Personalizezed Hemodynamic Optimization Using Stroke Volume, Pulse Pressure Variation, and Continuous Cardiac Index in Major Liver Surgery: A Randomized Controlled Trial
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Protocol
2.2. Randomization and Group Allocation
2.3. Intraoperative Management
2.4. GDHT Group
2.5. Control Group
2.6. Postoperative Management
2.7. Endpoints
2.7.1. Primary Endpoint
2.7.2. Secondary Endpoints
2.8. Statistical Analysis
3. Results
3.1. Intra- and Postoperative Laboratory Parameters
3.2. Fluids and Catecholamines
3.2.1. Fluid Management
3.2.2. Vasopressor
3.3. Complications and Outcome
3.4. Hemodynamic Changes in the GDHT Group
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SVV | Stroke volume variation. |
PPV | Pulse pressure variation. |
PM | Pringle maneuver. |
PVC | Central venous pressure. |
PAOP | Pulmonary artery occlusion pressure. |
Eadyn | Elastance |
GDHT | Goal-directed hemodynamic therapy. |
CO | Cardiac output. |
IC | Cardiac index. |
PACU | Post-anesthetic care unit. |
ASA | American Society of Anesthesiology. |
AST | Aspartate transaminase. |
ALT | Alanine transaminase. |
SVR | Systemic vascular resistance. |
MAP | Mean arterial pressure. |
SAP | Systolic arterial pressure |
DAP | Diastolic arterial pressure |
HR | Heart rate. |
References
- Abdelmalak, J.; Strasser, S.I.; Ngu, N.; Dennis, C.; Sinclair, M.; Majumdar, A.; Collins, K.; Bateman, K.; Dev, A.; Abasszade, J.H.; et al. Improved Survival Outcomes with Surgical Resection Compared to Ablative Therapy in Early-Stage HCC: A Large, Real-World, Propensity-Matched, Multi-Centre, Australian Cohort Study. Cancers 2023, 15, 5741. [Google Scholar] [CrossRef] [PubMed]
- Ferrero, A.; Russolillo, N.; Viganò, L.; Lo Tesoriere, R.; Muratore, A.; Capussotti, L. Does Pringle maneuver affect survival in patients with colorectal liver metastases? World J. Surg. 2010, 34, 2418–2425. [Google Scholar] [CrossRef]
- Liu, T.S.; Shen, Q.H.; Zhou, X.Y.; Shen, X.; Lai, L.; Hou, X.M.; Liu, K. Application of controlled low central venous pressure during hepatectomy: A systematic review and meta-analysis. J. Clin. Anesth 2021, 75, 110467. [Google Scholar] [CrossRef]
- Messina, A.; Grieco, D.L.; Alicino, V.; Cecconi, M.; Teboul, J.L.; Monnet, X. Assessing fluid responsiveness by using functional hemodynamic tests in critically ill patients: A narrative review and a profile-based clinical guide. J. Clin. Monit. Comput. 2025, 39, 481–493. [Google Scholar] [CrossRef]
- Kim, J.H. Should low central venous pressure be maintained during liver transplantation? Open Anesthesiol. J. 2017, 11, 17–24. [Google Scholar] [CrossRef]
- Niemann, C.U.; Feiner, J.; Behrends, M.; Eilers, H.; Ascher, N.L.; Roberts, J.P. Central venous pressure monitoring during living right donor hepatectomy. Liver Transplant. 2007, 13, 266–271. [Google Scholar] [CrossRef] [PubMed]
- Vos, J.J.; Kalmar, A.F.; Struys, M.M.R.F.; Wietasch, J.K.G.; Hendriks, H.G.D.; Scheeren, T.W.L. Comparison of arterial pressure and plethysmographic waveform-based dynamic preload variables in assessing fluid responsiveness and dynamic arterial tone in patients undergoing major hepatic resection. Br. J. Anaesth. 2013, 110, 940–946. [Google Scholar] [CrossRef]
