Age and Sex-Related Effects on Single-Subject Gray Matter Networks in Healthy Participants
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. MRI Data Acquisition
2.3. MR Data Preprocessing and Brain Age Prediction
2.4. Brain Age Prediction
2.5. Single-Subject Gray Matter Network
2.6. Statistical Analysis
3. Results
3.1. Demographics
3.2. Age- and Sex-Related Alterations of Network Properties
3.3. Correlations between Global Network Properties and Chronological/Brain Age
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Matsuda, H. Voxel-based morphometry of brain MRI in normal aging and Alzheimer’s disease. Aging Dis. 2013, 4, 29–37. [Google Scholar]
- Farokhian, F.; Yang, C.; Beheshti, I.; Matsuda, H.; Wu, S. Age-related gray and white matter changes in normal adult brains. Aging Dis. 2017, 8, 899–909. [Google Scholar] [CrossRef] [PubMed]
- Beheshti, I.; Maikusa, N.; Matsuda, H. Effects of aging on brain volumes in healthy individuals across adulthood. Neurol. Sci. 2019, 40, 1191–1198. [Google Scholar] [CrossRef]
- Fjell, A.M.; Westlye, L.T.; Amlien, I.; Espeseth, T.; Reinvang, I.; Raz, N.; Agartz, I.; Salat, D.H.; Greve, D.N.; Fischl, B.; et al. High consistency of regional cortical thinning in aging across multiple samples. Cereb. Cortex 2009, 19, 2001–2012. [Google Scholar] [CrossRef]
- Gong, G.; Rosa-Neto, P.; Carbonell, F.; Chen, Z.J.; He, Y.; Evans, A.C. Age- and gender-related differences in the cortical anatomical network. J. Neurosci. 2009, 29, 15684–15693. [Google Scholar] [CrossRef]
- Gaser, C.; Franke, K.; Klöppel, S.; Koutsouleris, N.; Sauer, H.; Alzheimer’s Disease Neuroimaging Initiative. BrainAGE in mild cognitive impaired patients: Predicting the conversion to Alzheimer’s disease. PLoS ONE 2013, 8, e67346. [Google Scholar] [CrossRef]
- Bassett, D.S.; Bullmore, E.; Verchinski, B.A.; Mattay, V.S.; Weinberger, D.R.; Meyer-Lindenberg, A. Hierarchical organization of human cortical networks in health and schizophrenia. J. Neurosci. 2008, 28, 9239–9248. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Chen, Z.J.; Evans, A.C. Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cereb. Cortex. 2007, 17, 2407–2419. [Google Scholar] [CrossRef] [PubMed]
- Tijms, B.M.; Seriès, P.; Willshaw, D.J.; Lawrie, S.M. Similarity-based extraction of individual networks from gray matter MRI scans. Cereb. Cortex 2012, 22, 1530–1541. [Google Scholar] [CrossRef] [PubMed]
- Shigemoto, Y.; Sone, D.; Okita, K.; Maikusa, N.; Yamao, T.; Kimura, Y.; Suzuki, F.; Fujii, H.; Kato, K.; Sato, N.; et al. Gray matter structural networks related to 18F-THK5351 retention in cognitively normal older adults and Alzheimer’s disease patients. eNeurologicalSci 2021, 22, 100309. [Google Scholar] [CrossRef]
- Tijms, B.M.; Möller, C.; Vrenken, H.; Wink, A.M.; de Haan, W.; van der Flier, W.M.; Stam, C.J.; Scheltens, P.; Barkhof, F. Single-subject grey matter graphs in Alzheimer’s disease. PLoS ONE 2013, 8, e58921. [Google Scholar] [CrossRef]
- Shigemoto, Y.; Sato, N.; Sone, D.; Maikusa, N.; Yamao, T.; Kimura, Y.; Chiba, E.; Suzuki, F.; Fujii, H.; Takayama, Y.; et al. Single-subject gray matter networks in temporal lobe epilepsy patients with hippocampal sclerosis. Epilepsy Res. 2021, 177, 106766. [Google Scholar] [CrossRef] [PubMed]
- Ota, M.; Noda, T.; Sato, N.; Hidese, S.; Teraishi, T.; Matsuda, H.; Kunugi, H. Structural brain network differences in bipolar disorder using with similarity-based approach. Acta Neuropsychiatr. 2021, 33, 121–125. [Google Scholar] [CrossRef]
