Parathyroid Hormone (PTH)-Related Peptides Family: An Intriguing Role in the Central Nervous System
Abstract
:1. Introduction
2. PTH and PTH Type 1 Receptor: Role and Signaling Pathways
3. What Do We Know about PTH–PTH1R in the Brain?
3.1. Distribution of PTH/PTHrP-PTH1R in CNS
3.2. Effects of the PTH/PTHrP-PTH1R System on the CNS
4. PTH2R and Its Ligands: Expression and Role in the Brain
4.1. PTH2R Structure and Functions
4.2. TIP39/PTH2R System in Brain
5. PTH and Brain: Evidence from Clinical Settings
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Suarez-Bregua, P.; Cal, L.; Cañestro, C.; Rotllant, J. PTH Reloaded: A New Evolutionary Perspective. Front. Physiol. 2017, 8, 776. [Google Scholar] [CrossRef]
- Potts, J.T. Parathyroid hormone: Past and present. J. Endocrinol. 2005, 187, 311–325. [Google Scholar] [CrossRef] [PubMed]
- Venkatakrishnan, A.J.; Deupi, X.; Lebon, G.; Tate, C.G.; Schertler, G.F.; Babu, M.M. Molecular signatures of G-protein-coupled receptors. Nature 2013, 494, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Usdin, T.B.; Gruber, C.; Bonner, T.I. Identification and Functional Expression of a Receptor Selectively Recognizing Parathyroid Hormone, the PTH2 Receptor. J. Biol. Chem. 1995, 270, 15455–15458. [Google Scholar] [CrossRef]
- Rubin, D.A.; Jüppner, H. Zebrafish Express the Common Parathyroid Hormone/Parathyroid Hormone-related Peptide Receptor (PTH1R) and a Novel Receptor (PTH3R) That Is Preferentially Activated by Mammalian and Fugufish Parathyroid Hormone-related Peptide. J. Biol. Chem. 1999, 274, 28185–28190. [Google Scholar] [CrossRef] [PubMed]
- Hoare, S.; Usdin, S.R.H.A.T.B. Molecular Mechanisms of Ligand Recognition by Parathyroid Hormone 1 (PTH1) and PTH2 Receptors. Curr. Pharm. Des. 2001, 7, 689–713. [Google Scholar] [CrossRef]
- Hoare, S.R.; Gardella, T.J.; Usdin, T.B. Evaluating the signal transduction mechanism of the parathyroid hormone 1 receptor. Effect of receptor-G-protein interaction on the ligand binding mechanism and receptor conformation. J. Biol. Chem. 2001, 276, 7741–7753. [Google Scholar] [CrossRef] [PubMed]
- Gensure, R.C.; Gardella, T.J.; Jüppner, H. Parathyroid hormone and parathyroid hormone-related peptide, and their receptors. Biochem. Biophys. Res. Commun. 2005, 328, 666–678. [Google Scholar] [CrossRef]
- Saponaro, F.; Alfi, G.; Cetani, F.; Matrone, A.; Mazoni, L.; Apicella, M.; Pardi, E.; Borsari, S.; Laurino, M.; Lai, E.; et al. Serum calcium levels are associated with cognitive function in hypoparathyroidism: A neuropsychological and biochemical study in an Italian cohort of patients with chronic post-surgical hypoparathyroidism. J. Endocrinol. Investig. 2022, 45, 1909–1918. [Google Scholar] [CrossRef]
- Aggarwal, S.; Kailash, S.; Sagar, R.; Tripathi, M.; Sreenivas, V.; Sharma, R.; Gupta, N.; Goswami, R. Neuropsychological dysfunction in idiopathic hypoparathyroidism and its relationship with intracranial calcification and serum total calcium. Eur. J. Endocrinol. 2013, 168, 895–903. [Google Scholar] [CrossRef]
- Chen, T.; Wang, Y.; Hao, Z.; Hu, Y.; Li, J. Parathyroid hormone and its related peptides in bone metabolism. Biochem. Pharmacol. 2021, 192, 114669. [Google Scholar] [CrossRef] [PubMed]
