Serum Transforming Growth Factor β1 and Its Genetic Variants Are Associated with Increased Macrophage Inflammatory Protein 1β and Susceptibility to Idiopathic Carpal Tunnel Syndrome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Lab Analysis
2.2. Genotyping
2.3. Statistical Analysis
3. Results
3.1. Clinical and Demographic Characteristics of the Research Population
3.2. Relationship between Serum TGF-β1 and MIP-1β and Susceptibility to Idiopathic CTS
3.3. Genotypes and Allele Frequencies
3.3.1. TGF-β1: +915G > C rs1800471 Single Nucleotide Polymorphism
3.3.2. TGF-β1: −509C > T rs1800469 Single Nucleotide Polymorphism
3.3.3. TGF-β1: −800G > A rs1800468 Single Nucleotide Polymorphism
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Genova, A.; Dix, O.; Saefan, A.; Thakur, M.; Hassan, A. Carpal tunnel syndrome: A review of literature. Cureus 2020, 12, e7333. [Google Scholar] [CrossRef] [PubMed]
- Ashworth, N.L. Carpal Tunnel Syndrome. Am. Fam. Physician 2016, 94, 830–831. [Google Scholar] [PubMed]
- Uchiyama, S.; Itsubo, T.; Nakamura, K.; Kato, H.; Yasutomi, T.; Momose, T. Current concepts of carpal tunnel syndrome: Pathophysiology, treatment, and evaluation. J. Orthop. Sci. 2010, 15, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Gingery, A.; Yang, T.H.; Passe, S.M.; An, K.N.; Zhao, C.; Amadio, P.C. TGF-β signaling regulates fibrotic expression and activity in carpal tunnel syndrome. J. Orthop. Res. 2014, 32, 1444–1450. [Google Scholar] [CrossRef] [PubMed]
- Aboonq, M.S. Pathophysiology of carpal tunnel syndrome. Neurosciences 2015, 20, 4–9. [Google Scholar]
- Van Linthout, S.; Miteva, K.; Tschöpe, C. Crosstalk between fibroblasts and inflammatory cells. Cardiovasc. Res. 2014, 102, 258–269. [Google Scholar] [CrossRef] [PubMed]
- Wynn, T.A. Cellular and molecular mechanisms of fibrosis. J. Pathol. 2008, 214, 199–210. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.J.; Li, Y.Y.; Zeng, H.M.; Liang, X.A.; Xie, Z.J.; Zheng, Z.A.; Pan, Q.H.; Xing, Y.X. Effect of pharmacological intervention on MIP-1α, MIP-1β and MCP-1 expression in patients with psoriasis vulgaris. Asian Pac. J. Trop. Med. 2014, 7, 582–584. [Google Scholar] [CrossRef]
- Barczyk, A.; Pierzchała, E.; Caramori, G.; Sozańska, E. Increased expression of CCL4/MIP-1β in CD8+ cells and CD4+ cells in sarcoidosis. Int. J. Immunopathol. Pharmacol. 2014, 27, 185–193. [Google Scholar] [CrossRef]
- Mrugacz, M. CCL4/MIP-1beta levels in tear fluid and serum of patients with cystic fibrosis. J. Interferon Cytokine Res. 2010, 30, 509–512. [Google Scholar] [CrossRef]
- Boven, L.A.; Montagne, L.; Nottet, H.S.; De Groot, C.J. Macrophage inflammatory protein-1alpha (MIP-1alpha), MIP-1beta, and RANTES mRNA semiquantification and protein expression in active demyelinating multiple sclerosis (MS) lesions. Clin. Exp. Immunol. 2000, 122, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Seki, E.; De Minicis, S.; Gwak, G.Y.; Kluwe, J.; Inokuchi, S.; Bursill, C.A.; Llovet, J.M.; Brenner, D.A.; Schwabe, R.F. CCR1 and CCR5 promote hepatic fibrosis in mice. J. Clin. Investig. 2009, 119, 1858–1870. [Google Scholar] [CrossRef] [PubMed]