- Beheshti, I.; Mishra, S.; Sone, D.; Khanna, P.; Matsuda, H. T1-weighted MRI-driven brain age estimation in Alzheimer’s disease and Parkinson’s disease. Aging Dis. 2020, 11, 618–628. [Google Scholar] [CrossRef] [PubMed]
- Sone, D.; Beheshti, I.; Maikusa, N.; Ota, M.; Kimura, Y.; Sato, N.; Koepp, M.; Matsuda, H. Neuroimaging-based brain-age prediction in diverse forms of epilepsy: A signature of psychosis and beyond. Mol. Psychiatry 2021, 26, 825–834. [Google Scholar] [CrossRef]
- Watts, D.J.; Strogatz, S.H. Collective dynamics of “small-world” networks. Nature 1998, 393, 440–442. [Google Scholar] [CrossRef]
- Bassett, D.S.; Bullmore, E. Small-world brain networks. Neuroscientist 2006, 12, 512–523. [Google Scholar] [CrossRef]
- Lenhard, W.; Lenhard, A. Hypothesis tests for comparing correlations. Bibergau (Ger.) Psychom. 2014. Available online: https://www.psychometrica.de/correlation.html (accessed on 10 July 2022). [CrossRef]
- Achard, S.; Bullmore, E. Efficiency and cost of economical brain functional networks. PLOS Comput. Biol. 2007, 3, e17. [Google Scholar] [CrossRef]
- Latora, V.; Marchiori, M. Efficient behavior of small-world networks. Phys. Rev. Lett. 2001, 87, 198701. [Google Scholar] [CrossRef]
- Wu, K.; Taki, Y.; Sato, K.; Kinomura, S.; Goto, R.; Okada, K.; Kawashima, R.; He, Y.; Evans, A.C.; Fukuda, H. Age-related changes in topological organization of structural brain networks in healthy individuals. Hum. Brain Mapp. 2012, 33, 552–568. [Google Scholar] [CrossRef]
- Verfaillie, S.C.J.; Slot, R.E.R.; Dicks, E.; Prins, N.D.; Overbeek, J.M.; Teunissen, C.E.; Scheltens, P.; Barkhof, F.; van der Flier, W.M.; Tijms, B.M. A more randomly organized grey matter network is associated with deteriorating language and global cognition in individuals with subjective cognitive decline. Hum. Brain Mapp. 2018, 39, 3143–3151. [Google Scholar] [CrossRef] [PubMed]
- Tijms, B.M.; Ten Kate, M.; Gouw, A.A.; Borta, A.; Verfaillie, S.; Teunissen, C.E.; Scheltens, P.; Barkhof, F.; van der Flier, W.M. Gray matter networks and clinical progression in subjects with predementia Alzheimer’s disease. Neurobiol. Aging. 2018, 61, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Vermunt, L.; Dicks, E.; Wang, G.; Dincer, A.; Flores, S.; Keefe, S.J.; Berman, S.B.; Cash, D.M.; Chhatwal, J.P.; Cruchaga, C.; et al. Single-subject grey matter network trajectories over the disease course of autosomal dominant Alzheimer’s disease. Brain Commun. 2020, 2, fcaa102. [Google Scholar] [CrossRef]
- Yan, C.; Gong, G.; Wang, J.; Wang, D.; Liu, D.; Zhu, C.; Chen, Z.J.; Evans, A.; Zang, Y.; He, Y. Sex- and brain size-related small-world structural cortical networks in young adults: A DTI tractography study. Cereb. Cortex. 2011, 21, 449–458. [Google Scholar] [CrossRef]
- Allen, J.S.; Damasio, H.; Grabowski, T.J.; Bruss, J.; Zhang, W. Sexual dimorphism and asymmetries in the gray-white composition of the human cerebrum. Neuroimage 2003, 18, 880–894. [Google Scholar] [CrossRef]
- Smith, Y.R.; Zubieta, J.K. Neuroimaging of aging and estrogen effects on central nervous system physiology. Fertil. Steril. 2001, 76, 651–659. [Google Scholar] [CrossRef] [PubMed]
- Norbury, R.; Cutter, W.J.; Compton, J.; Robertson, D.M.; Craig, M.; Whitehead, M.; Murphy, D.G. The neuroprotective effects of estrogen on the aging brain. Exp. Gerontol. 2003, 38, 109–117. [Google Scholar] [CrossRef]