- Monnet, X.; Shi, R.; Teboul, J.L. Prediction of fluid responsiveness. What’s new? Ann. Intensive Care 2022, 12, 46. [Google Scholar] [CrossRef]
- Pinsky, M.R. Heart lung interactions during mechanical ventilation. Curr. Opin. Crit. Care 2012, 18, 256–260. [Google Scholar] [CrossRef]
- Lorente, J.V.; Hahn, R.G.; Jover, J.L.; Del Cojo, E.; Hervías, M.; Jiménez, I.; Uña, R.; Clau-Terré, F.; Monge, M.I.; Llau, J.V.; et al. Role of crystalloids in the perioperative setting: From basics to clinical applications and enhanced recovery protocols. J. Clin. Med. 2023, 12, 5930. [Google Scholar] [CrossRef]
- Messina, A.; Robba, C.; Calabrò, L.; Zambelli, D.; Iannuzzi, F.; Molinari, E.; Scarano, S.; Battaglini, D.; Baggiani, M.; De Mattei, G.; et al. Association between perioperative fluid administration and postoperative outcomes: A 20-year systematic review and meta-analysis of randomized goal-directed trials in major visceral/noncardiac surgery. Crit. Care 2021, 25, 43. [Google Scholar] [CrossRef]
- Calvo-Vecino, J.M.; Ripollés-Melchor, J.; Mythen, M.G.; Casans-Francés, R.; Balik, A.; Artacho, J.P.; Martínez-Hurtado, E.; Romero, A.S.; Pérez, C.F.; de Lis, S.A.; et al. Effect of goal-directed haemodynamic therapy on postoperative complications in low–moderate risk surgical patients: A multicentre randomised controlled trial (FEDORA trial). Br. J. Anaesth. 2018, 120, 734–744. [Google Scholar] [CrossRef] [PubMed]
- Cecconi, M.; Fasano, N.; Langiano, N.; Divella, M.; Costa, M.G.; Rhodes, A.; Rocca, G.D. Goal-directed haemodynamic therapy during elective total hip arthroplasty under regional anaesthesia. Crit. Care 2011, 15, R132. [Google Scholar] [CrossRef]
- Kukralova, L.; Dostalova, V.; Cihlo, M.; Kraus, J.; Dostal, P. The impact of individualized hemodynamic management on intraoperative fluid balance and hemodynamic interventions during spine surgery in the prone position: A prospective randomized trial. Medicina 2022, 58, 1683. [Google Scholar] [CrossRef] [PubMed]
- Hopewell, S.; Chan, A.W.; Collins, G.S.; Moher, D.; Schulz, K.F.; Altman, D.G. CONSORT 2025 statement: Updated guideline for reporting randomised trials. Can. J. Emerg. Med. 2025, 27, 418. [Google Scholar] [CrossRef]
- Keats, A.S. The ASA classification of physical status—A recapitulation. Anesthesiology 1978, 49, 233–236. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Q.; Zhu, Y.; Yang, Y.; Xu, W.; Zhao, Y.; Liu, Y.; Xue, W.; Fang, Y.; Huang, J. Effect of perioperative goal-directed fluid therapy on postoperative complications after thoracic surgery with one-lung ventilation: A systematic review and meta-analysis. World J. Surg. Oncol. 2023, 21, 257. [Google Scholar] [CrossRef]
- Pearse, R.M.; Harrison, D.A.; MacDonald, N.; Gillies, M.A.; Welch, N.J.; Griggs, K.; Scott, M.; Bellingan, G.; Hopkins, P.; Rowan, K.M. Effect of a perioperative, cardiac output-guided hemodynamic therapy algorithm on outcomes following major gastrointestinal surgery: A randomized clinical trial and systematic review. JAMA 2014, 311, 2181–2190. [Google Scholar] [CrossRef]