- Emad, A.; Emad, V. Elevated levels of MCP-1, MIP-α and MIP-1β in the bronchoalveolar lavage (BAL) fluid of patients with mustard gas-induced pulmonary fibrosis. Toxicology 2007, 240, 60–69. [Google Scholar] [CrossRef] [PubMed]
- Maurer, M.; von Stebut, E. Macrophage inflammatory protein-1. Int. J. Biochem. Cell Biol. 2004, 36, 1882–1886. [Google Scholar] [CrossRef] [PubMed]
- Uçeyler, N.; Sommer, C. Cytokine regulation in animal models of neuropathic pain and in human diseases. Neurosci. Lett. 2008, 437, 194–198. [Google Scholar] [CrossRef]
- Moalem-Taylor, G.; Baharuddin, B.; Bennett, B.; Krishnan, A.V.; Huynh, W.; Kiernan, M.C.; Lin, C.S.Y.; Shulruf, B.; Keoshkerian, E.; Cameron, B.; et al. Immune dysregulation in patients with carpal tunnel syndrome. Sci. Rep. 2017, 7, 8218. [Google Scholar] [CrossRef]
- Kim, J.-S.; Kim, J.; Moon, M.-Y.; Jeon, C.-Y.; Won, H.-Y.; Kim, H.-J.; Jeon, Y.-J.; Seo, J.-Y.; Kim, J.-I.; Kim, J.; et al. Transforming growth factor-β1 regulates macrophage migration via RhoA. Blood 2006, 108, 1821–1829. [Google Scholar] [CrossRef]
- Sherry, B.; Espinoza, M.; Manogue, K.R.; Cerami, A. Induction of the Chemokine β Peptides, MIP-1α and MIP-1β, by Lipopolysaccharide Is Differentially Regulated by Immunomodulatory Cytokines γ-IFN, IL-10, IL-4, and TGF-β. Mol. Med. 1998, 4, 648–657. [Google Scholar] [CrossRef]
- Chikenji, T.; Gingery, A.; Zhao, C.; Passe, S.M.; Ozasa, Y.; Larson, D.; An, K.N.; Amadio, P.C. Transforming growth factor-β (TGF-β) expression is increased in the subsynovial connective tissues of patients with idiopathic carpal tunnel syndrome. J. Orthop. Res. 2014, 32, 116–122. [Google Scholar] [CrossRef]
- Martelossi Cebinelli, G.; Trugilo, K.; Badaró Garcia, S.; Brajão de Oliveira, K. TGF-B1 functional polymorphisms: A review. Eur. Cytokine Netw. 2016, 27, 81–90. [Google Scholar] [CrossRef]
- Eskandari, E.; Metanat, M.; Pahlevani, E.; Nakhzari-Khodakheir, T. Association between TGFβ1 polymorphisms and chronic hepatitis B infection in an Iranian population. Rev. Soc. Bras. Med. Trop. 2017, 50, 301–308. [Google Scholar] [CrossRef]
- Charan, J.; Biswas, T. How to calculate sample size for different study designs in medical research? Indian J. Psychol. Med. 2013, 35, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Carlson, H.; Colbert, A.; Frydl, J.; Arnall, E.; Elliot, M.; Carlson, N. Current options for nonsurgical management of carpal tunnel syndrome. Int. J. Clin. Rheumtol. 2010, 5, 129–142. [Google Scholar] [CrossRef] [PubMed]
- Sharma, D.; Jaggi, A.S.; Bali, A. Clinical evidence and mechanisms of growth factors in idiopathic and diabetes-induced carpal tunnel syndrome. Eur. J. Pharmacol. 2018, 837, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Patel, R.K.; Prasad, N.; Kuwar, R.; Haldar, D.; Abdul-Muneer, P.M. Transforming growth factor-beta 1 signaling regulates neuroinflammation and apoptosis in mild traumatic brain injury. Brain Behav. Immun. 2017, 64, 244–258. [Google Scholar] [CrossRef] [PubMed]
