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Abstract: Recent developments in image analysis have enabled an individual’s brain network to be
evaluated and brain age to be predicted from gray matter images. Our study aimed to investigate
the effects of age and sex on single-subject gray matter networks using a large sample of healthy
participants. We recruited 812 healthy individuals (59.3 ± 14.0 years, 407 females, and 405 males)
who underwent three-dimensional T1-weighted magnetic resonance imaging. Similarity-based
gray matter networks were constructed, and the following network properties were calculated:
normalized clustering, normalized path length, and small-world coefficients. The predicted brain
age was computed using a support-vector regression model. We evaluated the network alterations
related to age and sex. Additionally, we examined the correlations between the network properties
and predicted brain age and compared them with the correlations between the network properties
and chronological age. The brain network retained efficient small-world properties regardless of
age; however, reduced small-world properties were observed with advancing age. Although women
exhibited higher network properties than men and similar age-related network declines as men in
the subjects aged < 70 years, faster age-related network declines were observed in women, leading
to no differences in sex among the participants aged ≥ 70 years. Brain age correlated well with
network properties compared to chronological age in participants aged ≥ 70 years. Although the
brain network retained small-world properties, it moved towards randomized networks with aging.
Faster age-related network disruptions in women were observed than in men among the elderly. Our
findings provide new insights into network alterations underlying aging.
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1. Introduction

The brain undergoes several structural and functional alterations associated with
normal aging. Magnetic resonance imaging (MRI) is a robust tool for evaluating the
alterations in the brain volume in vivo. Previous studies have demonstrated the effects
of aging and sex on gray matter volume [1–3], cortical thickness [4], and white matter
volume [1,2]. The voxel-based morphometry analysis of 563 healthy subjects (age range:
20–86, female 55%) revealed linear age-related declines of normalized gray matter volume
with advancing age [3]. The nonlinear age-related declines of normalized white matter
volume (i.e., an inverted U-shape) with slightly increased volume during adulthood, which
reaches a peak in the fourth decade, is consistent with the ongoing maturation of the
white matter [1,3]. Regarding the effects of sex, larger normalized gray matter in females
compared to males and steeper age-related decline in females compared to males were
reported in both younger (142 subjects, age range: 20–34, female 50%) and older groups
(135 subjects, age range: 60–86, female 51%) [2].

Recent advances in image analyses have made investigating brain networks based
on graph theory [5] and predicting brain age using machine learning possible [6]. Brain
networks can be assessed using several modalities, including resting-state functional
magnetic MRI, diffusion tensor imaging, and three-dimensional (3D) T1-weighted images.
Among them, 3DT1-weighted images have the advantage of obtaining stable images with
a short acquisition time, which are not affected by physiological conditions. Although
previous network studies using 3DT1-weighted images are limited to inter-group analysis
of cortical thickness or gray matter volume across patients [7,8], a single-subject cortical
similarity-based analysis enabled the assessment of network alterations at the individual
level [9]. Briefly, an individual graph was assessed by examining statistically similar
gray matter morphology between small brain regions within a single participant. It has
become possible to observe network trajectories related to age based on the individual’s
network results rather than comparing different age groups. Since network properties
are linked to cognitive function, this network analysis might provide new information
reflecting an individual’s brain function. Thus, the careful observation of an individual’s
network may enable the prediction of future disease risk. This analysis has been used in
neuropsychiatric diseases such as Alzheimer’s disease [10,11], epilepsy [12], and bipolar
disorder [13]. However, no studies have examined age- and sex-related network alterations
using similarity-based analyses in healthy participants.

The prediction of an individual’s brain age is also possible using gray matter images [6].
Machine learning is employed to study the pattern of the image data of a large number
of healthy participants; when the individual’s data are inputted into the model, the brain
age of the given individual can be predicted. Brain age has been used in several diseases,
including Alzheimer’s disease [6,14], Parkinson’s disease [14], and epilepsy [15], and is
considered a useful biomarker for detecting and monitoring neurodegenerative disorders.

We hypothesized that the brain network declines with age, and we also hypothesized
that sex differences could affect age-related network alterations considering hormonal
changes and a higher incidence of Alzheimer’s disease (typical age-related neurodegen-
erative disorders) in women than in men. Furthermore, we speculated that predicted
brain age correlates better with network properties than chronological age. In this study,
we calculated small-world network properties using single-subject gray matter network
analysis and investigated network alterations related to age and sex in a large sample of
healthy participants.