- Joosten, A.; Wilets, I.; Naik, B.I.; Jabaudon, M.; Lehot, J.J.; Cannesson, M. Long-term impact of crystalloid versus colloid solutions on renal function and disability-free survival after major abdominal surgery. Anesthesiology 2019, 130, 227–236. [Google Scholar] [CrossRef]
- Rahimi, P.; Aşar, S.; Soylu, N.B.; Yücel Yenice, T.; Canan, E.; Çukurova, Z. Driving down mortality: A 12-year retrospective cohort analysis of mechanical power and driving pressure in ventilated ICU patients. Medicina 2025, 61, 1668. [Google Scholar] [CrossRef]
- Suarez, D. Changes in arterial pressure during mechanical ventilation. J. Labor Childbirth 2022, 5, 113–115. [Google Scholar] [CrossRef]
- Hofer, C.K.; Zalunardo, M.P.; Klaghofer, R.; Spahn, D.R. Therapeutic impact of intra-operative transoesophageal echocardiography during noncardiac surgery. Anaesthesia 2004, 59, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Chaves, R.C.F.; Barbas, C.S.V.; Queiroz, V.N.F.; Neto, A.S.; Deliberato, R.O.; Pereira, A.J.; Timenetsky, K.T.; Silva Júnior, J.M.; Takaoka, F.; de Backer, D.; et al. Assessment of fluid responsiveness using pulse pressure variation, stroke volume variation, plethysmographic variability index, central venous pressure, and inferior vena cava variation in patients undergoing mechanical ventilation: A systematic review and meta-analysis. Crit. Care 2024, 28, 289. [Google Scholar] [CrossRef]
- Tan, S.Y.L.; Hwang, N.C. Total intravenous anesthesia for liver resections: Anesthetic implications and safety. Korean J. Anesthesiol. 2022, 75, 363–370. [Google Scholar] [CrossRef]
- Yerdon, A.; Taylor, K.; Woodfin, K.; Richey, R.; McMullan, S.; Chappell, D. Goal-directed therapy: What is the goal again? Perioper. Med. 2025, 14, 57. [Google Scholar] [CrossRef]
- Bharathy, K.G.S.; Shenvi, S. Portal hemodynamics after living-donor liver transplantation: Management for optimal graft and patient outcomes—A narrative review. Transplantology 2023, 4, 38–58. [Google Scholar] [CrossRef]
- Sparrelid, E.; Olthof, P.B.; Dasari, B.V.M.; Erdmann, J.I.; Santol, J.; Starlinger, P.; Gilg, S. Current evidence on posthepatectomy liver failure: Comprehensive review. BJS Open 2022, 6, zrac142. [Google Scholar] [CrossRef]
- Pearse, R.; Dawson, D.; Fawcett, J.; Rhodes, A.; Grounds, R.M.; Bennett, E.D. Early goal-directed therapy after major surgery reduces complications and duration of hospital stay. A randomised, controlled trial. Crit. Care 2005, 9, R687–R693. [Google Scholar] [CrossRef]
- Kuper, M.; Gold, S.J.; Callow, C.; Quraishi, T.; King, S.; Mulreany, A.; Bianchi, M.; Conway, D.H. Intraoperative fluid management guided by oesophageal Doppler monitoring. BMJ 2011, 342, d3016. [Google Scholar] [CrossRef]
- Yoshino, O.; Perini, M.V.; Christophi, C.; Weinberg, L. Perioperative fluid management in major hepatic resection: An integrative review. Hepatobiliary Pancreat. Dis. Int. 2017, 16, 458–469. [Google Scholar]
Demographic Characteristics and Baseline Laboratory Parameters | Control N = 16 | GDHT N = 19 | p-Value |
---|---|---|---|
Gender (male) | 10 ± 6 | 11 ± 8 | 0.528 |
Age (years) | 68.38 ± 8.9 | 62.37 ± 12.3 | 0.116 |
Weight (kg) | 76.44 ± 14.4 | 76.47 ± 15.1 | 0.99 |
ASA (II/III) | 10 ± 6 | 13 ± 6 | 0.495 |
Cardiovascular disease | 5 ± 16 | 2 ± 19 | 0.135 |