- Wilson, S.E. Interleukin-1 and Transforming Growth Factor Beta: Commonly Opposing, but Sometimes Supporting, Master Regulators of the Corneal Wound Healing Response to Injury. Investig. Ophthalmol. Vis. Sci. 2021, 62, 8. [Google Scholar] [CrossRef] [PubMed]
- Moreau, J.M.; Velegraki, M.; Bolyard, C.; Rosenblum, M.D.; Li, Z. Transforming growth factor–β1 in regulatory T cell biology. Sci. Immunol. 2022, 7, eabi4613. [Google Scholar] [CrossRef] [PubMed]
- Ishinaga, H.; Jono, H.; Lim, J.; Kweon, S.M.; Xu, H.; Ha, U.-H.; Xu, H.; Koga, T.; Yan, C.; Feng, X.H.; et al. Tgf-Β Induces P65 Acetylation to Enhance Bacteria-Induced Nf-Κb Activation. EMBO J. 2007, 26, 1150–1162. [Google Scholar] [CrossRef] [PubMed]
- Kochumon, S.; Wilson, A.; Chandy, B.; Shenouda, S.; Tuomilehto, J.; Sindhu, S.; Ahmad, R. Palmitate Activates CCL4 Expression in Human Monocytic Cells via TLR4/MyD88 Dependent Activation of NF-κB/MAPK/ PI3K Signaling Systems. Cell. Physiol. Biochem. 2018, 46, 953–964. [Google Scholar] [CrossRef]
- Liu, L.; Gu, H.; Liu, H.; Jiao, Y.; Li, K.; Zhao, Y.; An, L.; Yang, J. Protective Effect of Resveratrol against IL-1β-Induced Inflammatory Response on Human Osteoarthritic Chondrocytes Partly via the TLR4/MyD88/NF-κB Signaling Pathway: An “in Vitro Study”. Int. J. Mol. Sci. 2014, 15, 6925–6940. [Google Scholar] [CrossRef]
- Parry, G.C.; Martin, T.; Felts, K.A.; Cobb, R.R. IL-1beta-induced monocyte chemoattractant protein-1 gene expression in endothelial cells is blocked by proteasome inhibitors. Arterioscler. Thromb. Vasc. Biol. 1998, 18, 934–940. [Google Scholar] [CrossRef]
- Nabrdalik, K.; Gumprecht, J.; Adamczyk, P.; Górczyńska-Kosiorz, S.; Zywiec, J.; Grzeszczak, W. Association of rs1800471 polymorphism of TGFB1 gene with chronic kidney disease occurrence and progression and hypertension appearance. Arch. Med. Sci. 2013, 9, 230–237. [Google Scholar] [CrossRef] [PubMed]
- Zheng, R.; Fu, Z.; Zhao, Z. Association of Transforming Growth Factor β1 Gene Polymorphisms and Inflammatory Factor Levels with Susceptibility to Sepsis. Genet. Test. Mol. Biomark. 2021, 25, 187–198. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Chen, Q.; Alkam, E.; Zheng, X.; Li, Y.; Wang, L.; Fang, J. Association between gene polymorphisms of TGF-β and Smad3 and susceptibility to arthritis: A meta-analysis. Expert Rev. Clin. Immunol. 2020, 16, 943–954. [Google Scholar] [CrossRef] [PubMed]
- Kiliś-Pstrusińska, K.; Mastalerz-Migas, A.; Zwolińska, D.; Grzeszczak, W.; Zachwieja, K.; Zachwieja, J.; Hyla Klekot, L. The rs1800471 Polymorphism of TGFB1 Gene, Serum TGF-Beta1 Level and Chronic Kidney Disease Progression. Adv. Exp. Med. Biol. 2015, 833, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Hadj-Ahmed, M.; Ghali, R.M.; Bouaziz, H.; Habel, A.; Stayoussef, M.; Ayedi, M.; Hachiche, M.; Rahal, K.; Yacoubi-Loueslati, B.; Almawi, W.Y. Transforming growth factor beta 1 polymorphisms and haplotypes associated with breast cancer susceptibility: A case-control study in Tunisian women. Tumor Biol. 2019, 41, 1010428319869096. [Google Scholar] [CrossRef] [PubMed]
