Radiomics in Lung Metastases: A Systematic Review
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ierardi, A.M.; Carnevale, A.; Chiarello, S.; Cavazza, M.; Stellato, E.; Mendogni, P.; Palleschi, A.; Tosi, D.; Giganti, M.; Carrafiello, G. A Narrative Review on Pulmonary Metastases Management by Non-Surgical Local Techniques: Where Do We Stand? AME Surg. J. 2021, 1, 24. [Google Scholar] [CrossRef]
- Gerull, W.D.; Puri, V.; Kozower, B.D. The Epidemiology and Biology of Pulmonary Metastases. J. Thorac. Dis. 2021, 13, 2585–2589. [Google Scholar] [CrossRef]
- Stella, G.M.; Kolling, S.; Benvenuti, S.; Bortolotto, C. Lung-Seeking Metastases. Cancers 2019, 11, 1010. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.T.; Tan, Y.J.; Oon, C.E. Molecular Targeted Therapy: Treating Cancer with Specificity. Eur. J. Pharmacol. 2018, 834, 188–196. [Google Scholar] [CrossRef]
- Thomas, R.; Howard, S.A.; Laferriere, S.L.; Braschi-Amirfarzan, M. A Review of the Mechanisms and Clinical Implications of Precision Cancer Therapy-Related Toxicity: A Primer for the Radiologist. AJR Am. J. Roentgenol. 2020, 215, 770–780. [Google Scholar] [CrossRef] [PubMed]
- Mangiameli, G.; Cioffi, U.; Alloisio, M.; Testori, A. Lung Metastases: Current Surgical Indications and New Perspectives. Front. Surg. 2022, 9, 884915. [Google Scholar] [CrossRef] [PubMed]
- Digumarthy, S.R.; Mendoza, D.P.; Padole, A.; Chen, T.; Gabriel Peterson, P.; Piotrowska, Z.; Sequist, L.V. Diffuse Lung Metastases in EGFR-Mutant Non-Small Cell Lung Cancer. Cancers 2019, 11, 1360. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Chen, G.; Ding, L.; Wang, Y.; Zhu, C.; Wang, K.; Li, J.; Sun, M.; Oupicky, D. Increased Survival by Pulmonary Treatment of Established Lung Metastases with Dual STAT3/CXCR4 Inhibition by siRNA Nanoemulsions. Mol. Ther. 2019, 27, 2100–2110. [Google Scholar] [CrossRef]
- Li, Z.; Shen, Y.; Wang, Y.; Zhu, L.; Zhu, C.; Qian, C.; Sun, M.; Oupicky, D. Perfluorocarbon Nanoemulsions for Combined Pulmonary siRNA Treatment of Lung Metastatic Osteosarcoma. Adv. Ther. 2019, 2, 1900039. [Google Scholar] [CrossRef]
- Sabatino, V.; Russo, U.; D’Amuri, F.; Bevilacqua, A.; Pagnini, F.; Milanese, G.; Gentili, F.; Nizzoli, R.; Tiseo, M.; Pedrazzi, G.; et al. Pneumothorax and Pulmonary Hemorrhage after CT-Guided Lung Biopsy: Incidence, Clinical Significance and Correlation. Radiol. Med. 2021, 126, 170–177. [Google Scholar] [CrossRef]
- Winokur, R.; Sullivan, B.; Madoff, D.; Pua, B. Percutaneous Lung Biopsy: Technique, Efficacy, and Complications. Semin. Interv. Radiol. 2013, 30, 121–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ericson Lindquist, K.; Ciornei, C.; Westbom-Fremer, S.; Gudinaviciene, I.; Ehinger, A.; Mylona, N.; Urdar, R.; Lianou, M.; Svensson, F.; Seidal, T.; et al. Difficulties in Diagnostics of Lung Tumours in Biopsies: An Interpathologist Concordance Study Evaluating the International Diagnostic Guidelines. J. Clin. Pathol. 2022, 75, 302–309. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.R.; Kim, M.-S.; Park, C.M.; Yoon, S.H.; Chae, K.J.; Lee, J. Patterns of Percutaneous Transthoracic Needle Biopsy (PTNB) of the Lung and Risk of PTNB-Related Severe Pneumothorax: A Nationwide Population-Based Study. PLoS ONE 2020, 15, e0235599. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, S.; Frank, N. An Overview of Percutaneous CT-Guided Lung Biopsies. J. Radiol. Nurs. 2018, 37, 2–8. [Google Scholar] [CrossRef]
- Fan, Y.; Zhao, Z.; Wang, X.; Ai, H.; Yang, C.; Luo, Y.; Jiang, X. Radiomics for Prediction of Response to EGFR-TKI Based on Metastasis/brain Parenchyma (M/BP)-Interface. Radiol. Med. 2022, 127, 1342–1354. [Google Scholar] [CrossRef]
- Agazzi, G.M.; Ravanelli, M.; Roca, E.; Medicina, D.; Balzarini, P.; Pessina, C.; Vermi, W.; Berruti, A.; Maroldi, R.; Farina, D. CT Texture Analysis for Prediction of EGFR Mutational Status and ALK Rearrangement in Patients with Non-Small Cell Lung Cancer. Radiol. Med. 2021, 126, 786–794. [Google Scholar] [CrossRef]
- Bracci, S.; Dolciami, M.; Trobiani, C.; Izzo, A.; Pernazza, A.; D’Amati, G.; Manganaro, L.; Ricci, P. Quantitative CT Texture Analysis in Predicting PD-L1 Expression in Locally Advanced or Metastatic NSCLC Patients. Radiol. Med. 2021, 126, 1425–1433. [Google Scholar] [CrossRef] [PubMed]
- Albano, D.; Stecco, A.; Micci, G.; Sconfienza, L.M.; Colagrande, S.; Reginelli, A.; Grassi, R.; Carriero, A.; Midiri, M.; Lagalla, R.; et al. Whole-Body Magnetic Resonance Imaging (WB-MRI) in Oncology: An Italian Survey. Radiol. Med. 2021, 126, 299–305. [Google Scholar] [CrossRef]
- Mungai, F.; Verrone, G.B.; Bonasera, L.; Bicci, E.; Pietragalla, M.; Nardi, C.; Berti, V.; Mazzoni, L.N.; Miele, V. Imaging Biomarkers in the Diagnosis of Salivary Gland Tumors: The Value of Lesion/parenchyma Ratio of Perfusion-MR Pharmacokinetic Parameters. Radiol. Med. 2021, 126, 1345–1355. [Google Scholar] [CrossRef] [PubMed]
- Ledda, R.E.; Milanese, G.; Cademartiri, F.; Maffei, E.; Benedetti, G.; Goldoni, M.; Silva, M.; Sverzellati, N. Association of Hepatic Steatosis with Epicardial Fat Volume and Coronary Artery Disease in Symptomatic Patients. Radiol. Med. 2021, 126, 652–660. [Google Scholar] [CrossRef]
- Halefoglu, A.M.; Ozagari, A.A. Tumor Grade Estımatıon of Clear Cell and Papıllary Renal Cell Carcınomas Usıng Contrast-Enhanced MDCT and FSE T2 Weıghted MR ımagıng: Radıology-Pathology Correlatıon. Radiol. Med. 2021, 126, 1139–1148. [Google Scholar] [CrossRef] [PubMed]