- Silva, B.C.; Bilezikian, J.P. Parathyroid hormone: Anabolic and catabolic actions on the skeleton. Curr. Opin. Pharmacol. 2015, 22, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Jonsson, K.B.; John, M.R.; Gensure, R.C.; Gardella, T.J.; Jüppner, H. Tuberoinfundibular peptide 39 binds to the parathyroid hormone (PTH)/PTH-related peptide receptor, but functions as an antagonist. Endocrinology 2001, 142, 704–709. [Google Scholar] [CrossRef] [PubMed]
- Sutkeviciute, I.; Clark, L.J.; White, A.D.; Gardella, T.J.; Vilardaga, J.P. PTH/PTHrP Receptor Signaling, Allostery, and Structures. Trends Endocrinol. Trends Endocrinol. Metab. 2019, 30, 860–874. [Google Scholar] [CrossRef]
- Balabanova, S.; King, O.; Teller, W.M.; Reinhardt, G. Distribution and concentration of immunoreactive parathyroid hormone in brain and pituitary of sheep. J. Mol. Med. 1985, 63, 419–422. [Google Scholar] [CrossRef]
- Harvey, S.; Hayer, S. Parathyroid hormone binding sites in the brain. Peptides 1993, 14, 1187–1191. [Google Scholar] [CrossRef]
- Joborn, C.; Hetta, J.; Niklasson, F.; Rastad, J.; Wide, L.; Agren, H.; Akerstrom, G.; Ljunghall, S. Cerebrospinal fluid calcium, parathyroid hormone, and monoamine and purine metabolites and the blood-brain barrier function in primary hyperparathyroidism. Psychoneuroendocrinology 1991, 16, 311–322. [Google Scholar] [CrossRef]
- Kaleem, I.; Alexander, J.; Hisbulla, M.; Kannichamy, V.; Mishra, V.; Banerjee, A.; Gandhi, A.B.; Khan, S. A Review of the Relationship of the Cerebrospinal Fluid Changes during the Dysregulation of Parathyroid Hormone with Psychiatric or Neurological Manifestations. Cureus 2021, 13, e12679. [Google Scholar] [CrossRef]
- Hull, K.L.; Fathimani, K.; Sharma, P.; Harvey, S. Calcitropic peptides: Neural perspectives. Comp. Biochem. Physiol. C Pharmacol. Toxicol. Endocrinol. 1998, 119, 389–410. [Google Scholar] [CrossRef]
- Eggenberger, M.; Flühmann, B.; Muff, R.; Lauber, M.; Lichtensteiger, W.; Hunziker, W.; Fischer, J.; Born, W. Structure of a parathyroid hormone/parathyroid hormone-related peptide receptor of the human cerebellum and functional expression in human neuroblastoma SK-N-MC cells. Mol. Brain Res. 1996, 36, 127–136. [Google Scholar] [CrossRef]
- Weaver, D.; Deeds, J.D.; Lee, K.; Segre, G.V. Localization of parathyroid hormone-related peptide (PTHrP) and PTH/PTHrP receptor mRNAs in rat brain. Mol. Brain Res. 1995, 28, 296–310. [Google Scholar] [CrossRef] [PubMed]
- Evliyaoglu, C.; Carroll, R.; Folkerth, R.; Bello, L.; Bruns, D.E.; Black, P.M. Parathyroid hormone-related protein and its receptor in human glial tumors. Acta Neurochir. 2000, 142, 871–878. [Google Scholar] [CrossRef] [PubMed]
- Bühler, G.; Balabanova, S.; Milowski, S.; Rosenthal, J.; Antoniadis, G.; Mohr, K.; Richter, H.P. Detection of immunoreactive parathyroid hormone-related protein in human cerebrospinal fluid. Exp. Clin. Endocrinol. Diabetes 1997, 105, 336–340. [Google Scholar] [CrossRef]