- Jørgensen, K.J.; Kalager, M.; Barratt, A.; Baines, C.; Zahl, P.H.; Brodersen, J.; Harris, R.P. Overview of guidelines on breast screening: Why recommendations differ and what to do about it. Breast 2017, 31, 261–269. [Google Scholar] [CrossRef]
- Peng, Z.; Zhan, L.; Chen, S.; Xu, E. Association of transforming growth factor-1 gene C-509T and T869C polymorphisms with atherosclerotic cerebral infarction in the Chinese: A case-control study. Lipids Health Dis. 2011, 10, 100. [Google Scholar] [CrossRef]
- Raina, P.; Sikka, R.; Kaur, R.; Sokhi, J.; Matharoo, K.; Singh, V.; Bhanwer, A.J.S. Association of Transforming Growth Factor Beta-1 (TGF-β1) Genetic Variation with Type 2 Diabetes and End Stage Renal Disease in Two Large Population Samples from North India. OMICS A J. Integr. Biol. 2015, 19, 306–317. [Google Scholar] [CrossRef]
- Stanilova, S.; Stanilov, N.; Julianov, A.; Manolova, I.; Miteva, L. Transforming growth factor-β1 gene promoter −509C/T polymorphism in association with expression affects colorectal cancer development and depends on gender. PLoS ONE 2018, 13, e0201775. [Google Scholar] [CrossRef]
- Malachkova, N.; Yatsenko, D.; Ljudkevich, G.P.; Shkarupa, V. Polymorphism of TGF-β1 (rs1800469) in children with different degrees of myopia. Oftalmol. Zhurnal 2018, 5, 45–48. [Google Scholar] [CrossRef]
- Ramos-Flores, C.; Romero-Gutiérrez, T.; Delgado-Enciso, I.; Maldonado, G.E.; Plascencia, V.M.; Vazquez-Vuelvas, O.F.; Valdez-Velazquez, L.L. Polymorphisms in the genes related to angiogenesis are associated with uterine cervical cancer. Int. J. Gynecol. Cancer 2013, 23, 1198–1204. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Yu, X.; Huang, C.; Qin, R.; Peng, F.; Lin, J.; Niu, W. Association of 5 Well-Defined Polymorphisms in the Gene Encoding Transforming Growth Factor-β1 With Coronary Artery Disease Among Chinese Patients With Hypertension. Angiology 2015, 66, 652–658. [Google Scholar] [CrossRef] [PubMed]
- Bogacz, A.; Wolek, M.; Sieńko, J.; Czerny, B.; Machaliński, B.; Olbromski, P.; Kotowski, M. Influence of TGFB1 and CTLA4 polymorphisms on calcineurin inhibitors dose and risk of acute rejection in renal transplantation. Sci. Rep. 2021, 11, 17531. [Google Scholar] [CrossRef] [PubMed]
Variables | Control (n = 100) | CTS (n = 100) | p Value |
---|---|---|---|
Age | 46.4 ± 11.8 | 47.5 ± 14 | 0.5 |
Sex | 0.2 | ||
Male | 40 | 30 | |
Female | 60 | 70 | |
Duration of the disease (years) | ----- | 43 ± 11 | ----- |
BMI (kg/m2) | 29.4 ± 5.1 | 29.3 ± 5.6 | 0.9 |
Family history | ----- | 47 | ----- |
Affected hand (side) (right/left/bilateral) | ----- | 25/26/49 | ----- |
Dominant hand (dominant/non-dominant) | ----- | 59/41 | ----- |
EMG findings | ----- | ----- | |
Mild | 53 | ||