- Chiti, G.; Grazzini, G.; Flammia, F.; Matteuzzi, B.; Tortoli, P.; Bettarini, S.; Pasqualini, E.; Granata, V.; Busoni, S.; Messserini, L.; et al. Gastroenteropancreatic Neuroendocrine Neoplasms (GEP-NENs): A Radiomic Model to Predict Tumor Grade. Radiol. Med. 2022, 127, 928–938. [Google Scholar] [CrossRef] [PubMed]
- Greco, F.; Mallio, C.A. Relationship between Visceral Adipose Tissue and Genetic Mutations (VHL and KDM5C) in Clear Cell Renal Cell Carcinoma. Radiol. Med. 2021, 126, 645–651. [Google Scholar] [CrossRef] [PubMed]
- Pasqualetti, F.; Gabelloni, M.; Gonnelli, A.; Faggioni, L.; Cantarella, M.; Montrone, S.; Gadducci, G.; Giannini, N.; Montemurro, N.; Mattioni, R.; et al. Impact of Temporalis Muscle Thickness in Elderly Patients with Newly Diagnosed Glioblastoma Treated with Radio or Radio-Chemotherapy. Radiol. Med. 2022, 127, 919–924. [Google Scholar] [CrossRef] [PubMed]
- Tagliafico, A.S.; Bignotti, B.; Torri, L.; Rossi, F. Sarcopenia: How to Measure, When and Why. Radiol. Med. 2022, 127, 228–237. [Google Scholar] [CrossRef] [PubMed]
- D’Angelo, A.; Orlandi, A.; Bufi, E.; Mercogliano, S.; Belli, P.; Manfredi, R. Automated Breast Volume Scanner (ABVS) Compared to Handheld Ultrasound (HHUS) and Contrast-Enhanced Magnetic Resonance Imaging (CE-MRI) in the Early Assessment of Breast Cancer during Neoadjuvant Chemotherapy: An Emerging Role to Monitoring Tumor Response? Radiol. Med. 2021, 126, 517–526. [Google Scholar] [CrossRef]
- Caruso, D.; Polici, M.; Rinzivillo, M.; Zerunian, M.; Nacci, I.; Marasco, M.; Magi, L.; Tarallo, M.; Gargiulo, S.; Iannicelli, E.; et al. CT-Based Radiomics for Prediction of Therapeutic Response to Everolimus in Metastatic Neuroendocrine Tumors. Radiol. Med. 2022, 127, 691–701. [Google Scholar] [CrossRef] [PubMed]
- Fusco, R.; Granata, V.; Sansone, M.; Rega, D.; Delrio, P.; Tatangelo, F.; Romano, C.; Avallone, A.; Pupo, D.; Giordano, M.; et al. Validation of the Standardized Index of Shape Tool to Analyze DCE-MRI Data in the Assessment of Neo-Adjuvant Therapy in Locally Advanced Rectal Cancer. Radiol. Med. 2021, 126, 1044–1054. [Google Scholar] [CrossRef]
- Shroff, G.S.; Benveniste, M.F.; de Groot, P.M.; Wu, C.C.; Viswanathan, C.; Papadimitrakopoulou, V.A.; Truong, M.T. Targeted Therapy and Imaging Findings. J. Thorac. Imaging 2017, 32, 313–322. [Google Scholar] [CrossRef]
- Souza, F.F.; Smith, A.; Araujo, C.; Jagannathan, J.; Johnston, C.; O’Regan, K.; Shinagare, A.; Ramaiya, N. New Targeted Molecular Therapies for Cancer: Radiological Response in Intrathoracic Malignancies and Cardiopulmonary Toxicity: What the Radiologist Needs to Know. Cancer Imaging 2014, 14, 26. [Google Scholar] [CrossRef] [Green Version]
- Carter, B.W.; Altan, M.; Shroff, G.S.; Truong, M.T.; Vlahos, I. Post-Chemotherapy and Targeted Therapy Imaging of the Chest in Lung Cancer. Clin. Radiol. 2022, 77, e1–e10. [Google Scholar] [CrossRef]
- Paulmurugan, R.; Oronsky, B.; Brouse, C.F.; Reid, T.; Knox, S.; Scicinski, J. Real Time Dynamic Imaging and Current Targeted Therapies in the War on Cancer: A New Paradigm. Theranostics 2013, 3, 437–447. [Google Scholar] [CrossRef] [Green Version]
- Del Re, M.; Cucchiara, F.; Rofi, E.; Fontanelli, L.; Petrini, I.; Gri, N.; Pasquini, G.; Rizzo, M.; Gabelloni, M.; Belluomini, L.; et al. A Multiparametric Approach to Improve the Prediction of Response to Immunotherapy in Patients with Metastatic NSCLC. Cancer Immunol. Immunother. 2020, 70, 1667–1678. [Google Scholar] [CrossRef] [PubMed]
- Poulet, G.; Massias, J.; Taly, V. Liquid Biopsy: General Concepts. Acta Cytol. 2019, 63, 449–455. [Google Scholar] [CrossRef]
- Martins, I.; Ribeiro, I.P.; Jorge, J.; Gonçalves, A.C.; Sarmento-Ribeiro, A.B.; Melo, J.B.; Carreira, I.M. Liquid Biopsies: Applications for Cancer Diagnosis and Monitoring. Genes 2021, 12, 349. [Google Scholar] [CrossRef] [PubMed]
- Alix-Panabières, C.; Pantel, K. Liquid Biopsy: From Discovery to Clinical Application. Cancer Discov. 2021, 11, 858–873. [Google Scholar] [CrossRef]
- Palmirotta, R.; Lovero, D.; Cafforio, P.; Felici, C.; Mannavola, F.; Pellè, E.; Quaresmini, D.; Tucci, M.; Silvestris, F. Liquid Biopsy of Cancer: A Multimodal Diagnostic Tool in Clinical Oncology. Ther. Adv. Med. Oncol. 2018, 10, 175883591879463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freitas, C.; Sousa, C.; Machado, F.; Serino, M.; Santos, V.; Cruz-Martins, N.; Teixeira, A.; Cunha, A.; Pereira, T.; Oliveira, H.P.; et al. The Role of Liquid Biopsy in Early Diagnosis of Lung Cancer. Front. Oncol. 2021, 11, 634316. [Google Scholar] [CrossRef]
- Gillies, R.J.; Kinahan, P.E.; Hricak, H. Radiomics: Images Are More than Pictures, They Are Data. Radiology 2016, 278, 563–577. [Google Scholar] [CrossRef] [Green Version]
- Scapicchio, C.; Gabelloni, M.; Barucci, A.; Cioni, D.; Saba, L.; Neri, E. A Deep Look into Radiomics. Radiol. Med. 2021, 126, 1296–1311. [Google Scholar] [CrossRef]
- Vicini, S.; Bortolotto, C.; Rengo, M.; Ballerini, D.; Bellini, D.; Carbone, I.; Preda, L.; Laghi, A.; Coppola, F.; Faggioni, L. A Narrative Review on Current Imaging Applications of Artificial Intelligence and Radiomics in Oncology: Focus on the Three Most Common Cancers. Radiol. Med. 2022, 127, 819–836. [Google Scholar] [CrossRef]
- Nardone, V.; Reginelli, A.; Grassi, R.; Boldrini, L.; Vacca, G.; D’Ippolito, E.; Annunziata, S.; Farchione, A.; Belfiore, M.P.; Desideri, I.; et al. Delta Radiomics: A Systematic Review. Radiol. Med. 2021, 126, 1571–1583. [Google Scholar] [CrossRef]
- Coppola, F.; Faggioni, L.; Gabelloni, M.; De Vietro, F.; Mendola, V.; Cattabriga, A.; Cocozza, M.A.; Vara, G.; Piccinino, A.; Lo Monaco, S.; et al. Human, All Too Human? An All-Around Appraisal of the “Artificial Intelligence Revolution” in Medical Imaging. Front. Psychol. 2021, 12, 710982. [Google Scholar] [CrossRef]