2. Materials and Methods
2.1. Participants

We employed 812 MRI scans (407 females and 405 males; age, mean± standard devia-
tion, 59.3± 14.0 years, range 25.8–85.1 years) from the normal database at our center. The
age distribution was even for females and males in all generations. The age distributions of
the participants used in this study are shown in Figure 1.
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Figure 1. Histogram showing the age distribution for females and males in this study.

All the participants were Japanese and healthy, with no history of neurological or
psychiatric disorders and no history of use of medication that affects the central nervous
system, according to the medical interviews. All the participants underwent 3D sagittal
T1-weighted imaging. Visual inspection revealed no structural abnormalities or significant
artifacts. Written informed consent was obtained from all the participants. This study
was approved by the Institutional Review Board of the National Center of Neurology and
Psychiatry and was performed in accordance with the Declaration of Helsinki.

2.2. MRI Data Acquisition

All 3D sagittal T1-weighted images were obtained using two 3-T MRI scanners with
32-channel head-neck coils. A total of 489 MRI scans were acquired using a Philips 3-T
MRI scanner (Philips Medical Systems, Best, The Netherlands) with the following protocol:
repetition time (TR)/echo time (TE), 7.18/3.46 ms; flip angle (FA), 10◦; number of excitations
(NEX), 1; 0.68 × 0.68 mm2 in-plane resolution; matrix, 384 × 384; field of view (FOV),
26.1 × 26.1 cm; 0.6 mm effective slice thickness with no gap; 300 slices; and acquisition
time, 4 min 4 s. The other 323 MRI scans were acquired using a Siemens 3-T MRI scanner
(Verio, Siemens, Erlangen, Germany) with the following protocol: TR/TE, 1800/2.25 ms;
FA 9◦; NEX, 1; 0.87 × 0.78 mm2 in-plane resolution; matrix, 320 × 280; FOV, 25 × 25 cm;
0.8 mm effective slice thickness with no gap; 224 slices; and acquisition time, 5 min 27 s.

2.3. MR Data Preprocessing and Brain Age Prediction

The 3D T1-weighed images were preprocessed using Statistical Parametric Mapping
12 (SPM12; Functional Imaging Laboratory, University College London, London, UK)
running on MATLAB 2021b (Mathworks, Natick, MA, USA). The gray matter images
were segmented and spatially normalized using the DARTEL (anatomical registration
of differential morphology with exponential Rye algebra) algorithm implemented in the
Computational Anatomy Toolbox (CAT 12). Finally, the normalized gray matter images
were smoothed using a 4 mm full width at half maximum (FWHM) Gaussian kernel for
brain age prediction [15] and an 8 mm FWHM Gaussian kernel for similarity-based gray
matter network analysis [10].

2.4. Brain Age Prediction

To predict the brain age, we used the support regression model implemented in the
LIBSVM (http://www.csie.ntu.edu.tw/~cjlin/libsvm/) toolbox with a linear kernel and
default setting (i.e., in the LIBSVM: C = 1, v = 0.5). Principal component analysis was used
to reduce the overfitting and overcome the curse of dimensionality, and the number of

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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principal components was set to 100 as previously described [15]. For the regression model,
the principal components derived from gray matter voxel intensities were considered
independent variables, and the chronological age was considered a dependent variable. To
evaluate the ability of the regression model, we used 10-fold cross-validation, with one fold
in iteration considered as the test and the remaining folds being fitted to the model. The
accuracy of the model was measured by using the mean absolute error, root-mean-square
error, and the correlation between chronological age and predicted brain age through
10-fold cross-validation. Finally, differences in the predicted brain and chronological ages
(brain-PAD: predicted age-chronological age) were calculated for each participant.