Respiratory disese | 2 ± 16 | 3 ± 19 | 0.598 |
Preoperative Hemoglobin (mg/dL) | 13.3 ± 1.5 | 13.6 ± 1.4 | 0.541 |
Prothrombine Activity (%) | 97.31 ± 5.3 | 97 ± 5.5 | 0.868 |
Platelet count (×103/mm3 ) | 23 ± 9.4 | 21 ± 6.1 | 0.456 |
Bilirrubin (mg/dL) | 1.2 ± 1.6 | 0.88 ± 0.6 | 0.416 |
Glucose (mg/dL) | 108.7 ± 33.3 | 119.7 ± 41.4 | 0.399 |
Creatinin (mg/dL) | 0.9 ± 0.21 | 0.8 ± 0.26 | 0.235 |
Amylase (UI/L) | 47.07 ± 24.04 | 35.33 ± 14.4 | 0.133 |
AST/GOT (UI/L) | 37.55 ± 39.5 | 41.47 ± 40.02 | 0.806 |
ALT/GPT (UI/L) | 44.1 ± 60.8 | 45.8 ± 72.1 | 0.968 |
Laboratory Parameters Before Resection Hepatic | Control N = 16 | GDHT N = 19 | p-Value |
---|---|---|---|
Hemoglobin (mg/dL) | 12.2 ± 1.7 | 12.13 ± 1.6 | 0.821 |
Hemtocrit (%) | 26.6 ± 5.2 | 36.6 ± 4.9 | 0.984 |
Prothrombine Activity (%) | 86.88 ± 11.1 | 93.26 ± 6.07 | 0.045 |
AST/GOT (UI/L) | 171.7 ± 136.7 | 141.21 ± 129.17 | 0.502 |
ALT/GPT (UI/L) | 169.44 ± 139.6 | 108.53 ± 92.2 | 0.132 |
Glucose (mg/dL) | 154.1 ± 29.7 | 162.21 ± 55.02 | 0.229 |
Creatinin (mg/dL) | 0.9 ± 0.211 | 0.8 ± 0.26 | 0.229 |
Lactate (mg/dL) | 14.8 ± 9.7 | 12.4 ± 7.9 | 0.429 |
pH | 7.38 ± 0.05 | 7.3 ± 0.05 | 0.968 |
Base excess | −1.5 ± 3.3 | −1.5 ± 2.8 | 0.946 |
Laboratoy Parameters After Resection Hepatic | Control N = 16 | GDHT N = 19 | p-Value |
Hemoglobin (mg/dL) | 11.7 ± 1.8 | 11.2 ± 1.9 | 0.458 |
Hemtocrit (%) | 35.3 ± 5.7 | 35.9 ± 5.6 | 0.458 |
Prothrombine Activity (%) | 79.06 ± 16.69 | 83.21 ± 11.4 | 0.392 |
AST/GOT (UI/L) | 537.06 ± 362.19 | 313.5 ± 214.2 | 0.03 |
ALT/GPT (UI/L) | 407.88 ± 246.41 | 236.89 ± 160.4 | 0.019 |
Glucose (mg/dL) | 173.25 ± 35.7 | 146.84 ± 36.1 | 0.038 |
Creatinin (mg/dL) | 1.01 ± 0.35 | 0.89 ± 0.2 | 0.278 |
Lactate (mg/dL) | 23.5 ± 14.06 | 18 ± 13.06 | 0.239 |
pH | 7.31 ± 0.06 | 7.32 ± 0.05 | 0.495 |
Base excess | −5.1 ± 4.66 | −2.7 ± 2.8 | 0.278 |
Laboratoy Parameters 3rd Postoperative Day | Control N = 16 | GDHT N = 19 | p-Value |
Hemoglobin (mg/dL) | 10.32 ± 1.81 | 10.21 ± 1.7 | 0.849 |
Hemtocrit (%) | 30.93 ± 5.49 | 20.98 ± 5.35 | 0.978 |
Prothrombine Activity (%) | 72.31 ± 14.82 | 73.05 ± 9.79 | 0.861 |
AST/GOT (UI/L) | 166.38 ± 89.75 | 174.5 ± 152.29 | 0.86 |
ALT/GPT (UI/L) | 236.81 ± 138.58 | 243.32 ± 190.35 | 0.91 |
Glucose (mg/dL) | 110.75 ± 36.5 | 115.05 ± 30.6 | 0.707 |
Creatinin (mg/dL) | 1.29 ± 1.16 | 1.04 ± 0.826 | 0.462 |
Lactate (mg/dL) | 10.25 ± 3.55 | 10.11 ± 4.2 | 0.415 |
pH | 7.39 ± 0.03 | 7.39 ± 0.05 | 0.666 |
Base excess | 1.7 ± 3.4 | 1.8 ± 2.06 | 0.928 |
Fluid Management | Control N = 16 | GDHT N = 19 | p-Value |
---|---|---|---|
Blood loss (mL) | 728.13 ± 618.59 | 292.63 ± 274.06 | 0.009 |
Static phase volumen infused (mL) | 1403.13 ± 1146.51 | 276.32 ± 189.56 | 0.001 |
Dynamic phase volumen infused (mL) | 1450 ± 815.06 | 849.47 ± 669.74 | 0.023 |
Total volumen infused (mL) | 2853.13 ± 1432.18 | 1125.79 ± 751.2 | 0.001 |
Urinary output (mL) | 430.63 ± 310.26 | 206.84 ± 133.2 | 0.007 |
Others outomes | |||
Duration of resection (min) | 82.19 ± 29.9 | 49.05 ± 18.5 | 0.001 |
Duration of surgery (min) | 232.5 ± 65.9 | 210.42 ± 59.25 | 0.304 |
Intraoperative use of vasopressor (n) | 6 ± 16 | 6 ± 19 | 0.495 |