- Gabelloni, M.; Faggioni, L.; Neri, E. Imaging Biomarkers in Upper Gastrointestinal Cancers. BJR Open 2019, 1, 20190001. [Google Scholar] [CrossRef]
- Coppola, F.; Giannini, V.; Gabelloni, M.; Panic, J.; Defeudis, A.; Lo Monaco, S.; Cattabriga, A.; Cocozza, M.A.; Pastore, L.V.; Polici, M.; et al. Radiomics and Magnetic Resonance Imaging of Rectal Cancer: From Engineering to Clinical Practice. Diagnostics 2021, 11, 756. [Google Scholar] [CrossRef]
- Gurgitano, M.; Angileri, S.A.; Rodà, G.M.; Liguori, A.; Pandolfi, M.; Ierardi, A.M.; Wood, B.J.; Carrafiello, G. Interventional Radiology Ex-Machina: Impact of Artificial Intelligence on Practice. Radiol. Med. 2021, 126, 998–1006. [Google Scholar] [CrossRef]
- Coppola, F.; Faggioni, L.; Regge, D.; Giovagnoni, A.; Golfieri, R.; Bibbolino, C.; Miele, V.; Neri, E.; Grassi, R. Artificial Intelligence: Radiologists’ Expectations and Opinions Gleaned from a Nationwide Online Survey. Radiol. Med. 2021, 126, 63–71. [Google Scholar] [CrossRef]
- Satake, H.; Ishigaki, S.; Ito, R.; Naganawa, S. Radiomics in Breast MRI: Current Progress toward Clinical Application in the Era of Artificial Intelligence. Radiol. Med. 2022, 127, 39–56. [Google Scholar] [CrossRef]
- Wang, F.-H.; Zheng, H.-L.; Li, J.-T.; Li, P.; Zheng, C.-H.; Chen, Q.-Y.; Huang, C.-M.; Xie, J.-W. Prediction of Recurrence-Free Survival and Adjuvant Therapy Benefit in Patients with Gastrointestinal Stromal Tumors Based on Radiomics Features. Radiol. Med. 2022, 127, 1085–1097. [Google Scholar] [CrossRef]
- Granata, V.; Fusco, R.; De Muzio, F.; Cutolo, C.; Setola, S.V.; Grassi, R.; Grassi, F.; Ottaiano, A.; Nasti, G.; Tatangelo, F.; et al. Radiomics Textural Features by MR Imaging to Assess Clinical Outcomes Following Liver Resection in Colorectal Liver Metastases. Radiol. Med. 2022, 127, 461–470. [Google Scholar] [CrossRef]
- Yao, F.; Bian, S.; Zhu, D.; Yuan, Y.; Pan, K.; Pan, Z.; Feng, X.; Tang, K.; Yang, Y. Machine Learning-Based Radiomics for Multiple Primary Prostate Cancer Biological Characteristics Prediction with 18F-PSMA-1007 PET: Comparison among Different Volume Segmentation Thresholds. Radiol. Med. 2022, 127, 1170–1178. [Google Scholar] [CrossRef]
- Xue, K.; Liu, L.; Liu, Y.; Guo, Y.; Zhu, Y.; Zhang, M. Radiomics Model Based on Multi-Sequence MR Images for Predicting Preoperative Immunoscore in Rectal Cancer. Radiol. Med. 2022, 127, 702–713. [Google Scholar] [CrossRef]
- Han, D.; Yu, N.; Yu, Y.; He, T.; Duan, X. Performance of CT Radiomics in Predicting the Overall Survival of Patients with Stage III Clear Cell Renal Carcinoma after Radical Nephrectomy. Radiol. Med. 2022, 127, 837–847. [Google Scholar] [CrossRef]
- Gregucci, F.; Fiorentino, A.; Mazzola, R.; Ricchetti, F.; Bonaparte, I.; Surgo, A.; Figlia, V.; Carbonara, R.; Caliandro, M.; Ciliberti, M.P.; et al. Radiomic Analysis to Predict Local Response in Locally Advanced Pancreatic Cancer Treated with Stereotactic Body Radiation Therapy. Radiol. Med. 2022, 127, 100–107. [Google Scholar]
- Robertis, R.D.; De Robertis, R.; Geraci, L.; Tomaiuolo, L.; Bortoli, L.; Beleù, A.; Malleo, G.; D’Onofrio, M. Liver Metastases in Pancreatic Ductal Adenocarcinoma: A Predictive Model Based on CT Texture Analysis. Radiol. Med. 2022, 127, 1079–1084. [Google Scholar]
- Granata, V.; Fusco, R.; De Muzio, F.; Cutolo, C.; Setola, S.V.; Dell’Aversana, F.; Grassi, F.; Belli, A.; Silvestro, L.; Ottaiano, A.; et al. Radiomics and Machine Learning Analysis Based on Magnetic Resonance Imaging in the Assessment of Liver Mucinous Colorectal Metastases. Radiol. Med. 2022, 127, 763–772. [Google Scholar]
- Autorino, R.; Gui, B.; Panza, G.; Boldrini, L.; Cusumano, D.; Russo, L.; Nardangeli, A.; Persiani, S.; Campitelli, M.; Ferrandina, G.; et al. Radiomics-Based Prediction of Two-Year Clinical Outcome in Locally Advanced Cervical Cancer Patients Undergoing Neoadjuvant Chemoradiotherapy. Radiol. Med. 2022, 127, 498–506. [Google Scholar] [CrossRef]
- Benedetti, G.; Mori, M.; Panzeri, M.M.; Barbera, M.; Palumbo, D.; Sini, C.; Muffatti, F.; Andreasi, V.; Steidler, S.; Doglioni, C.; et al. CT-Derived Radiomic Features to Discriminate Histologic Characteristics of Pancreatic Neuroendocrine Tumors. Radiol. Med. 2021, 126, 745–760. [Google Scholar] [CrossRef]
- Santone, A.; Brunese, M.C.; Donnarumma, F.; Guerriero, P.; Mercaldo, F.; Reginelli, A.; Miele, V.; Giovagnoni, A.; Brunese, L. Radiomic Features for Prostate Cancer Grade Detection through Formal Verification. Radiol. Med. 2021, 126, 688–697. [Google Scholar] [CrossRef]
- Chianca, V.; Albano, D.; Messina, C.; Vincenzo, G.; Rizzo, S.; Del Grande, F.; Sconfienza, L.M. An Update in Musculoskeletal Tumors: From Quantitative Imaging to Radiomics. Radiol. Med. 2021, 126, 1095–1105. [Google Scholar]
- Cusumano, D.; Meijer, G.; Lenkowicz, J.; Chiloiro, G.; Boldrini, L.; Masciocchi, C.; Dinapoli, N.; Gatta, R.; Casà, C.; Damiani, A.; et al. A Field Strength Independent MR Radiomics Model to Predict Pathological Complete Response in Locally Advanced Rectal Cancer. Radiol. Med. 2021, 126, 421–429. [Google Scholar] [CrossRef]
- Qin, H.; Que, Q.; Lin, P.; Li, X.; Wang, X.-R.; He, Y.; Chen, J.-Q.; Yang, H. Magnetic Resonance Imaging (MRI) Radiomics of Papillary Thyroid Cancer (PTC): A Comparison of Predictive Performance of Multiple Classifiers Modeling to Identify Cervical Lymph Node Metastases before Surgery. Radiol. Med. 2021, 126, 1312–1327. [Google Scholar]