- Chatterjee, O.; Nakchbandi, I.A.; Philbrick, W.M.; Dreyer, B.E.; Zhang, J.-P.; Kaczmarek, L.K.; Brines, M.; Broadus, A.E. Endogenous parathyroid hormone-related protein functions as a neuroprotective agent. Brain Res. 2002, 930, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Funk, J.L.; Trout, C.R.; Wei, H.; Stafford, G.; Reichlin, S. Parathyroid hormone-related protein (PTHrP) induction in reactive astrocytes following brain injury: A possible mediator of CNS inflammation. Brain Res. 2001, 915, 195–209. [Google Scholar] [CrossRef]
- Macica, C.M.; Liang, G.; Lankford, K.L.; Broadus, A.E. Induction of parathyroid hormone-related peptide following peripheral nerve injury: Role as a modulator of Schwann cell phenotype. Glia 2006, 53, 637–648. [Google Scholar] [CrossRef]
- Clementi, G.; Drago, F.; Prato, A.; Cavaliere, S.; Di Benedetto, A.; Leone, F.; Scapagnini, U.; Rodolico, G. Effects of calcitonin, parathyroid hormone and its related fragments on acquisition of active avoidance behavior. Physiol. Behav. 1984, 33, 913–916. [Google Scholar] [CrossRef]
- Chen, L.; Xiong, L.; Yao, L.; Pan, J.; Arzola, E.; Zhu, X.; Mei, L.; Xiong, W.-C. Attenuation of Alzheimer’s brain pathology in 5XFAD mice by PTH1-34, a peptide of parathyroid hormone. Alzheimers Res. Ther. 2023, 15, 53. [Google Scholar] [CrossRef]
- Wang, L.-L.; Chen, D.; Lee, J.; Gu, X.; Alaaeddine, G.; Li, J.; Wei, L.; Yu, S.P. Mobilization of Endogenous Bone Marrow Derived Endothelial Progenitor Cells and Therapeutic Potential of Parathyroid Hormone after Ischemic Stroke in Mice. PLoS ONE 2014, 9, e87284. [Google Scholar] [CrossRef]
- Macica, C.M.; Broadus, A.E. PTHrP regulates cerebral blood flow and is neuroprotective. Am. J. Physiol. Integr. Comp. Physiol. 2003, 284, R1019–R1020. [Google Scholar] [CrossRef]
- Funk, J.L.; Migliati, E.; Chen, G.; Wei, H.; Wilson, J.; Downey, K.J.; Mullarky, P.J.; Coull, B.M.; McDonagh, P.F.; Ritter, L.S. Parathyroid hormone-related protein induction in focal stroke: A neuroprotective vascular peptide. Am. J. Physiol. Integr. Comp. Physiol. 2003, 284, R1021–R1030. [Google Scholar] [CrossRef] [PubMed]
- Nicoletti, F.; Clementi, G.; Patti, F.; Prato, A.; De Giorgio, R.-M.; Scapagnini, U. Effects of parathyroid hormone or haloperidol-induced catalepsy and nigral GAD activity. Eur. J. Pharmacol. 1983, 88, 135–136. [Google Scholar] [CrossRef] [PubMed]
- Harvey, S.; Hayer, S.; Sloley, B. Parathyroid hormone-induced dopamine turnover in the rat medial basal hypothalamus. Peptides 1993, 14, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Gennari, C. Parathyroid Hormone and Pain. In New Actions of Parathyroid Hormone; Shaul, G.M., Takuo, F., Eds.; Springer: New York, NY, USA, 1989. [Google Scholar]
- Tanaka, T.; Takao-Kawabata, R.; Takakura, A.; Shimazu, Y.; Nakatsugawa, M.; Ito, A.; Lee, J.-W.; Kawasaki, K.; Iimura, T. Teriparatide relieves ovariectomy-induced hyperalgesia in rats, suggesting the involvement of functional regulation in primary sensory neurons by PTH-mediated signaling. Sci. Rep. 2020, 10, 5346. [Google Scholar] [CrossRef]
- Lyritis, G.; Marin, F.; Barker, C.; Pfeifer, M.; Farrerons, J.; Brixen, K.; del Pino, J.; Keen, R.; Nickelsen, T.N.; EUROFORS Study Group. Back pain during different sequential treatment regimens of teriparatide: Results from EUROFORS. Curr. Med. Res. Opin. 2010, 26, 1799–1807. [Google Scholar] [CrossRef] [PubMed]