2.5. Single-Subject Gray Matter Network

Single-subject gray matter networks were computed using a previously described au-
tomated pipeline (http://github.com/bettytijms/Single_Subject_Grey_Matter_Networks;
version 20,150,902 accessed on 3 May 2019) [9]. Figure 2 shows a diagram of the proposed
method. A brain network is defined as the nodes and edges that connect them. In this
study, nodes were defined as cubes of 3 × 3 × 3 voxels extracted from gray-matter images.
Men had significantly more nodes than women (7091.90 ± 514.56 vs. 6378.06 ± 457.28,
Mann–Whitney U test, p < 0.0001). Connectivity represents statistically high cortical similar-
ities between any two nodes in a single participant. To identify the maximum similarities,
each node was rotated by an angle θ with multiples of 45◦ and reflections over all the
axes. Thereafter, to construct unweighted and undirected graphs, the similarity matrix was
binarized with a threshold to include similarity values that reached a significance level of
p < 0.05, corrected for multiple comparisons with false discovery rate (correlations greater
than the threshold were indicated as 1, and correlations lower than the threshold were
indicated as 0).
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Figure 2. The pipeline of similarity-based gray matter network analysis. After preprocessing, the
extracted gray matter image was resliced into small brain regions of 3 × 3 × 3 voxel cubes (1).
After the identification of maximum similarity value by rotating each cube with an angle θ, the
similarity between all the nodes was calculated with the correlation coefficient, and a similarity
matrix was constructed (2). Five random matrices were also constructed for each similarity matrix (3).
Thereafter, the similarity matrix was binarized with a threshold that ensured a 5% chance of spurious
connections for all the participants (4). Finally, we calculated the network properties and small-world
properties (5).

The most commonly used network properties are the clustering coefficient and path
length. The clustering coefficient shows the tendency of the interconnectedness of neigh-
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boring nodes and is considered a measure of segregation. The path length is defined as
the average short path between any two nodes and is considered a measure of integration.
Based on these two properties, networks are classified into three types: regular (high
clustering and long path length), random (low clustering and short path length), and small-
world (high clustering and short path length), which lies between regular and random
(Figure 3). In healthy individuals, the brain network is considered to maintain an efficient
“small-world property [16].” To estimate whether a real brain network has a small-world
topology, the clustering coefficient and path length in the real network is compared with
those in a matched random network. Thus, we also computed five randomized networks
for each binarized matrix.
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Figure 3. Small-world network model. A regular network has high clustering and long path length,
while a random network has low clustering and short path length. A small-world network lies
between regular and random, showing high clustering and short path length (many short-range
connections coexist with a few long-range connections).

Finally, we calculated the following small-world properties: normalized clustering
(ratio of average clustering to that of its randomized version), normalized path length
(ratio of average path length to that of its randomized version), and small-world coefficient
(normalized clustering divided by normalized path length). The network is defined as a
“small-world property” when normalized clustering > 1, normalized path length ≈ 1, and
small-world coefficient > 1 [17].

2.6. Statistical Analysis

To evaluate the variations in sex in demographics, including chronological/predicted
brain age, brain PAD score, number of nodes, and global network properties, we performed
the Mann–Whitney U test. The statistical significance level was set at a p-value < 0.05 and
at a p-value < 0.017 (=0.05/3) for network properties after Bonferroni correction.

Figure 4 shows scatter plots between network properties and age, controlling for the
number of nodes and scanner types in women and men. The age trajectory curve was
fitted using a generalized additive model (GAM). However, since the visual inspection
of GAM revealed faster age-related declines in women aged ≥ 70 years, we considered
a generalized linear model (GLM) to investigate the effects of age and sex on network
properties. Thus, we divided the participants into two subgroups using a threshold of
70 years: <70 years old and ≥70 years old. First, we tested the interaction effect of age and
sex on global network properties. If no interaction existed, we further tested the main effect
of age and sex on network properties. To eliminate the effect of the number of nodes (men
> female, Mann–Whitney U test, p < 10−4), which reflect gray matter volume, we included
them as nuisance covariates. We also directly compared the sex differences using analysis
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of covariance, controlling for age, the number of nodes, and scanner types. Statistical
analyses were performed using R version 4.2.1.
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curves were constructed based on the generalized additive model (GAM). (A) Normalized clustering,
(B) normalized path length, and (C) small-world coefficient. Each data distribution for women and
men was shown using a kernel approximation.

Additionally, the correlations between each network property and chronological/brain
age were evaluated using partial correlation analysis controlling for sex, the number of
nodes, and scanner types in the two subgroups. The statistical significance level was set
at a p-value < 0.025 (=0.05/2) after the Bonferroni correction. Comparisons of correla-
tions for each network property of chronological age and brain age were analyzed using
Psychometrica [18], and a p-value < 0.05 was deemed significant.