- Palatresi, D.; Fedeli, F.; Danti, G.; Pasqualini, E.; Castiglione, F.; Messerini, L.; Massi, D.; Bettarini, S.; Tortoli, P.; Busoni, S.; et al. Correlation of CT Radiomic Features for GISTs with Pathological Classification and Molecular Subtypes: Preliminary and Monocentric Experience. Radiol. Med. 2022, 127, 117–128. [Google Scholar]
- Cozzi, D.; Bicci, E.; Cavigli, E.; Danti, G.; Bettarini, S.; Tortoli, P.; Mazzoni, L.N.; Busoni, S.; Pradella, S.; Miele, V. Radiomics in Pulmonary Neuroendocrine Tumours (NETs). Radiol. Med. 2022, 127, 609–615. [Google Scholar]
- Gao, W.; Wang, W.; Song, D.; Yang, C.; Zhu, K.; Zeng, M.; Rao, S.-X.; Wang, M. A Predictive Model Integrating Deep and Radiomics Features Based on Gadobenate Dimeglumine-Enhanced MRI for Postoperative Early Recurrence of Hepatocellular Carcinoma. Radiol. Med. 2022, 127, 259–271. [Google Scholar]
- Karmazanovsky, G.; Gruzdev, I.; Tikhonova, V.; Kondratyev, E.; Revishvili, A. Computed Tomography-Based Radiomics Approach in Pancreatic Tumors Characterization. Radiol. Med. 2021, 126, 1388–1395. [Google Scholar]
- Chiloiro, G.; Cusumano, D.; de Franco, P.; Lenkowicz, J.; Boldrini, L.; Carano, D.; Barbaro, B.; Corvari, B.; Dinapoli, N.; Giraffa, M.; et al. Does Restaging MRI Radiomics Analysis Improve Pathological Complete Response Prediction in Rectal Cancer Patients? A Prognostic Model Development. Radiol. Med. 2022, 127, 11–20. [Google Scholar] [CrossRef]
- Masci, G.M.; Ciccarelli, F.; Mattei, F.I.; Grasso, D.; Accarpio, F.; Catalano, C.; Laghi, A.; Sammartino, P.; Iafrate, F. Role of CT Texture Analysis for Predicting Peritoneal Metastases in Patients with Gastric Cancer. Radiol. Med. 2022, 127, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies That Evaluate Healthcare Interventions: Explanation and Elaboration. BMJ 2009, 339, b2700. [Google Scholar] [CrossRef] [Green Version]
- Lambin, P.; Leijenaar, R.T.H.; Deist, T.M.; Peerlings, J.; de Jong, E.E.C.; van Timmeren, J.; Sanduleanu, S.; Larue, R.T.H.; Even, A.J.G.; Jochems, A.; et al. Radiomics: The Bridge between Medical Imaging and Personalized Medicine. Nat. Rev. Clin. Oncol. 2017, 14, 749–762. [Google Scholar]
- Angus, L.; Starmans, M.P.A.; Rajicic, A.; Odink, A.E.; Jalving, M.; Niessen, W.J.; Visser, J.J.; Sleijfer, S.; Klein, S.; van der Veldt, A.A.M. The BRAF P.V600E Mutation Status of Melanoma Lung Metastases Cannot Be Discriminated on Computed Tomography by LIDC Criteria nor Radiomics Using Machine Learning. J. Pers. Med. 2021, 11, 257. [Google Scholar] [CrossRef] [PubMed]
- Hu, T.; Wang, S.; Huang, L.; Wang, J.; Shi, D.; Li, Y.; Tong, T.; Peng, W. A Clinical-Radiomics Nomogram for the Preoperative Prediction of Lung Metastasis in Colorectal Cancer Patients with Indeterminate Pulmonary Nodules. Eur. Radiol. 2019, 29, 439–449. [Google Scholar] [CrossRef]
- Kirienko, M.; Cozzi, L.; Rossi, A.; Voulaz, E.; Antunovic, L.; Fogliata, A.; Chiti, A.; Sollini, M. Ability of FDG PET and CT Radiomics Features to Differentiate between Primary and Metastatic Lung Lesions. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 1649–1660. [Google Scholar]
- Liu, C.; Meng, Q.; Zeng, Q.; Chen, H.; Shen, Y.; Li, B.; Cen, R.; Huang, J.; Li, G.; Liao, Y.; et al. An Exploratory Study on the Stable Radiomics Features of Metastatic Small Pulmonary Nodules in Colorectal Cancer Patients. Front. Oncol. 2021, 11, 661763. [Google Scholar] [CrossRef]
- Miao, L.; Ma, S.-T.; Jiang, X.; Zhang, H.-H.; Wang, Y.-M.; Li, M. Prediction of the Therapeutic Efficacy of Epirubicin Combined with Ifosfamide in Patients with Lung Metastases from Soft Tissue Sarcoma Based on Contrast-Enhanced CT Radiomics Features. BMC Med. Imaging 2022, 22, 131. [Google Scholar] [CrossRef]
- Shang, H.; Li, J.; Jiao, T.; Fang, C.; Li, K.; Yin, D.; Zeng, Q. Differentiation of Lung Metastases Originated from Different Primary Tumors Using Radiomics Features Based on CT Imaging. Acad. Radiol. 2023, 30, 40–46. [Google Scholar] [CrossRef]
- Zhong, F.; Liu, Z.; An, W.; Wang, B.; Zhang, H.; Liu, Y.; Liao, M. Radiomics Study for Discriminating Second Primary Lung Cancers From Pulmonary Metastases in Pulmonary Solid Lesions. Front. Oncol. 2021, 11, 801213. [Google Scholar] [CrossRef]
- Zhou, Y.; Ma, X.-L.; Zhang, T.; Wang, J.; Zhang, T.; Tian, R. Use of Radiomics Based on 18F-FDG PET/CT and Machine Learning Methods to Aid Clinical Decision-Making in the Classification of Solitary Pulmonary Lesions: An Innovative Approach. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 2904–2913. [Google Scholar] [CrossRef]
- Silva, M.; Picozzi, G.; Sverzellati, N.; Anglesio, S.; Bartolucci, M.; Cavigli, E.; Deliperi, A.; Falchini, M.; Falaschi, F.; Ghio, D.; et al. Low-Dose CT for Lung Cancer Screening: Position Paper from the Italian College of Thoracic Radiology. Radiol. Med. 2022, 127, 543–559. [Google Scholar]
- Voulaz, E.; Novellis, P.; Rossetti, F.; Solinas, M.; Rossi, S.; Alloisio, M.; Pelosi, G.; Veronesi, G. Distinguishing Multiple Lung Primaries from Intra-Pulmonary Metastases and Treatment Implications. Expert Rev. Anticancer Ther. 2020, 20, 985–995. [Google Scholar] [CrossRef]
- Lee, J.E.; Jeong, W.G.; Kim, Y.-H. Differentiation of Primary Lung Cancer from Solitary Lung Metastasis in Patients with Colorectal Cancer: A Retrospective Cohort Study. World J. Surg. Oncol. 2021, 19, 28. [Google Scholar] [CrossRef] [PubMed]
- Perdigón Martinelli, C.; Morell, C.; González, C.; Nova-Lozano, C. Metastatic Pulmonary Dissemination as Differential Diagnosis of COVID-19 Disease. BMJ Case Rep. 2020, 13, e237453. [Google Scholar] [CrossRef]