- Tsuchie, H.; Miyakoshi, N.; Kasukawa, Y.; Nishi, T.; Abe, H.; Segawa, T.; Shimada, Y. The effect of teriparatide to alleviate pain and to prevent vertebral collapse after fresh osteoporotic vertebral fracture. J. Bone Miner. Metab. 2015, 34, 86–91. [Google Scholar] [CrossRef]
- Coutellier, L.; Logemann, A.; Kuo, J.; Rusnak, M.; Usdin, T.B. TIP39 modulates effects of novelty-induced arousal on memory. Genes Brain Behav. 2011, 10, 90–99. [Google Scholar] [CrossRef]
- Hoare, S.R.J.; Bonner, T.I.; Usdin, T.B. Comparison of Rat and Human Parathyroid Hormone 2 (PTH2) Receptor Activation: PTH Is a Low Potency Partial Agonist at the Rat PTH2 Receptor. Endocrinology 1999, 140, 4419–4425. [Google Scholar] [CrossRef]
- Behar, V.; Pines, M.; Nakamoto, C.; Greenberg, Z.; Bisello, A.; Stueckle, S.M.; Bessalle, R.; Usdin, T.B.; Chorev, M.; Rosenblatt, M.; et al. The human PTH2 receptor: Binding and signal transduction properties of the stably expressed recombinant receptor. Endocrinology 1996, 137, 2748–2757. [Google Scholar] [CrossRef]
- Della Penna, K.; Kinose, F.; Sun, H.; Koblan, K.; Wang, H. Tuberoinfundibular peptide of 39 residues (TIP39): Molecular structure and activity for parathyroid hormone 2 receptor. Neuropharmacology 2003, 44, 141–153. [Google Scholar] [CrossRef]
- Bagó, A.G.; Palkovits, M.; Usdin, T.B.; Seress, L.; Dobolyi, A. Evidence for the expression of parathyroid hormone 2 receptor in the human brainstem. Ideggyogy Sz. 2008, 61, 123–126. [Google Scholar]
- Dobolyi, A.; Ueda, H.; Uchida, H.; Palkovits, M.; Usdin, T.B. Anatomical and physiological evidence for involvement of tuberoinfundibular peptide of 39 residues in nociception. Proc. Natl. Acad. Sci. USA 2002, 99, 1651–1656. [Google Scholar] [CrossRef] [PubMed]
- Bagó, A.; Dimitrov, E.; Saunders, R.; Seress, L.; Palkovits, M.; Usdin, T.; Dobolyi, A. Parathyroid hormone 2 receptor and its endogenous ligand tuberoinfundibular peptide of 39 residues are concentrated in endocrine, viscerosensory and auditory brain regions in macaque and human. Neuroscience 2009, 162, 128–147. [Google Scholar] [CrossRef] [PubMed]
- Gellén, B.; Zelena, D.; Usdin, T.B.; Dobolyi, Á. The parathyroid hormone 2 receptor participates in physiological and behavioral alterations of mother mice. Physiol. Behav. 2017, 181, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Usdin, T.B.; Hoare, S.R.J.; Wang, T.; Mezey, É.; Kowalak, J.A. TIP39: A new neuropeptide and PTH2-receptor agonist from hypothalamus. Nat. Neurosci. 1999, 2, 941–943. [Google Scholar] [CrossRef]
- Usdin, T.B. Evidence for a Parathyroid Hormone-2 Receptor Selective Ligand in the Hypothalamus. Endocrinology 1997, 138, 831–834. [Google Scholar] [CrossRef]
- Piserchio, A.; Usdin, T.; Mierke, D.F. Structure of Tuberoinfundibular Peptide of 39 Residues. J. Biol. Chem. 2000, 275, 27284–27290. [Google Scholar] [CrossRef]
- Mason, A.J.; Lopez, J.J.; Beyermann, M.; Glaubitz, C. A spectroscopic study of the membrane interaction of tuberoinfundibular peptide of 39 residues (TIP39). Biochim. Biophys. Acta 2005, 1714, 1–10. [Google Scholar] [CrossRef]
- Goold, C.P.; Usdin, T.B.; Hoare, S.R. Regions in rat and human parathyroid hormone (PTH) 2 receptors controlling receptor interaction with PTH and with antagonist ligands. Experiment 2001, 299, 678–690. [Google Scholar]