3. Results
3.1. Demographics

The participants’ characteristics are presented in Table 1. There were no significant
sex differences in the predicted brain age and brain-PAD score. Considering the network
properties, both women and men retained a small-world topology showing normalized
clustering > 1, normalized path length ≈ 1, and small-world coefficient > 1. Women
exhibited significantly higher small-world properties (normalized clustering, normalized
path length, and small-world coefficient) than men.
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Table 1. Demographic characteristics of the participants.

Characteristic Women Men p-Value

Participants, N 407 (50.1%) 405 (49.9%)
Age, y

Chronological age 59.272 ± 13.990 59.245 ± 13.970 0.964 a

Predicted brain age 59.019 ± 15.234 58.490 ± 16.186 0.923 a

Brain PAD score −0.254 ± 5.413 −0.755 ± 5.156 0.139 a

Network measures
Normalized clustering 1.729 ± 0.086 1.711 ± 0.078 <0.0001 b

Normalized path length 1.112 ± 0.016 1.106 ± 0.015 <0.0001 b

Small-world coefficient 1.554 ± 0.059 1.546 ± 0.056 0.012 b

Data are presented as N (%) and mean ± standard deviation. Brain-PAD score: predicted age-chronological age.
a Mann–Whitney U test. b Mann–Whitney U test with Bonferroni correction.

3.2. Age- and Sex-Related Alterations of Network Properties

Table 2 shows the results of the effects of age and sex of the small-world network
properties. In participants aged < 70 years, a significant interaction of age and sex was
observed in the normalized path length. However, normalized clustering and small-world
coefficients exhibited no interactions between age and sex, suggesting that age-related
network alterations were similar in women and men. The main effects of age were observed
in both groups, and an effect of sex was observed in normalized clustering.

Table 2. Age- and sex-related network alterations in participants aged < 70 and ≥70 years.

Variables Unstandardized β Standard Error Standardized β p-Value

Chronological age < 70 y
Normalized clustering

Age × female (sex) interaction <−0.001 0.051 −0.045 0.214
Age effect −0.003 0.037 −0.580 <0.001
Female (sex) effect 0.051 0.065 0.269 0.012

Normalized path length
Age × female (sex) interaction <−0.001 0.041 −0.112 0.040
Age effect <−0.001 0.030 −0.423 <0.001
Female (sex) effect 0.012 0.052 0.262 <0.001

Small-world coefficient
Age × female (sex) interaction <−0.001 0.054 −0.014 0.416
Age effect −0.002 0.039 −0.589 <0.001
Female (sex) effect 0.028 0.069 0.243 0.05

Chronological age ≥ 70 y
Normalized clustering

Age × female (sex) interaction −0.008 0.517 −1.363 0.009
Age effect 0.609 0.603 1.638 0.412
Female (sex) effect −0.002 0.363 −0.298 0.008

Normalized path length
Age × female (sex) interaction −0.001 0.391 −1.223 0.002
Age effect <−0.001 0.274 −0.162 0.555
Female (sex) effect 0.103 0.456 1.425 0.002

Small-world coefficient
Age × female (sex) interaction −0.006 0.555 −1.347 0.016
Age effect −0.001 0.389 −0.320 0.412
Female (sex) effect 0.421 0.647 1.622 0.015

Data are estimated by a generalized linear model controlling for number of nodes and scanner types.

In participants aged ≥ 70 years, a significant interaction of age and sex was observed
on all small-world measures, suggesting that age-related network alterations vary between
women and men. Age-related network decline was faster in women than in men.
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Direct comparisons of women and men revealed significantly higher network proper-
ties in women than in men in participants < 70 years old; however, these differences in sex
disappeared in participants ≥ 70 years old (Table 3).

Table 3. Differences in the network properties between women and men in participants with a
chronological age < 70 and ≥70 years.

Variables Women Men p-Value

Chronological age < 70 yrs
Normalized clustering 1.756 ± 0.003 1.730 ± 0.003 <0.001

Normalized path length 1.115 ± 0.001 1.110 ± 0.001 <0.001
Small-world coefficient 1.575 ± 0.002 1.558 ± 0.002 <0.001

Chronological age ≥ 70 yrs
Normalized clustering 1.661 ± 0.009 1.655 ± 0.009 0.679

Normalized path length 1.100 ± 0.001 1.100 ± 0.001 0.873
Small-world coefficient 1.508 ± 0.007 1.504 ± 0.007 0.692

Data are presented as the mean ± standard deviation. Differences between women and men in network prop-
erties were analyzed using analysis of covariance, controlling for chronological age, number of nodes, and
scanner types.