- Vanfleteren, M.J.E.G.W.; Dingemans, A.-M.C.; Surmont, V.F.; Vermaelen, K.Y.; Postma, A.A.; Oude Lashof, A.M.L.; Pitz, C.C.M.; Hendriks, L.E.L. Invasive Aspergillosis Mimicking Metastatic Lung Cancer. Front. Oncol. 2018, 8, 188. [Google Scholar] [CrossRef] [Green Version]
- Deniffel, D.; Sauter, A.; Fingerle, A.; Rummeny, E.J.; Makowski, M.R.; Pfeiffer, D. Improved Differentiation between Primary Lung Cancer and Pulmonary Metastasis by Combining Dual-Energy CT–derived Biomarkers with Conventional CT Attenuation. Eur. Radiol. 2021, 31, 1002–1010. [Google Scholar] [CrossRef]
- Borghesi, A.; Tironi, A.; Michelini, S.; Scrimieri, A.; Benetti, D.; Maroldi, R. Two Synchronous Lung Metastases from Malignant Melanoma: The Same Patient but Different Morphological Patterns. Eur. J. Radiol. Open 2019, 6, 287–290. [Google Scholar] [CrossRef] [Green Version]
- Deniffel, D.; Sauter, A.; Dangelmaier, J.; Fingerle, A.; Rummeny, E.J.; Pfeiffer, D. Differentiating Intrapulmonary Metastases from Different Primary Tumors via Quantitative Dual-Energy CT Based Iodine Concentration and Conventional CT Attenuation. Eur. J. Radiol. 2019, 111, 6–13. [Google Scholar] [CrossRef]
- Seo, J.B.; Im, J.G.; Goo, J.M.; Chung, M.J.; Kim, M.Y. Atypical Pulmonary Metastases: Spectrum of Radiologic Findings. Radiographics 2001, 21, 403–417. [Google Scholar] [CrossRef]
- Grasso, R.F.; Bernetti, C.; Pacella, G.; Altomare, C.; Castiello, G.; Andresciani, F.; Sarli, M.; Zobel, B.B.; Faiella, E. A Comparative Analysis of Thermal Ablation Techniques in the Treatment of Primary and Secondary Lung Tumors: A Single-Center Experience. Radiol. Med. 2022, 127, 714–724. [Google Scholar] [CrossRef]
- Mega, S.; Fiore, M.; Carpenito, M.; Novembre, M.L.; Miele, M.; Trodella, L.E.; Grigioni, F.; Ippolito, E.; Ramella, S. Early GLS Changes Detection after Chemoradiation in Locally Advanced Non-Small Cell Lung Cancer (NSCLC). Radiol. Med. 2022, 127, 1355–1363. [Google Scholar] [CrossRef]
- Borghetti, P.; Branz, J.; Volpi, G.; Pancera, S.; Buraschi, R.; Bianchi, L.N.C.; Bonù, M.L.; Greco, D.; Facheris, G.; Tomasi, C.; et al. Home-Based Pulmonary Rehabilitation in Patients Undergoing (chemo)radiation Therapy for Unresectable Lung Cancer: A Prospective Explorative Study. Radiol. Med. 2022, 127, 1322–1332. [Google Scholar] [CrossRef]
- Lancellotta, V.; Fanetti, G.; Monari, F.; Mangoni, M.; Mazzarotto, R.; Tagliaferri, L.; Gobitti, C.; Lodi Rizzini, E.; Talomo, S.; Turturici, I.; et al. Stereotactic Radiotherapy (SRT) for Differentiated Thyroid Cancer (DTC) Oligometastases: An AIRO (Italian Association of Radiotherapy and Clinical Oncology) Systematic Review. Radiol. Med. 2022, 127, 681–689. [Google Scholar] [CrossRef] [PubMed]
- Cellini, F.; Di Franco, R.; Manfrida, S.; Borzillo, V.; Maranzano, E.; Pergolizzi, S.; Morganti, A.G.; Fusco, V.; Deodato, F.; Santarelli, M.; et al. Palliative Radiotherapy Indications during the COVID-19 Pandemic and in Future Complex Logistic Settings: The NORMALITY Model. Radiol. Med. 2021, 126, 1619–1656. [Google Scholar] [CrossRef] [PubMed]
- Bellometti, S.; Nube, G.; Alongi, F.; Baiocchi, C.; Corti, L.; Di Biase, S.; Fiorica, F.; Gava, A.; Iannone, T.; Rumeileh, I.A.; et al. Radiotherapy Activities and Technological Equipment in Veneto, Italy: A Report from the Rete Radioterapica Veneta. Radiol. Med. 2021, 126, 623–629. [Google Scholar] [CrossRef] [PubMed]
- Falcinelli, L.; Mendichi, M.; Chierchini, S.; Tenti, M.V.; Bellavita, R.; Saldi, S.; Ingrosso, G.; Reggioli, V.; Bini, V.; Aristei, C. Pulmonary Function in Stereotactic Body Radiotherapy with Helical Tomotherapy for Primary and Metastatic Lung Lesions. Radiol. Med. 2021, 126, 163–169. [Google Scholar] [CrossRef]
- Gutiérrez, E.; Sánchez, I.; Díaz, O.; Valles, A.; Balderrama, R.; Fuentes, J.; Lara, B.; Olimón, C.; Ruiz, V.; Rodríguez, J.; et al. Current Evidence for Stereotactic Body Radiotherapy in Lung Metastases. Curr. Oncol. 2021, 28, 2560–2578. [Google Scholar] [CrossRef] [PubMed]
- Qi, H.; Fan, W. Value of Ablation Therapy in the Treatment of Lung Metastases. Thorac. Cancer 2018, 9, 199–207. [Google Scholar] [CrossRef] [Green Version]
- Stork, T.; Boemans, R.; Hardes, J.; Streitbürger, A.; Dirksen, U.; Pöttgen, C.; Schildhaus, H.-U.; Bauer, S.; Collaud, S.; Aigner, C. Number of Metastases and Their Response to Chemotherapy Impact Survival of Patients with Isolated Lung Metastases from Bone-Derived Sarcoma. BMC Cancer 2021, 21, 375. [Google Scholar] [CrossRef]
- Okazaki, Y.; Shibutani, M.; Wang, E.; Nagahara, H.; Fukuoka, T.; Iseki, Y.; Maeda, K.; Hirakawa, K.; Ohira, M. Efficacy of Adjuvant Chemotherapy after Complete Resection of Pulmonary Metastasis from Colorectal Cancer. Mol. Clin. Oncol. 2021, 15, 205. [Google Scholar] [CrossRef]
- Schlachtenberger, G.; Doerr, F.; Menghesha, H.; Lauinger, P.; Wolber, P.; Sabashnikov, A.; Popov, A.-F.; Macherey-Meyer, S.; Bennink, G.; Klussmann, J.P.; et al. Patients with Pulmonary Metastases from Head and Neck Cancer Benefit from Pulmonary Metastasectomy, A Systematic Review. Medicina 2022, 58, 1000. [Google Scholar] [CrossRef]
- Hassan, M.; Ehle, B.; Passlick, B.; Grapatsas, K. Lung Resections for Elderly Patients with Lung Metastases: A Comparative Study of the Postoperative Complications and Overall Survival. Curr. Oncol. 2022, 29, 4511–4521. [Google Scholar] [CrossRef] [PubMed]
- Grapatsas, K.; Papaporfyriou, A.; Leivaditis, V.; Ehle, B.; Galanis, M. Lung Metastatectomy: Can Laser-Assisted Surgery Make a Difference? Curr. Oncol. 2022, 29, 6968–6981. [Google Scholar] [CrossRef] [PubMed]
