Tumors. Clin. Cancer Res. 2012, 18, 2695–2703. [Google Scholar] [CrossRef]
- Onieva, J.L.; Xiao, Q.; Berciano-Guerrero, M.-Á.; Laborda-Illanes, A.; de Andrea, C.; Chaves, P.; Piñeiro, P.; Garrido-Aranda, A.; Gallego, E.; Sojo, B.; et al. High IGKC-Expressing Intratumoral Plasma Cells Predict Response to Immune Checkpoint Blockade. Int. J. Mol. Sci. 2022, 23, 9124. [Google Scholar] [CrossRef]
- Li, Y.; Wang, P.; Ye, D.; Bai, X.; Zeng, X.; Zhao, Q.; Zhang, Z. IGHG1 Induces EMT in Gastric Cancer Cells by Regulating TGF-β/SMAD3 Signaling Pathway. J. Cancer 2021, 12, 3458–3467. [Google Scholar] [CrossRef]
- Zhao, J.; Peng, H.; Gao, J.; Nong, A.; Hua, H.; Yang, S.; Chen, L.; Wu, X.; Zhang, H.; Wang, J. Current Insights into the Expression and Functions of Tumor-Derived Immunoglobulins. Cell Death Discov. 2021, 7, 148. [Google Scholar] [CrossRef]
- Wang, G.; Li, H.; Pan, J.; Yan, T.; Zhou, H.; Han, X.; Su, L.; Hou, L.; Xue, X. Upregulated Expression of Cancer-Derived Immunoglobulin G Is Associated With Progression in Glioma. Front. Oncol. 2021, 11, 758856. [Google Scholar] [CrossRef]
- Hsu, H.-M.; Chu, C.-M.; Chang, Y.-J.; Yu, J.-C.; Chen, C.-T.; Jian, C.-E.; Lee, C.-Y.; Chiang, Y.-T.; Chang, C.-W.; Chang, Y.-T. Six Novel Immunoglobulin Genes as Biomarkers for Better Prognosis in Triple-Negative Breast Cancer by Gene Co-Expression Network Analysis. Sci. Rep. 2019, 9, 4484. [Google Scholar] [CrossRef]
- Mon, M.M.; Srisomsap, C.; Chokchaichamnankit, D.; Watcharatanyatip, K.; Weeraphan, C.; Svasti, J.; Maneechai, K.; Thongsuksai, P.; Raungrut, P. Serum Proteomic Profiling Reveals Differentially Expressed IGHG3 and A1AG1 as Potential Predictors of Chemotherapeutic Response in Advanced Non-Small Cell Lung Cancer. Anticancer Res. 2021, 41, 1871–1882. [Google Scholar] [CrossRef] [PubMed]
- Larsson, C.; Ehinger, A.; Winslow, S.; Leandersson, K.; Klintman, M.; Dahl, L.; Vallon-Christersson, J.; Häkkinen, J.; Hegardt, C.; Manjer, J.; et al. Prognostic Implications of the Expression Levels of Different Immunoglobulin Heavy Chain-Encoding RNAs in Early Breast Cancer. npj Breast Cancer 2020, 6, 28. [Google Scholar] [CrossRef] [PubMed]
- Saini, S.K.; Sharma, D.N.; Chauhan, S.; Srivastava, S.; Gopishankar, N.; Subramani, V. Precision Prediction of Cervical Cancer Outcomes: A Machine Learning Approach to Recurrence and Survival Analysis. J. Cancer Res. Ther. 2025, 21, 538–546. [Google Scholar] [CrossRef] [PubMed]
TCGA-CESC | CGCI-HTMCP-CC | KMplotter | |
---|---|---|---|
Method | RNAseq | RNAseq | RNAseq |
Cases | 306 | 212 | 304 |
Cases with Gene Expression | 303 | 123 | 304 |
FIGO II Stage cases | 70 | 91 | NA |
Cases with Treatment Outcome | 39 | 34 | 174 |
OS time | Yes | Yes | Yes |
PFS time | No | No | Yes |
Reference | [29] | [30] | [26] |
PP Group n = 8 | GP Group n = 7 | Total (%) n = 15 | |
---|---|---|---|
Median age (years) | 39 | 64 | 48 |
Diagnosis | |||
SCC | 7 (88%) | 7 (100%) | 14 (93%) |
Adenocarcinoma | 1 (12%) | - | 1 (7%) |
Histological grade | |||
II | 4 (50%) | 4 (57%) | 8 (53%) |
III | 3 (38%) | 3 (43%) | 6 (40%) |
IV | 1 (12%) | - | 1 (7%) |
FIGO stage | |||
IIA | 1 (12%) | - | 1 (7%) |
IIB | 7 (88%) | 7 (100%) | 14 (93%) |
Tumor size (cm) | |||
>4 cm | 7 (88%) | 4 (57%) | 11 (73%) |
≤4 cm | - | 3 (43%) | 3 (20%) |
NA | 1 (12%) | - | 1 (7%) |
Parametrial Involvement | |||
Bilaterally | 1 (12%) | 5 (71%) | 6 (40%) |