3.3. Correlations between Global Network Properties and Chronological/Brain Age

The correlation results between global network properties and chronological/brain
age in patients aged < 70 and ≥70 years are shown in Table 4. For chronological/brain age
< 70 years, the partial correlation test results showed moderate correlations between the
network properties and chronological/brain age, and no significant correlations were found.
In chronological/brain age ≥ 70 years, chronological age showed only mild correlations
with the network properties; however, brain age showed significantly higher correlations
than chronological age.

Table 4. Partial correlations of network properties with chronological/predicted brain age in partici-
pants < 70 and ≥ 70 years.

Chronological Age Predicted Brain Age Comparisons of Correlations *

r p-Value r p-Value p-Value

<70 yrs
Normalized clustering −0.551 <0.0001 −0.590 <0.0001 0.16
Normalized path length −0.524 <0.0001 −0.573 <0.0001 0.114
Small-world coefficient −0.526 <0.0001 −0.556 <0.0001 0.233

≥70 yrs
Normalized clustering −0.282 <0.0001 −0.628 <0.0001 <0.0001
Normalized path length −0.269 <0.0001 −0.604 <0.0001 <0.0001
Small-world coefficient −0.275 <0.0001 −0.612 <0.0001 <0.0001

Correlations between network properties and chronological/predicted brain age were analyzed using partial
correlation analysis controlling for sex, number of nodes, and scanner types. * Comparisons of correlations were
analyzed using Psychometrica [18].

4. Discussion

To our knowledge, this is the first study to investigate age- and sex-related network
alterations based on a single-subject gray matter network analysis in a large sample of
healthy individuals. Although women exhibited higher network properties compared to
men and similar age-related network declines as men in the participants aged < 70 years,
faster age-related network declines over time were observed in women and led to no sex
differences in the participants aged ≥ 70 years. Moreover, brain age was highly correlated
with network properties compared to chronological age in the elderly. Our findings on age-
and sex-related alterations in gray matter network properties may contribute to a better
understanding of the mechanisms underlying normal aging.
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Although the brain network retained small-world topology regardless of age, the
small-world properties (normalized clustering, normalized path length, and small-world
coefficient) declined with advancing age, indicating that the network moved towards a
less optimal random organization. Considering normalized clustering, our findings were
compatible with previous network studies using resting-state functional MRI in 15 healthy
young (mean age = 24.7 years) and 11 healthy old adults (mean age = 66.5 years) [19]
and diffusion tensor tractography in 95 healthy individuals aged 19–85 years [5], showing
reduced local efficiency (corresponding to lower clustering [20]) in aging. Since clustering
reflects local information transfer within small brain regions, the decreased clustering
found in this study may suggest that local information transfer becomes less efficient with
normal aging. However, inconsistent results were observed for the direction of normalized
path length. We found reduced normalized path length in aging; however, previous studies
using resting-state functional MRI [19] found results contrary to ours, showing reduced
global efficiency (corresponding to longer path length [20]) in older adults than in young
adults. Another network study using regional gray matter volume in 350 randomly selected
healthy participants for each group from a large database reported higher global efficiency
in the middle-aged group (41–60 years) than in young (18–40 years) and old age groups (61–
80 years) [21]. These inconsistent results concerning the direction of path length could be
attributed to the differences in the methodology used to construct the network or network
parameters that are not computationally equivalent (i.e., path length vs. global efficiency).

In Alzheimer’s disease, a typical age-related neurodegenerative disorder, gray matter
networks are known to disrupt and move to random networks [11]. A recent study using
single-subject network analysis revealed that gray matter networks develop a more random
organized topology in individuals with subjective cognitive decline, which could be a
very early preclinical stage of Alzheimer’s disease [22]. They found associations between
lower normalized clustering and normalized path length with a longitudinal decline in
global cognition. Another single-subject network study also reported the association of
lower normalized clustering and small-world coefficient with increased risk of clinical
progression in participants without dementia with abnormal amyloid cerebrospinal fluid
markers [23]. A more recent study on autosomal dominant Alzheimer’s disease mutation
carriers demonstrated that the earliest network difference relative to non-carriers was
observed in a lower normalized path length, followed by lower normalized clustering and
small-world coefficient, but not captured in other network parameters [24]. Previous single-
subject network studies have consistently revealed that small-world properties are sensitive
markers for detecting changes in gray-matter networks. In this study, we first demonstrated
gray matter network trajectories by age using a large sample of the normal database.
Although we cannot rule out the possibility that patients in the predementia stage were
included in our sample, our findings of age-related lower small-world properties suggest
that gray matter networks develop a more randomized topology even with normal aging.