- Usdin, T.B.; Wanga, T.; Hoare, S.R.; Mezey, É.; Palkovits, M. New Members of the Parathyroid Hormone/Parathyroid Hormone Receptor Family: The Parathyroid Hormone 2 Receptor and Tuberoinfundibular Peptide of 39 Residues. Front. Neuroendocr. 2000, 21, 349–383. [Google Scholar] [CrossRef]
- Hansen, I.A.; Jakob, O.; Wortmann, S.; Arzberger, T.; Allolio, B.; Blind, E. Characterization of the human and mouse genes encoding the tuberoinfundibular peptide of 39 residues, a ligand of the parathyroid hormone receptor family. J. Endocrinol. 2002, 174, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Hoare, S.R.J. Molecular determinants of tuberoinfundibular peptide of 39 residues (TIP39) selectivity for the parathyroid hormone-2 (PTH2) receptor. N-terminal truncation of TIP39 reverses PTH2 receptor/PTH1 receptor binding selectivity. J. Biol. Chem. 2000, 275, 27274–27283. [Google Scholar] [CrossRef] [PubMed]
- John, M.R.; Arai, M.; Rubin, D.A.; Jonsson, K.B.; Jüppner, H. Identification and Characterization of the Murine and Human Gene Encoding the Tuberoinfundibular Peptide of 39 Residues. Endocrinology 2002, 143, 1047–1057. [Google Scholar] [CrossRef]
- Dobolyi, A.; Palkovits, M.; Usdin, T.B. The TIP39–PTH2 receptor system: Unique peptidergic cell groups in the brainstem and their interactions with central regulatory mechanisms. Prog. Neurobiol. 2010, 90, 29–59. [Google Scholar] [CrossRef] [PubMed]
- Faber, C.A.; Dobolyi, A.; Sleeman, M.; Usdin, T.B. Distribution of tuberoinfundibular peptide of 39 residues and its receptor, parathyroid hormone 2 receptor, in the mouse brain. J. Comp. Neurol. 2007, 502, 563–583. [Google Scholar] [CrossRef]
- Dobolyi, A.; Wang, J.; Irwin, S.; Usdin, T.B. Postnatal development and gender-dependent expression of TIP39 in the rat brain. J. Comp. Neurol. 2006, 498, 375–389. [Google Scholar] [CrossRef]
- Brenner, D.; Bagó, A.G.; Gallatz, K.; Palkovits, M.; Usdin, T.B.; Dobolyi, A. Tuberoinfundibular peptide of 39 residues in the embryonic and early postnatal rat brain. J. Chem. Neuroanat. 2008, 36, 59–68. [Google Scholar] [CrossRef]
- Varga, T.; Palkovits, M.; Usdin, T.B.; Dobolyi, A. The medial paralemniscal nucleus and its afferent neuronal connections in rat. J. Comp. Neurol. 2008, 511, 221–237. [Google Scholar] [CrossRef]
- Wang, J.; Palkovits, M.; Usdin, T.; Dobolyi, A. Afferent connections of the subparafascicular area in rat. Neuroscience 2006, 138, 197–220. [Google Scholar] [CrossRef]
- Coolen, L.M.; Veening, J.G.; Wells, A.B.; Shipley, M.T. Afferent connections of the parvocellular subparafascicular thalamic nucleus in the rat: Evidence for functional subdivisions. J. Comp. Neurol. 2003, 463, 132–156. [Google Scholar] [CrossRef]
- Labuda, C.J.; Dobolyi, A.; Usdin, T.B. Tuberoinfundibular peptide of 39 residues produces anxiolytic and antidepressant actions. Neuroreport 2004, 15, 881–885. [Google Scholar] [CrossRef] [PubMed]
- Kuo, J.; Usdin, T.B. Development of a rat parathyroid hormone 2 receptor antagonist. Peptides 2007, 28, 887–892. [Google Scholar] [CrossRef] [PubMed]