Intraoperative transfusion (n) | 6 ± 16 | 0 ± 19 | 0.005 |
Postoperative (Intensive Unit) use of vasopressor (n) | 6 ± 16 | 4 ± 19 | 0.311 |
Postoperative transfusion (n) | 7 ± 15 | 5 ± 19 | 0.192 |
Complications (n) | 8 ± 16 | 7 ± 18 | 0.38 |
Hospital length of stay (days) | 4.19 ± 4.07 | 3.42 ± 1.9 | 0.471 |
Intensive care unit length of stay (days) | 10.69 ± 9.01 | 10.05 ± 3.8 | 0.783 |
Mortality at 180 days follow-up (n) | 2 ± 16 | 0 ± 19 | 0.171 |
Global mortality (n) | 5 ± 16 | 4 ± 19 | 0.381 |
T1 | T2 | T3 | p-Value T2 vs. T1 | p-Value T3 vs. T2 | |
---|---|---|---|---|---|
CI (L/min/m2) | 2.85 ± 0.54 | 2.7 ± 0.58 | 3 ± 0.61 | 0.732 | 0.087 |
PPV | 17.21 ± 8.18 | 19.37 ± 7.96 | 8.47 ± 1.5 | 0.286 | 0.001 |
SVV | 16.53 ± 5.81 | 19.84 ± 7.05 | 9.95 ± 1.31 | 0.088 | 0.001 |
SVR (dyn·s/cm5) | 2134.79 ± 584.76 | 2199.47 ± 549 | 1980 ± 592.46 | 1 | 0.159 |
MAP (mmHg) | 83.58 ± 18.74 | 80.32 ± 13.42 | 79.68 ± 16.9 | 0.494 | 0.732 |
SAP (mmHg) | 114.74 ± 23.31 | 112 ± 19.37 | 117.58 ± 20.88 | 0.702 | 0.153 |
DAP (mmHg) | 64 ± 14.58 | 64.37 ± 13.03 | 60.88 ± 14.38 | 0.887 | 0.26 |
HR (beats min−1) | 75.74 ± 16.41 | 82.26 ± 18.19 | 70.53 ± 14.02 | 0.016 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Redondo Calvo, F.J.; Baladrón González, V.; Padilla Valverde, D.; Redondo Sánchez, J.; Villarejo Campos, P.J.; Montenegro Herrera, O.; Faba Martín, P.; Villazala González, R.; Bodoque Villar, R.; Padin, J.F.; et al. Personalizezed Hemodynamic Optimization Using Stroke Volume, Pulse Pressure Variation, and Continuous Cardiac Index in Major Liver Surgery: A Randomized Controlled Trial. J. Pers. Med. 2025, 15, 457. https://doi.org/10.3390/jpm15100457
Redondo Calvo FJ, Baladrón González V, Padilla Valverde D, Redondo Sánchez J, Villarejo Campos PJ, Montenegro Herrera O, Faba Martín P, Villazala González R, Bodoque Villar R, Padin JF, et al. Personalizezed Hemodynamic Optimization Using Stroke Volume, Pulse Pressure Variation, and Continuous Cardiac Index in Major Liver Surgery: A Randomized Controlled Trial. Journal of Personalized Medicine. 2025; 15(10):457. https://doi.org/10.3390/jpm15100457
Chicago/Turabian StyleRedondo Calvo, Francisco Javier, Víctor Baladrón González, David Padilla Valverde, Jorge Redondo Sánchez, Pedro Juan Villarejo Campos, Omar Montenegro Herrera, Patricia Faba Martín, Rubén Villazala González, Raquel Bodoque Villar, Juan Fernando Padin, and et al. 2025. "Personalizezed Hemodynamic Optimization Using Stroke Volume, Pulse Pressure Variation, and Continuous Cardiac Index in Major Liver Surgery: A Randomized Controlled Trial" Journal of Personalized Medicine 15, no. 10: 457. https://doi.org/10.3390/jpm15100457
APA StyleRedondo Calvo, F. J., Baladrón González, V., Padilla Valverde, D., Redondo Sánchez, J., Villarejo Campos, P. J., Montenegro Herrera, O., Faba Martín, P., Villazala González, R., Bodoque Villar, R., Padin, J. F., Muñoz-Rodríguez, J. R., & Bejarano Ramírez, N. (2025). Personalizezed Hemodynamic Optimization Using Stroke Volume, Pulse Pressure Variation, and Continuous Cardiac Index in Major Liver Surgery: A Randomized Controlled Trial. Journal of Personalized Medicine, 15(10), 457. https://doi.org/10.3390/jpm15100457