- Granata, V.; Simonetti, I.; Fusco, R.; Setola, S.V.; Izzo, F.; Scarpato, L.; Vanella, V.; Festino, L.; Simeone, E.; Ascierto, P.A.; et al. Management of Cutaneous Melanoma: Radiologists Challenging and Risk Assessment. Radiol. Med. 2022, 127, 899–911. [Google Scholar] [CrossRef]
- Park, J.E.; Kim, D.; Kim, H.S.; Park, S.Y.; Kim, J.Y.; Cho, S.J.; Shin, J.H.; Kim, J.H. Quality of science and reporting of radiomics in oncologic studies: Room for improvement according to radiomics quality score and TRIPOD statement. Eur. Radiol. 2020, 30, 523–536. [Google Scholar] [CrossRef] [PubMed]
- Volovici, V.; Syn, N.L.; Ercole, A.; Zhao, J.J.; Liu, N. Steps to avoid overuse and misuse of machine learning in clinical research. Nat. Med. 2022, 28, 1996–1999. [Google Scholar] [CrossRef]
- Faiella, E.; Santucci, D.; Calabrese, A.; Russo, F.; Vadalà, G.; Zobel, B.B.; Soda, P.; Iannello, G.; de Felice, C.; Denaro, V. Artificial Intelligence in Bone Metastases: An MRI and CT Imaging Review. Int. J. Environ. Res. Public Health 2022, 19, 1880. [Google Scholar] [CrossRef]
- Stanzione, A.; Gambardella, M.; Cuocolo, R.; Ponsiglione, A.; Romeo, V.; Imbriaco, M. Prostate MRI Radiomics: A Systematic Review and Radiomic Quality Score Assessment. Eur. J. Radiol. 2020, 129, 109095. [Google Scholar] [CrossRef] [PubMed]
- Valdora, F.; Houssami, N.; Rossi, F.; Calabrese, M.; Tagliafico, A.S. Rapid Review: Radiomics and Breast Cancer. Breast Cancer Res. Treat. 2018, 169, 217–229. [Google Scholar] [CrossRef] [PubMed]
- Calabrese, A.; Santucci, D.; Landi, R.; Zobel, B.B.; Faiella, E.; de Felice, C. Radiomics MRI for Lymph Node Status Prediction in Breast Cancer Patients: The State of Art. J. Cancer Res. Clin. Oncol. 2021, 147, 1587–1597. [Google Scholar] [CrossRef]
- Montella, M.; Ciani, G.; Granata, V.; Fusco, R.; Grassi, F.; Ronchi, A.; Cozzolino, I.; Franco, R.; Zito Marino, F.; Urraro, F.; et al. Preliminary Experience of Liquid Biopsy in Lung Cancer Compared to Conventional Assessment: Light and Shadows. J. Pers. Med. 2022, 12, 1896. [Google Scholar] [CrossRef]
- Granata, V.; Fusco, R.; Costa, M.; Picone, C.; Cozzi, D.; Moroni, C.; La Casella, G.V.; Montanino, A.; Monti, R.; Mazzoni, F.; et al. Preliminary Report on Computed Tomography Radiomics Features as Biomarkers to Immunotherapy Selection in Lung Adenocarcinoma Patients. Cancers 2021, 13, 3992. [Google Scholar] [CrossRef] [PubMed]
- Fusco, R.; Granata, V.; Mazzei, M.A.; Meglio, N.D.; Roscio, D.D.; Moroni, C.; Monti, R.; Cappabianca, C.; Picone, C.; Neri, E.; et al. Quantitative Imaging Decision Support (QIDS) Tool Consistency Evaluation and Radiomic Analysis by Means of 594 Metrics in Lung Carcinoma on Chest CT Scan. Cancer Control 2021, 28, 1073274820985786. [Google Scholar] [CrossRef] [PubMed]
- Granata, V.; Fusco, R.; De Muzio, F.; Cutolo, C.; Mattace Raso, M.; Gabelloni, M.; Avallone, A.; Ottaiano, A.; Tatangelo, F.; Brunese, M.C.; et al. Radiomics and Machine Learning Analysis Based on Magnetic Resonance Imaging in the Assessment of Colorectal Liver Metastases Growth Pattern. Diagnostics 2022, 12, 1115. [Google Scholar] [CrossRef]
- Granata, V.; Fusco, R.; Setola, S.V.; De Muzio, F.; Dell’ Aversana, F.; Cutolo, C.; Faggioni, L.; Miele, V.; Izzo, F.; Petrillo, A. CT-Based Radiomics Analysis to Predict Histopathological Outcomes Following Liver Resection in Colorectal Liver Metastases. Cancers 2022, 14, 1648. [Google Scholar] [CrossRef] [PubMed]
- Caruso, D.; Pucciarelli, F.; Zerunian, M.; Ganeshan, B.; De Santis, D.; Polici, M.; Rucci, C.; Polidori, T.; Guido, G.; Bracci, B.; et al. Chest CT Texture-Based Radiomics Analysis in Differentiating COVID-19 from Other Interstitial Pneumonia. Radiol. Med. 2021, 126, 1415–1424. [Google Scholar] [CrossRef]
- Granata, V.; Fusco, R.; Belli, A.; Borzillo, V.; Palumbo, P.; Bruno, F.; Grassi, R.; Ottaiano, A.; Nasti, G.; Pilone, V.; et al. Conventional, Functional and Radiomics Assessment for Intrahepatic Cholangiocarcinoma. Infect. Agents Cancer 2022, 17, 13. [Google Scholar] [CrossRef] [PubMed]
- Paoletti, M.; Muzic, S.I.; Marchetti, F.; Farina, L.M.; Bastianello, S.; Pichiecchio, A. Differential Imaging of Atypical Demyelinating Lesions of the Central Nervous System. Radiol. Med. 2021, 126, 827–842. [Google Scholar] [CrossRef]
- Cilla, S.; Macchia, G.; Lenkowicz, J.; Tran, E.H.; Pierro, A.; Petrella, L.; Fanelli, M.; Sardu, C.; Re, A.; Boldrini, L.; et al. CT Angiography-Based Radiomics as a Tool for Carotid Plaque Characterization: A Pilot Study. Radiol. Med. 2022, 127, 743–753. [Google Scholar] [CrossRef]
- Scaglione, M.; Galluzzo, M.; Santucci, D.; Trinci, M.; Messina, L.; Laccetti, E.; Faiella, E.; Beomonte Zobel, B. Small bowel obstruction and intestinal ischemia: Emphasizing the role of MDCT in the management decision process. Abdom. Radiol. 2022, 47, 1541–1555. [Google Scholar] [CrossRef]
- Cellina, M.; Pirovano, M.; Ciocca, M.; Gibelli, D.; Floridi, C.; Oliva, G. Radiomic Analysis of the Optic Nerve at the First Episode of Acute Optic Neuritis: An Indicator of Optic Nerve Pathology and a Predictor of Visual Recovery? Radiol. Med. 2021, 126, 698–706. [Google Scholar] [CrossRef]
- Sarkar, B.; Ganesh, T.; Munshi, A.; Manikandan, A.; Roy, S.; Krishnankutty, S.; Chitral, L.; Sathiya, J.; Pradhan, A.; Mohanti, B.K. Rotational Positional Error-Corrected Linear Set-up Margin Calculation Technique for Lung Stereotactic Body Radiotherapy in a Dual Imaging Environment of 4-D Cone Beam CT and ExacTrac Stereoscopic Imaging. Radiol. Med. 2021, 126, 979–988. [Google Scholar] [CrossRef]