Unilaterally | 6 (76%) | 2 (29%) | 8 (53%) |
Free | 1 (12%) | - | 1 (7%) |
Vaginal Involvement | |||
Present | 8 (100%) | 4 (57%) | 12 (80%) |
Absent | - | 2 (29%) | 2 (13%) |
NA | - | 1 (14%) | 1 (7%) |
Distant metastasis after treatment | |||
Yes | 8 (100%) | - | 8 (53%) |
No | - | 7 (100%) | 7 (47%) |
Progression-Free Survival HR (95% CI), p | ||
---|---|---|
mRNA | Internal Cohort (n = 15) | External Cohort (n = 174) |
B3GALT1 | 5.11 (1.02–25.55) p = 0.027 | 4.7 (1.96–11.26) p = 0.0001 |
GTF3C2-AS1 | 18.73 (2.22–157.61) p = 0.0003 | 2.38 (1.05–5.39) p = 0.033 |
IKZF2 | 6.74 (1.33–34.24) p = 0.0087 | 1.24 (0.56–2.74) p = 0.59 |
MUC1 | 0.07 (0.01–0.58) p = 0.002 | 1.84 (0.81–4.17) p = 0.14 |
MYH9-DT | 0.1 (0.01–0.85) p = 0.011 | NA |
PRKD1 | 0.09 (0.01–0.74) p = 0.0052 | 2.14 (0.94–4.85) p = 0.063 |
YWHAH | 0 (0–inf) p = 0.0001 | 0.85 (0.39–1.86) p = 0.68 |
ZKSCAN4 | 5.18 (1.04–25.95) p = 0.026 | 3.28 (1.31–8.22) p = 0.0072 |
Progression-Free Survival HR (95% CI), p | ||
---|---|---|
mRNA | Internal Cohort (n = 15) | External Cohort (n = 174) |
GTF3C2_AS1 | 18.73 (2.22–157.61) p = 0.0003 | 2.38 (1.05–5.39) p = 0.033 |
HSPA1B | 0.22 (0.04–1.13) p = 0.049 | 1.23 (0.56–2.72) p = 0.6 |
IGHG1 | 0.07 (0.01–0.58) p = 0.002 | NA |
IGHG3 | 0.07 (0.01–0.58) p = 0.002 | NA |
IGKC | 0.19 (0.04–0.99) p = 0.03 | NA |
KRT17 | 0.07 (0.01–0.58) p = 0.002 | 1.31 (0.59–2.89) p = 0.5 |
RCAN2-DT | 5.64 (1.12–28.49) p = 0.019 | NA |
RNF145 | 0.19 (0.04–0.99) p = 0.03 | 1.01 (0.46–2.22) p = 0.98 |
Input Data | |||
---|---|---|---|
Parameter | All DEGs (n = 355) | z-Score Selection (n = 15) | Network-Based Selection (n = 26) |
Accuracy | 60.0% | 93.3% | 93.3% |
Specificity | 57.1% | 100% | 100% |
Sensitivity | 62.5% | 88.9% | 88.9% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melo, C.P.S.; Melo, A.B.; Queiroz, F.R.; Costa, Á.P.; Amaral, L.R.; Pereira, R.A.; Amorim, I.F.G.; Ferreira, J.G.G.; Jeremias, W.J.; Bertarini, P.L.L.; et al. Differentially Expressed Genes Identify FIGO Stage II Cervical Cancer Patients with a Higher Risk of Relapse in a Small Cohort. J. Pers. Med. 2025, 15, 497. https://doi.org/10.3390/jpm15100497
Melo CPS, Melo AB, Queiroz FR, Costa ÁP, Amaral LR, Pereira RA, Amorim IFG, Ferreira JGG, Jeremias WJ, Bertarini PLL, et al. Differentially Expressed Genes Identify FIGO Stage II Cervical Cancer Patients with a Higher Risk of Relapse in a Small Cohort. Journal of Personalized Medicine. 2025; 15(10):497. https://doi.org/10.3390/jpm15100497
Chicago/Turabian StyleMelo, Carolina P. S., Angelo B. Melo, Fábio R. Queiroz, Álvaro P. Costa, Laurence R. Amaral, Ramon A. Pereira, Izabela F. G. Amorim, Jorge G. G. Ferreira, Wander J. Jeremias, Pedro L. L. Bertarini, and et al. 2025. "Differentially Expressed Genes Identify FIGO Stage II Cervical Cancer Patients with a Higher Risk of Relapse in a Small Cohort" Journal of Personalized Medicine 15, no. 10: 497. https://doi.org/10.3390/jpm15100497
APA StyleMelo, C. P. S., Melo, A. B., Queiroz, F. R., Costa, Á. P., Amaral, L. R., Pereira, R. A., Amorim, I. F. G., Ferreira, J. G. G., Jeremias, W. J., Bertarini, P. L. L., Gomes, M. S., Braga, L. C., & Salles, P. G. O. (2025). Differentially Expressed Genes Identify FIGO Stage II Cervical Cancer Patients with a Higher Risk of Relapse in a Small Cohort. Journal of Personalized Medicine, 15(10), 497. https://doi.org/10.3390/jpm15100497