Moderate | 38 | ||
severe | 9 |
Variables | OR | 95%CI | p-Value |
---|---|---|---|
TGF-β1 (Pg/mL) | 1.09 | 1.0–1.1 | <0.001 * |
MIP-1β (Pg/mL) | 1.13 | 1.1–1.2 | <0.001 * |
Variables | Controls/Patients (n) | p-Value | |
---|---|---|---|
+915G > C alleles | G | 183/168 | 0.03 * a |
C | 17/32 | ||
+915G > C genotypes | GG | 87/74 | 0.03 * b |
GC | 9/16 | ||
CC | 4/10 | ||
GC + CC | 13/26 | ||
Patients | |||
TGF-β1 (pg/mL) | GG | 133.9 ± 13.5 | <0.001 * b |
GC + CC | 165.8 ± 19.1 | ||
MIP-1β (pg/mL) | GG | 131.8 ± 13.9 | 0.001 * b |
GC + CC | 154.6 ± 20.2 |
Variables | Controls/Patients (n) | p-Value | |
---|---|---|---|
−509C > T alleles | C | 159/135 | 0.008 * a |
T | 41/65 | ||
−509C > T genotypes | CC | 67/52 | |
CT | 25/31 | 0.2 b | |
TT | 8/17 | 0.03 * c | |
Patients | |||
TGF-β1 (pg/mL) | CC | 134.7 ± 18.2 | |
CT | 145.2 ± 15.0 | 0.004 * b | |
TT | 159.7 ± 24.8 | <0.001 * c | |
MIP-1β (pg/mL) | CC | 131.9 ± 18.6 | |
CT | 139.9 ± 13.0 | 0.1 b | |
TT | 142.2 ± 20.6 | <0.001 * c |
Variables | Controls/Patients (n) | p-Value | |
---|---|---|---|
−800G > A alleles | G | 124/147 | 0.02 * a |
A | 76/53 | ||
−800G > A genotypes | GG | 45/57 | |
GA | 34/33 | 0.4 b | |
AA | 21/10 | 0.02 * c | |
Patients | |||
TGF-β1 (pg/mL) | GG | 149.5 ± 21.4 | |
GA | 134.8 ± 16.0 | 0.002 * b | |
AA | 125.1 ± 6.8 | 0.001 * c | |
MIP-1β (pg/mL) | GG | 142.5 ± 18.8 | |
GA | 132.7 ± 17.8 | 0.04 * b | |
AA | 126.9 ± 11.3 | 0.03 * c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fattah, S.A.; Selim, M.S.; Abdel Fattah, M.A.; Abo-Elmatty, D.M.; Mesbah, N.M.; Abdel-hamed, A.R. Serum Transforming Growth Factor β1 and Its Genetic Variants Are Associated with Increased Macrophage Inflammatory Protein 1β and Susceptibility to Idiopathic Carpal Tunnel Syndrome. J. Pers. Med. 2023, 13, 715. https://doi.org/10.3390/jpm13050715
Fattah SA, Selim MS, Abdel Fattah MA, Abo-Elmatty DM, Mesbah NM, Abdel-hamed AR. Serum Transforming Growth Factor β1 and Its Genetic Variants Are Associated with Increased Macrophage Inflammatory Protein 1β and Susceptibility to Idiopathic Carpal Tunnel Syndrome. Journal of Personalized Medicine. 2023; 13(5):715. https://doi.org/10.3390/jpm13050715
Chicago/Turabian StyleFattah, Shaimaa A., Mohamed S. Selim, Maha A. Abdel Fattah, Dina M. Abo-Elmatty, Noha M. Mesbah, and Asmaa R. Abdel-hamed. 2023. "Serum Transforming Growth Factor β1 and Its Genetic Variants Are Associated with Increased Macrophage Inflammatory Protein 1β and Susceptibility to Idiopathic Carpal Tunnel Syndrome" Journal of Personalized Medicine 13, no. 5: 715. https://doi.org/10.3390/jpm13050715
APA StyleFattah, S. A., Selim, M. S., Abdel Fattah, M. A., Abo-Elmatty, D. M., Mesbah, N. M., & Abdel-hamed, A. R. (2023). Serum Transforming Growth Factor β1 and Its Genetic Variants Are Associated with Increased Macrophage Inflammatory Protein 1β and Susceptibility to Idiopathic Carpal Tunnel Syndrome. Journal of Personalized Medicine, 13(5), 715. https://doi.org/10.3390/jpm13050715