Considering the sex differences, women showed more optimal network topology
showing higher small-world properties compared to men in participants aged < 70 years.

Consistent with our results, previous weighted network studies using diffusion tensor
tractography in 95 healthy individuals aged 19 to 85 years [5] and 72 young individuals aged
18 to 27 years [25] found higher local efficiency (corresponding to higher clustering [20]
in unweighted networks) in women than in men; however, they found higher global
efficiency (corresponding to shorter path length [20] in unweighted networks) in women
than in men. Inconsistent results concerning the direction of path length could be owing
to differences in the methodology used to construct the network (i.e., unweighted vs.
weighted network). A larger corpus callosum in women [26] possibly enables greater
interhemispheric information transfer, which might account for the longer path length in
women observed in our study.

There is accumulating evidence of the neuroprotective effect of estrogen against brain
aging [27–29]. Estrogen therapy protects against apoptotic cell death by enhancing the
expression of genes that optimize cell survival [30]. Moreover, a number of studies have
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clarified that hormone replacement therapy reduces the number and size of white matter
hyperintensities in the brain [31]. Previous functional MRI studies have reported that
ovarian hormones may enhance both cortico-cortical and subcortico-cortical functional
connectivity [32,33]. Interestingly, we found faster age-related network declines in women
than in men in participants aged ≥70 years. We hypothesized that hormonal changes
would affect network alterations in women. However, network disruptions in individuals
aged ≥70 years would not be accounted for only in the menopausal state since the average
age of menopause is in the early to mid-50s [34]. Our findings of network decline at an older
stage than menopause may account for the female advantages in verbal memory during
normal cognitive aging [35]. This female advantage may act as a cognitive reserve and mask
the early sign of cognitive decline despite comparable brain pathology to men; moreover,
women show a faster cognitive function decline after brain pathology progression [36].

We also explored the correlations between the global network properties and chrono-
logical/predicted brain age. In the chronological/brain age ≥ 70 years, brain age was
highly correlated with network properties compared to chronological age, which only
showed a weak correlation. With age, metabolic diseases and the risk of neurodegenerative
diseases are increasing. A recent study on cognitively unimpaired elderly individuals
reported that diabetes and alcohol use are associated with older brain age [37]. They also
reported that higher life satisfaction was associated with a younger brain age. Thus, several
factors, including lifestyle change, affect brain age, and it would be appropriate to consider
brain age when evaluating brain networks in the elderly.

This study had several limitations. First, we conducted a network analysis using only
the 3DT1-weighted images. It is important to study age- and sex-related network changes
using resting-state functional MRI and diffusion MRI and the associations of network
alterations with the present study. Second, since this was a cross-sectional study, we could
not confirm that the rapid age-related decline in elderly women would be a potential risk
factor for cognitive decline or a predementia state of neurodegenerative disease. Thus,
longitudinal network alterations will be warranted in the future. Third, for the prediction
of brain age, we set the number of principal components = 100 using the same model as
previously described [15]. Since the number of principal components is controversial, it
may be desirable to determine the parameters using the Monte Carlo method in the future.
Fourth, we have no inclusion or exclusion criteria for the risk factors of cardiovascular
disease. Previous structural gray matter networks of 616 healthy elderly (age range: 60–
80, female 42%) revealed that cardiovascular risk factors such as smoking, higher blood
pressure, higher glucose, and higher visceral obesity were negatively associated with
structural networks [38]. We have to keep in mind that these risk factors might affect the
network declines observed in the elderly in this study.

5. Conclusions

We used single-subject network analysis to investigate age- and sex-related net-
work alterations in a large sample of healthy individuals. Although women exhibited
higher network properties than men and similar age-related networks declined as men
aged < 70 years, rapid age-related network declines were observed in women
aged ≥ 70 years. Moreover, brain age was highly correlated with network properties
compared to chronological age in the elderly. Our findings on age- and sex-related gray
matter network alterations may contribute to a better understanding of the mechanisms
underlying normal aging.
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