- Dimitrov, E.L.; Petrus, E.; Usdin, T.B. Tuberoinfundibular peptide of 39 residues (TIP39) signaling modulates acute and tonic nociception. Exp. Neurol. 2010, 226, 68–83. [Google Scholar] [CrossRef] [PubMed]
- Dimitrov, E.L.; Kim, Y.Y.; Usdin, T.B. Regulation of Hypothalamic Signaling by Tuberoinfundibular Peptide of 39 Residues Is Critical for the Response to Cold: A Novel Peptidergic Mechanism of Thermoregulation. J. Neurosci. 2011, 31, 18166–18179. [Google Scholar] [CrossRef] [PubMed]
- Tsuda, M.C.; Yeung, H.-M.; Kuo, J.; Usdin, T.B. Incubation of Fear Is Regulated by TIP39 Peptide Signaling in the Medial Nucleus of the Amygdala. J. Neurosci. 2015, 35, 12152–12161. [Google Scholar] [CrossRef] [PubMed]
- Fegley, D.B.; Holmes, A.; Riordan, T.; Faber, C.A.; Weiss, J.R.; Ma, S.; Batkai, S.; Pacher, P.; Dobolyi, A.; Murphy, A.; et al. Increased fear- and stress-related anxiety-like behavior in mice lacking tuberoinfundibular peptide of 39 residues. Genes Brain Behav. 2008, 7, 933–942. [Google Scholar] [CrossRef]
- Dobolyi, A.; Dimitrov, E.; Palkovits, M.; Usdin, T.B. The Neuroendocrine Functions of the Parathyroid Hormone 2 Receptor. Front. Endocrinol. 2012, 3, 121. [Google Scholar] [CrossRef]
- Coutellier, L.; Usdin, T.B. Enhanced long-term fear memory and increased anxiety and depression-like behavior after exposure to an aversive event in mice lacking TIP39 signaling. Behav. Brain Res. 2011, 222, 265–269. [Google Scholar] [CrossRef]
- Varga, T.; Mogyoródi, B.; Bagó, A.G.; Cservenák, M.; Domokos, D.; Renner, É.; Gallatz, K.; Usdin, T.B.; Palkovits, M.; Dobolyi, A. Paralemniscal TIP39 is induced in rat dams and may participate in maternal functions. Anat. Embryol. 2012, 217, 323–335. [Google Scholar] [CrossRef]
- Wu, Z.; Autry, A.E.; Bergan, J.F.; Watabe-Uchida, M.; Dulac, C.G. Galanin neurons in the medial preoptic area govern parental behaviour. Nature 2014, 509, 325–330. [Google Scholar] [CrossRef]
- Shoback, D.M.; Bilezikian, J.P.; Costa, A.G.; Dempster, D.; Dralle, H.; Khan, A.A.; Peacock, M.; Raffaelli, M.; Silva, B.C.; Thakker, R.; et al. Presentation of Hypoparathyroidism: Etiologies and Clinical Features. J. Clin. Endocrinol. Metab. 2016, 101, 2300–2312. [Google Scholar] [CrossRef] [PubMed]
- Underbjerg, L.; Sikjaer, T.; Mosekilde, L.; Rejnmark, L. Postsurgical Hypoparathyroidism-Risk of Fractures, Psychiatric Diseases, Cancer, Cataract, and Infections. J. Bone Miner. Res. 2014, 29, 2504–2510. [Google Scholar] [CrossRef] [PubMed]
- Marcucci, G.; Beccuti, G.; Carosi, G.; Cetani, F.; Cianferotti, L.; Colao, A.M.; Di Somma, C.; Duradoni, M.; Elefante, A.; Ghizzoni, L.; et al. Multicenter retro-prospective observational study on chronic hypoparathyroidism and rhPTH (1–84) treatment. J. Endocrinol. Investig. 2022, 45, 1653–1662. [Google Scholar] [CrossRef] [PubMed]
- Brandi, M.L.; Bilezikian, J.P.; Shoback, D.; Bouillon, R.; Clarke, B.L.; Thakker, R.V.; Khan, A.A.; Potts, J.T. Management of hypoparathyroidism: Summary statement and guidelines. J. Clin. Endocrinol. Metab. 2016, 101, 2273–2283. [Google Scholar] [CrossRef] [PubMed]
- Cipriani, C.; Bilezikian, J.P. Clinical Presentation of Hypoparathyroidism. J. Endocr. Soc. 2021, 5, bvab003. [Google Scholar] [CrossRef]