- Zwanenburg, A.; Vallières, M.; Abdalah, M.A.; Aerts, H.J.W.L.; Andrearczyk, V.; Apte, A.; Ashrafinia, S.; Bakas, S.; Beukinga, R.J.; Boellaard, R.; et al. The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-Based Phenotyping. Radiology 2020, 295, 328–338. [Google Scholar] [CrossRef] [Green Version]
- El Ayachy, R.; Giraud, N.; Giraud, P.; Durdux, C.; Giraud, P.; Burgun, A.; Bibault, J.E. The Role of Radiomics in Lung Cancer: From Screening to Treatment and Follow-Up. Front. Oncol. 2021, 11, 603595. [Google Scholar] [CrossRef]
- Fornacon-Wood, I.; Mistry, H.; Ackermann, C.J.; Blackhall, F.; McPartlin, A.; Faivre-Finn, C.; Price, G.J.; O’Connor, J.P.B. Reliability and Prognostic Value of Radiomic Features are Highly Dependent on Choice of Feature Extraction Platform. Eur. Radiol. 2020, 30, 6241–6250. [Google Scholar] [CrossRef] [PubMed]
- Thawani, R.; Mustafa, S.A. The future of radiomics in lung cancer. Lancet Digit. Health 2020, 2, e103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gabelloni, M.; Di Nasso, M.; Morganti, R.; Faggioni, L.; Masi, G.; Falcone, A.; Neri, E. Application of the ESR iGuide clinical decision support system to the imaging pathway of patients with hepatocellular carcinoma and cholangiocarcinoma: Preliminary findings. Radiol. Med. 2020, 125, 531–537. [Google Scholar] [CrossRef]
- Neri, E.; Gabelloni, M.; Bäuerle, T.; Beets-Tan, R.; Caruso, D.; D’Anastasi, M.; Dinkel, J.; Fournier, L.S.; Gourtsoyianni, S.; Hoffmann, R.T.; et al. Involvement of radiologists in oncologic multidisciplinary team meetings: An international survey by the European Society of Oncologic Imaging. Eur. Radiol. 2021, 31, 983–991. [Google Scholar] [CrossRef]
- Morin, O.; Vallières, M.; Jochems, A.; Woodruff, H.C.; Valdes, G.; Braunstein, S.E.; Wildberger, J.E.; Villanueva-Meyer, J.E.; Kearney, V.; Yom, S.S.; et al. A Deep Look Into the Future of Quantitative Imaging in Oncology: A Statement of Working Principles and Proposal for Change. Int. J. Radiat. Oncol. Biol. Phys. 2018, 102, 1074–1082. [Google Scholar] [CrossRef] [PubMed]
Authors [Reference #] | Publication Year | Objective | Patient # | Imaging Modality | Segmentation | Feature Selection Method(s) | Validation Method |
---|---|---|---|---|---|---|---|
Angus et al. [71] | 2021 | To evaluate BRAF mutation in LM from melanoma | 103 | CT | Semiautomatic (in-house software) | Workflow for Optimal Radiomics Classification (WORC) | 100× random-split cross-validation |
Hu et al. [72] | 2019 | To predict LM in colorectal cancer patients with indeterminate pulmonary nodules | 194 | FDG-PET/CT | Semiautomatic (MIM®) | Least Absolute Shrinkage and Selection Operator (LASSO) | Tenfold cross-validation |
Kirienko et al. [73] | 2018 | To differentiate between primary lung tumor and LM lesions and to classify histological subtypes | 534 | CT | Semiautomatic (PET VCAR®) | Linear Discriminant Analysis (LDA) | Direct and backward elimination ×100 |
Liu et al. [74] | 2021 | To discriminate benign nodules from LM in patients with colorectal cancer | 57 | CT | Manual (ITK-SNAP) | Performed by commercial software (AK®) after conversion to Co-occurrence of Local Anisotropic Gradient Orientations (CoLIAGe) and combination of Discrete wavelet transform and Local binary pattern (DWT + LBP) | 100× cross-validation |
Miao et al. [75] | 2022 | To predict the efficacy of epirubicin combined with ifosfamide in patients with LM from soft tissue sarcoma | 51 | CT | Manual or semiautomatic (ITK-SNAP) | Random Forest (RF), logistic regression, Support Vector Machine (SVM), naïve Bayesian classification, decision tree classifier, K-nearest neighbor (KNN) | No cross-validation performed on the best ML method (Forest) |
Shang et al. [76] | 2022 | To differentiate LM from different tumor types | 78 + 35 | CT | Manual | RF, SVM | Tenfold cross-validation |
Zhong et al. [77] | 2022 | To discriminate second primary lung cancers from LM | 252 | FDG-PET/CT | Semiautomatic (ITK-SNAP) | Minimum Redundancy–Maximum Relevance (mRMR), LASSO / multivariate logistic regression | Calibration curve |
Zhou et al. [78] | 2021 | To differentiate primary lung tumors from LM lesions and to classify histological subtypes | 769 | CT | Semiautomatic | RF, Distance Correlation (DC), eXtreme gradient boosting (Xgboost), gradient boosting decision tree (GBDT), LASSO | Tenfold cross-validation |
Item # | Criteria | Points | Angus et al. [71] | Hu et al. [72] | Kirienko et al. [73] | Liu et al. [74] | Miao et al. [75] | Shang et al. [76] | Zhong et al. [77] | Zhou et al. [78] |
---|---|---|---|---|---|---|---|---|---|---|
1 | Image protocol quality—well-documented image protocols (e.g., contrast, slice thickness, energy, etc.) and/or usage of public image protocols allow reproducibility/replicability | +1 (if protocols are well-documented) +1 (if public protocol is used) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
2 | Multiple segmentations—possible actions are: segmentation by different physicians/algorithms/software, perturbing segmentations by (random) noise, segmentation at different breathing cycles. Analyze feature robustness to segmentation variabilities | +1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 |
3 | Phantom study on all scanners—detect inter-scanner differences and vendor-dependent features. Analyze feature robustness to these sources of variability | +1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | Imaging at multiple time points—collect individuals’ images at additional time points. Analyze feature robustness to temporal variabilities (e.g., organ movement, organ expansion/shrinkage) | +1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