- Sherwin, B.B.; Henry, J.F. Brain aging modulates the neuroprotective effects of estrogen on selective aspects of cognition in women: A critical review. Front. Neuroendocrinol. 2008, 29, 88–113. [Google Scholar] [CrossRef]
- Wise, P.M. Estrogen therapy: Does it help or hurt the adult and aging brain? Insights derived from animal models. Neuroscience 2006, 138, 831–835. [Google Scholar] [CrossRef]
- Cook, I.A.; Morgan, M.L.; Dunkin, J.J.; David, S.; Witte, E.; Lufkin, R.; Abrams, M.; Rosenberg, S.; Leuchter, A.F. Estrogen replacement therapy is associated with less progression of subclinical structural brain disease in normal elderly women: A pilot study. Int. J. Geriatr. Psychiatry 2002, 17, 610–618. [Google Scholar] [CrossRef]
- Ottowitz, W.E.; Derro, D.; Dougherty, D.D.; Lindquist, M.A.; Fischman, A.J.; Hall, J.E. FDG-PET analysis of amygdalar–cortical network covariance during pre-versus post-menopausal estrogen levels: Potential relevance to resting state networks, mood, and cognition. Neuro Endocrinol. Lett. 2009, 29, 467–474. [Google Scholar]
- Ottowitz, W.E.; Siedlecki, K.L.; Lindquist, M.A.; Dougherty, D.D.; Fischman, A.J.; Hall, J.E. Evaluation of prefrontal–hippocampal effective connectivity following 24 hours of estrogen infusion: An FDG-PET study. Psychoneuroendocrinology 2008, 33, 1419–1425. [Google Scholar] [CrossRef] [PubMed]
- Nelson, H.D. Menopause. Lancet 2008, 371, 760–770. [Google Scholar] [CrossRef] [PubMed]
- Sundermann, E.E.; Maki, P.M.; Rubin, L.H.; Lipton, R.B.; Landau, S.; Biegon, A.; Alzheimer’s Disease Neuroimaging Initiative. Female advantage in verbal memory: Evidence of sex-specific cognitive reserve. Neurology 2016, 87, 1916–1924. [Google Scholar] [CrossRef] [PubMed]
- Nebel, R.A.; Aggarwal, N.T.; Barnes, L.L.; Gallagher, A.; Goldstein, J.M.; Kantarci, K.; Mallampalli, M.P.; Mormino, E.C.; Scott, L.; Yu, W.H.; et al. Understanding the impact of sex and gender in Alzheimer’s disease: A call to action. Alzheimers Dement. 2018, 14, 1171–1183. [Google Scholar] [CrossRef]
- Sone, D.; Beheshti, I.; Shinagawa, S.; Niimura, H.; Kobayashi, N.; Kida, H.; Shikimoto, R.; Noda, Y.; Nakajima, S.; Bun, S.; et al. Neuroimaging-derived brain age is associated with life satisfaction in cognitively unimpaired elderly: A community-based study. Transl. Psychiatry 2022, 12, 25. [Google Scholar] [CrossRef] [PubMed]
- Kharabian Masouleh, S.; Beyer, F.; Lampe, L.; Loeffler, M.; Luck, T.; Riedel-Heller, S.G.; Schroeter, M.L.; Stumvoll, M.; Villringer, A.; Witte, A.V. Gray matter structural networks are associated with cardiovascular risk factors in healthy older adults. J. Cereb. Blood Flow Metab. 2018, 38, 360–372. [Google Scholar] [CrossRef]
Characteristic | Women | Men | p-Value |
---|---|---|---|
Participants, N | 407 (50.1%) | 405 (49.9%) | |
Age, y | |||
Chronological age | 59.272 ± 13.990 | 59.245 ± 13.970 | 0.964 a |
Predicted brain age | 59.019 ± 15.234 | 58.490 ± 16.186 | 0.923 a |
Brain PAD score | −0.254 ± 5.413 | −0.755 ± 5.156 | 0.139 a |
Network measures | |||
Normalized clustering | 1.729 ± 0.086 | 1.711 ± 0.078 | <0.0001 b |
Normalized path length | 1.112 ± 0.016 | 1.106 ± 0.015 | <0.0001 b |
Small-world coefficient | 1.554 ± 0.059 | 1.546 ± 0.056 | 0.012 b |
Variables | Unstandardized β | Standard Error | Standardized β | p-Value |
---|---|---|---|---|
Chronological age < 70 y | ||||
Normalized clustering | ||||
Age × female (sex) interaction | <−0.001 | 0.051 | −0.045 | 0.214 |
Age effect | −0.003 | 0.037 | −0.580 | <0.001 |