- Underbjerg, L.; Sikjaer, T.; Rejnmark, L. Health-related quality of life in patients with nonsurgical hypoparathyroidism and pseudohypoparathyroidism. Clin. Endocrinol. 2018, 88, 838–847. [Google Scholar] [CrossRef]
- Astor, M.C.; Løvås, K.; Debowska, A.; Eriksen, E.F.; Evang, J.A.; Fossum, C.; Fougner, K.J.; Holte, S.E.; Lima, K.; Moe, R.B.; et al. Epidemiology and Health-Related Quality of Life in Hypoparathyroidism in Norway. J. Clin. Endocrinol. Metab. 2016, 101, 3045–3053. [Google Scholar] [CrossRef]
- Vokes, T.J. Quality of Life in Hypoparathyroidism. Bone 2019, 120, 542–547. [Google Scholar] [CrossRef]
- Brod, M.; Waldman, L.T.; Smith, A.; Karpf, D. Assessing the Patient Experience of Hypoparathyroidism Symptoms: Development of the Hypoparathyroidism Patient Experience Scale-Symptom (HPES-Symptom). Patient 2020, 13, 151–162. [Google Scholar] [CrossRef]
- Rubin, M.R.; Tabacco, G.; Omeragic, B.; Majeed, R.; Hale, C.; Brickman, A.M. A Pilot Study of Cognition Among Hypoparathyroid Adults. J. Endocr. Soc. 2022, 6, bvac002. [Google Scholar] [CrossRef]
- Cetani, F.; Pardi, E.; Banti, C.; Collecchi, P.; Viacava, P.; Borsari, S.; Fanelli, G.; Naccarato, A.G.; Saponaro, F.; Berti, P.; et al. β-catenin activation is not involved in sporadic parathyroid carcinomas and adenomas. Endocr. Relat. Cancer 2010, 17, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Marcocci, C.; Saponaro, F. Epidemiology, pathogenesis of primary hyperparathyroidism: Current data. Ann. Endocrinol. 2015, 76, 113–115. [Google Scholar] [CrossRef] [PubMed]
- Cipriani, C.; Romagnoli, E.; Cilli, M.; Piemonte, S.; Pepe, J.; Minisola, S. Quality of life in patients with primary hyperparathyroidism. Expert Rev. Pharm. Outcomes Res. 2014, 14, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Kearns, A.E.; Espiritu, R.P.; Douglass, K.V.; Thapa, P.; Wermers, R.A. Clinical characteristics and depression score response after parathyroidectomy in primary hyperparathyroidism. Clin. Endocrinol. 2019, 91, 464–470. [Google Scholar] [CrossRef]
- Trombetti, A.; Christ, E.R.; Henzen, C.; Gold, G.; Brändle, M.; Herrmann, F.R.; Torriani, C.; Triponez, F.; Kraenzlin, M.; Rizzoli, R.; et al. Clinical presentation and management of patients with primary hyperparathyroidism of the Swiss Primary Hyperparathyroidism Cohort: A focus on neuro-behavioral and cognitive symptoms. J. Endocrinol. Investig. 2016, 39, 567–576. [Google Scholar] [CrossRef]
- Webb, S.M.; Puig-Domingo, M.; Villabona, C.; Muñoz-Torres, M.; Marazuela, M.; Fernández, D.; Martínez, G.; Jódar, E.; Mangas, M.A.; Perulero, N.; et al. Validation of PHPQoL, a Disease-Specific Quality-of-Life Questionnaire for Patients with Primary Hyperparathyroidism. J. Clin. Endocrinol. Metab. 2016, 101, 1571–1578. [Google Scholar] [CrossRef]
- Babińska, D.; Barczyński, M.; Stefaniak, T.; Osęka, T.; Babińska, A.; Babiński, D.; Sworczak, K.; Łachiński, A.J.; Nowak, W.; Sledziński, Z. Evaluation of selected cognitive functions before and after surgery for primary hyperparathyroidism. Langenbecks Arch. Surg. 2012, 397, 825–831. [Google Scholar] [CrossRef]
- Weber, T.; Eberle, J.; Messelhäuser, U.; Schiffmann, L.; Nies, C.; Schabram, J.; Zielke, A.; Holzer, K.; Rottler, E.; Henne-Bruns, D.; et al. Parathyroidectomy, Elevated Depression Scores, and Suicidal Ideation in Patients with Primary Hyperparathyroidism. JAMA Surg. 2013, 148, 109–115. [Google Scholar] [CrossRef]