5 | Feature reduction or adjustment for multiple testing—decreases the risk of overfitting. Overfitting is inevitable if the number of features exceeds the number of samples. Consider feature robustness when selecting features | −3 (if neither measure is implemented) +3 (if either measure is implemented) | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
6 | Multivariable analysis with nonradiomic features (e.g., EGFR mutation)—is expected to provide a more holistic model. Permits correlating/inferencing between radiomics and non radiomics features | +1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
7 | Detect and discuss biological correlates—demonstration of phenotypic differences (possibly associated with underlying gene–protein expression patterns) deepens understanding of radiomics and biology | +1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
8 | Cut-off analyses—determine risk groups by either the median, a previously published cut-off or report a continuous risk variable. Reduces the risk of reporting overly optimistic results | +1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
9 | Discrimination statistics—report discrimination statistics (e.g., C-statistic, ROC curve, AUC) and their statistical significance (e.g., p-values, confidence intervals). One can also apply resampling method (e.g., bootstrapping, cross-validation) | +1 (if a discrimination statistics and its statistical significance are reported) +1 (if also an resampling method technique is applied) | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 2 |
10 | Calibration statistics—report calibration statistics (e.g., calibration-in-the-large/slope, calibration plots) and their statistical significance (e.g., p-values, confidence intervals). One can also apply resampling method (e.g., bootstrapping, cross-validation) | +1 (if a calibration statistics and its statistical significance are reported) +1 (if also an resampling method technique is applied) | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 |
11 | Prospective study registered in a trial database—provides the highest level of evidence supporting the clinical validity and usefulness of the radiomics biomarker | +7 (for prospective validation of a radiomics signature in an appropriate trial) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
12 | Validation—the validation is performed without retraining and without adaptation of the cut-off value, provides crucial information with regard to credible clinical performance | −5 (if validation is missing) +2 (if validation is based on a dataset from the same institute) +3 (if validation is based on a dataset from another institute) +4 (if validation is based on two datasets from two distinct institutes) +4 (if the study validates a previously published signature) +5 (if validation is based on three or more datasets from distinct institutes) Datasets should be of comparable size and should have at least 10 events per model feature | 2 | 2 | 2 | 2 | 2 | 3 | 2 | 2 |
13 | Comparison to ‘gold standard’—assess the extent to which the model agrees with/is superior to the current ‘gold standard’ method (e.g., TNM-staging for survival prediction). This comparison shows the added value of radiomics | +2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
14 | Potential clinical utility—report on the current and potential application of the model in a clinical setting (e.g., decision curve analysis) | +2 | 0 | 2 | 0 | 0 | 2 | 0 | 2 | 0 |
15 | Cost-effectiveness analysis—report on the cost-effectiveness of the clinical application (e.g., quality adjusted life years generated) | +1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
16 | Open science and data—make code and data publicly available. Open science facilitates knowledge transfer and reproducibility of the study | +1 (if scans are open source) +1 (if region of interest segmentations are open source) +1 (if code is open source) +1 (if radiomics features are calculated on a set of representative ROIs and the calculated features + representative ROIs are open source) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Sum of scores (%) | 9 (25.0%) | 13 (36.1%) | 8 (22.2%) | 14 (38.9%) | 9 (25.0%) | 10 (27.8%) | 10 (27.8%) | 10 (27.8%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gabelloni, M.; Faggioni, L.; Fusco, R.; Simonetti, I.; De Muzio, F.; Giacobbe, G.; Borgheresi, A.; Bruno, F.; Cozzi, D.; Grassi, F.; et al. Radiomics in Lung Metastases: A Systematic Review. J. Pers. Med. 2023, 13, 225. https://doi.org/10.3390/jpm13020225
Gabelloni M, Faggioni L, Fusco R, Simonetti I, De Muzio F, Giacobbe G, Borgheresi A, Bruno F, Cozzi D, Grassi F, et al. Radiomics in Lung Metastases: A Systematic Review. Journal of Personalized Medicine. 2023; 13(2):225. https://doi.org/10.3390/jpm13020225
Chicago/Turabian StyleGabelloni, Michela, Lorenzo Faggioni, Roberta Fusco, Igino Simonetti, Federica De Muzio, Giuliana Giacobbe, Alessandra Borgheresi, Federico Bruno, Diletta Cozzi, Francesca Grassi, and et al. 2023. "Radiomics in Lung Metastases: A Systematic Review" Journal of Personalized Medicine 13, no. 2: 225. https://doi.org/10.3390/jpm13020225
APA StyleGabelloni, M., Faggioni, L., Fusco, R., Simonetti, I., De Muzio, F., Giacobbe, G., Borgheresi, A., Bruno, F., Cozzi, D., Grassi, F., Scaglione, M., Giovagnoni, A., Barile, A., Miele, V., Gandolfo, N., & Granata, V. (2023). Radiomics in Lung Metastases: A Systematic Review. Journal of Personalized Medicine, 13(2), 225. https://doi.org/10.3390/jpm13020225