Female (sex) effect | 0.051 | 0.065 | 0.269 | 0.012 |
Normalized path length | ||||
Age × female (sex) interaction | <−0.001 | 0.041 | −0.112 | 0.040 |
Age effect | <−0.001 | 0.030 | −0.423 | <0.001 |
Female (sex) effect | 0.012 | 0.052 | 0.262 | <0.001 |
Small-world coefficient | ||||
Age × female (sex) interaction | <−0.001 | 0.054 | −0.014 | 0.416 |
Age effect | −0.002 | 0.039 | −0.589 | <0.001 |
Female (sex) effect | 0.028 | 0.069 | 0.243 | 0.05 |
Chronological age ≥ 70 y | ||||
Normalized clustering | ||||
Age × female (sex) interaction | −0.008 | 0.517 | −1.363 | 0.009 |
Age effect | 0.609 | 0.603 | 1.638 | 0.412 |
Female (sex) effect | −0.002 | 0.363 | −0.298 | 0.008 |
Normalized path length | ||||
Age × female (sex) interaction | −0.001 | 0.391 | −1.223 | 0.002 |
Age effect | <−0.001 | 0.274 | −0.162 | 0.555 |
Female (sex) effect | 0.103 | 0.456 | 1.425 | 0.002 |
Small-world coefficient | ||||
Age × female (sex) interaction | −0.006 | 0.555 | −1.347 | 0.016 |
Age effect | −0.001 | 0.389 | −0.320 | 0.412 |
Female (sex) effect | 0.421 | 0.647 | 1.622 | 0.015 |
Variables | Women | Men | p-Value |
---|---|---|---|
Chronological age < 70 yrs | |||
Normalized clustering | 1.756 ± 0.003 | 1.730 ± 0.003 | <0.001 |
Normalized path length | 1.115 ± 0.001 | 1.110 ± 0.001 | <0.001 |
Small-world coefficient | 1.575 ± 0.002 | 1.558 ± 0.002 | <0.001 |
Chronological age ≥ 70 yrs | |||
Normalized clustering | 1.661 ± 0.009 | 1.655 ± 0.009 | 0.679 |
Normalized path length | 1.100 ± 0.001 | 1.100 ± 0.001 | 0.873 |
Small-world coefficient | 1.508 ± 0.007 | 1.504 ± 0.007 | 0.692 |
Chronological Age | Predicted Brain Age | Comparisons of Correlations * | |||
---|---|---|---|---|---|
r | p-Value | r | p-Value | p-Value | |
<70 yrs | |||||
Normalized clustering | −0.551 | <0.0001 | −0.590 | <0.0001 | 0.16 |
Normalized path length | −0.524 | <0.0001 | −0.573 | <0.0001 | 0.114 |
Small-world coefficient | −0.526 | <0.0001 | −0.556 | <0.0001 | 0.233 |
≥70 yrs | |||||
Normalized clustering | −0.282 | <0.0001 | −0.628 | <0.0001 | <0.0001 |
Normalized path length | −0.269 | <0.0001 | −0.604 | <0.0001 | <0.0001 |
Small-world coefficient | −0.275 | <0.0001 | −0.612 | <0.0001 | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shigemoto, Y.; Sato, N.; Maikusa, N.; Sone, D.; Ota, M.; Kimura, Y.; Chiba, E.; Okita, K.; Yamao, T.; Nakaya, M.; et al. Age and Sex-Related Effects on Single-Subject Gray Matter Networks in Healthy Participants. J. Pers. Med. 2023, 13, 419. https://doi.org/10.3390/jpm13030419
Shigemoto Y, Sato N, Maikusa N, Sone D, Ota M, Kimura Y, Chiba E, Okita K, Yamao T, Nakaya M, et al. Age and Sex-Related Effects on Single-Subject Gray Matter Networks in Healthy Participants. Journal of Personalized Medicine. 2023; 13(3):419. https://doi.org/10.3390/jpm13030419
Chicago/Turabian StyleShigemoto, Yoko, Noriko Sato, Norihide Maikusa, Daichi Sone, Miho Ota, Yukio Kimura, Emiko Chiba, Kyoji Okita, Tensho Yamao, Moto Nakaya, and et al. 2023. "Age and Sex-Related Effects on Single-Subject Gray Matter Networks in Healthy Participants" Journal of Personalized Medicine 13, no. 3: 419. https://doi.org/10.3390/jpm13030419
APA StyleShigemoto, Y., Sato, N., Maikusa, N., Sone, D., Ota, M., Kimura, Y., Chiba, E., Okita, K., Yamao, T., Nakaya, M., Maki, H., Arizono, E., & Matsuda, H. (2023). Age and Sex-Related Effects on Single-Subject Gray Matter Networks in Healthy Participants. Journal of Personalized Medicine, 13(3), 419. https://doi.org/10.3390/jpm13030419