- Liu, M.; Sum, M.; Cong, E.; Colon, I.; Bucovsky, M.; Williams, J.; Kepley, A.; Kuo, J.; Lee, J.A.; Lazar, R.M.; et al. Cognition and cerebrovascular function in primary hyperparathyroidism before and after parathyroidectomy. J. Endocrinol. Investig. 2020, 43, 369–379. [Google Scholar] [CrossRef]
- Liu, J.Y.; Saunders, N.D.; Chen, A.; Weber, C.J.; Sharma, J. Neuropsychological Changes in Primary Hyperparathyroidism after Parathyroidectomy. Am. Surg. 2016, 82, 839–845. [Google Scholar] [CrossRef]
- Bilezikian, J.P.; Khan, A.A.; Silverberg, S.J.; Fuleihan, G.E.; Marcocci, C.; Minisola, S.; Perrier, N.; Sitges-Serra, A.; Thakker, R.V.; Guyatt, G.; et al. Evaluation and Management of Primary Hyperparathyroidism: Summary Statement and Guidelines from the Fifth International Workshop. J. Bone Miner. Res. 2022, 37, 2293–2314. [Google Scholar] [CrossRef] [PubMed]
- Zavatta, G.; Clarke, B.L. Basal ganglia calcification in hypoparathyroidism and pseudohypoparathyroidism: Local and systemic metabolic mechanisms. J. Endocrinol. Investig. 2021, 44, 245–253. [Google Scholar] [CrossRef] [PubMed]
PTH-Related Family Peptide | Receptor with Higher Affinity | Distribution in CNS | Possible Effects on CNS | Proposed Mechanisms |
---|---|---|---|---|
PTH | PTH1R | Hippocampus, amygdala, hypothalamus, caudate nucleus, corpus callosum, subthalamic nucleus, thalamus, substantia nigra, cerebellum | Improvement of memory and learning. Hyperalgesia modulation. Endocrine/paracrine function. | Protection of brain astrocytes by suppression of cell death and neuroinflammation. Modulation of catecholamine metabolism in brain. Modulation of cerebrovascular system, promoting neuroangiogenesis. |
PTHrP | PTH1R | Cerebral cortex, hippocampus, cerebellum | Reduction of brain ischemia. | Action on endothelium of cerebral vasculature after brain ischemia, enhancement of vasodilation and neuroangiogenesis. |
TIP39 | PTH2R | Thalamus (PVG, PIL, MPL regions), amygdala, Locus coeruleus, Hypothalamus | Endocrine effects. Modulation of auditory response, nociception, fear response. Anti-depressive effects. Modulation of maternal behavior. | Regulation of neuroendocrine system in brain, modulation of cathecolamine, vasopressin, prolactin. Modulation of glutamate neurotransmitter. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dettori, C.; Ronca, F.; Scalese, M.; Saponaro, F. Parathyroid Hormone (PTH)-Related Peptides Family: An Intriguing Role in the Central Nervous System. J. Pers. Med. 2023, 13, 714. https://doi.org/10.3390/jpm13050714
Dettori C, Ronca F, Scalese M, Saponaro F. Parathyroid Hormone (PTH)-Related Peptides Family: An Intriguing Role in the Central Nervous System. Journal of Personalized Medicine. 2023; 13(5):714. https://doi.org/10.3390/jpm13050714
Chicago/Turabian StyleDettori, Cristina, Francesca Ronca, Marco Scalese, and Federica Saponaro. 2023. "Parathyroid Hormone (PTH)-Related Peptides Family: An Intriguing Role in the Central Nervous System" Journal of Personalized Medicine 13, no. 5: 714. https://doi.org/10.3390/jpm13050714