Application of Robotic Recovery Techniques to Stroke Survivors—Bibliometric Analysis
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Period between 1975–2000
3.1.1. Evaluation of the Most Productive Countries in the Field
3.1.2. Assessment of the Most Prolific Journals in the Field
3.1.3. Citation Analysis of Publications between 1975–2000
3.1.4. Term Map and Network Map of Term Co-Occurrence
3.2. Period between 2001–2011
3.2.1. Evaluation of the Most Productive Countries in the Field
- The red cluster, which includes 15 countries and is led by England in terms of number of published papers;
- The green cluster comprises 9 countries and is led by Japan in terms of number of published papers;
- The blue cluster comprises 5 countries and is led by Germany in terms of number of published papers;
- The yellow cluster comprises 5 countries and is led by the United States in terms of number of published papers.
3.2.2. Assessment of the Most Prolific Journals in the Field
3.2.3. Citation Analysis of Publications in the Period between 2001–2011
3.2.4. Term Map and Network Map of Term Co-Occurrence
3.3. Period between 2012–2022
3.3.1. Evaluation of the Most Productive Countries in the Field
- The red cluster, which includes 34 countries and is led by Japan in terms of number of published papers;
- The green cluster comprises 8 countries and is led by Italy in terms of number of published papers;
- The blue cluster comprises 5 countries and is led by the United States in terms of number of published papers.
3.3.2. Assessment of the Most Prolific Journals in the Field
3.3.3. Citation Analysis of Publications in the Period 2012–2022
3.3.4. Term Map and Network Map of Term Co-Occurrence
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fodor, K.; Tit, D.M.; Pasca, B.; Bustea, C.; Uivarosan, D.; Endres, L.; Iovan, C.; Abdel-Daim, M.M.; Bungau, S. Long-Term Resveratrol Supplementation as a Secondary Prophylaxis for Stroke. Oxid. Med. Cell. Longev. 2018, 2018, 4147320. [Google Scholar] [CrossRef] [PubMed]
- Uivaroşan, D.; Abdel-Daim, M.M.; Endres, L.; Purza, L.; Iovan, C.; Bungău, S.; Furău, C.G.; Ţiţ, D.M. Effects of a proteic swine extract associated to recovery treatment on functional independence and quality of life in patients post stroke. Farmacia 2018, 66, 826–830. [Google Scholar] [CrossRef] [Green Version]
- Uivarosan, D.; Tit, D.M.; Iovan, C.; Nistor-Cseppento, D.C.; Endres, L.; Lazar, L.; Sava, C.; Sabau, A.M.; Buhas, C.; Moleriu, L.C.; et al. Effects of combining modern recovery techniques with neurotrophic medication and standard treatment in stroke patients. Sci. Total Environ. 2019, 679, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Uivarosan, D.; Bungau, S.; Tit, D.M.; Moisa, C.; Fratila, O.; Rus, M.; Bratu, O.G.; Diaconu, C.C.; Pantis, C. Financial Burden of Stroke Reflected in a Pilot Center for the Implementation of Thrombolysis. Medicina 2020, 56, 54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mozaffarian, D.; Benjamin, E.J.; Go, A.S.; Arnett, D.K.; Blaha, M.J.; Cushman, M.; Das, S.R.; De Ferranti, S.; Després, J.P.; Fullerton, H.J.; et al. Heart Disease and Stroke Statistics-2016 Update: A Report From the American Heart Association. Circulation 2016, 133, e38–e360. [Google Scholar] [CrossRef]
- Lopez-Bastida, J.; Oliva Moreno, J.; Worbes Cerezo, M.; Perestelo Perez, L.; Serrano-Aguilar, P.; Montán-Álvarez, F. Social and economic costs and health-related quality of life in stroke survivors in the Canary Islands, Spain. BMC Health Serv. Res. 2012, 12, 315. [Google Scholar] [CrossRef] [Green Version]
- Tyagi, S.; Koh, G.C.H.; Nan, L.; Tan, K.B.; Hoenig, H.; Matchar, D.B.; Yoong, J.; Finkelstein, E.A.; Lee, K.E.; Venketasubramanian, N.; et al. Healthcare utilization and cost trajectories post-stroke: Role of caregiver and stroke factors. BMC Health Serv. Res. 2018, 18, 881. [Google Scholar] [CrossRef] [Green Version]
- Kelly-Hayes, M.; Robertson, J.T.; Broderick, J.P.; Duncan, P.W.; Hershey, L.A.; Roth, E.J.; Thies, W.H.; Trombly, C.A. The American Heart Association Stroke Outcome Classification: Executive summary. Circulation 1998, 97, 2474–2478. [Google Scholar] [CrossRef] [Green Version]
- Hacke, W.; Donnan, G.; Fieschi, C.; Kaste, M.; von Kummer, R.; Broderick, J.P.; Brott, T.; Frankel, M.; Grotta, J.C.; Haley, E.C.; et al. Association of outcome with early stroke treatment: Pooled analysis of ATLANTIS, ECASS, and NINDS rt-PA stroke trials. Lancet 2004, 363, 768–774. [Google Scholar] [CrossRef]
- Donkor, E.S. Stroke in the 21st Century: A Snapshot of the Burden, Epidemiology, and Quality of Life. Stroke Res. Treat. 2018, 2018, 3238165. [Google Scholar] [CrossRef]
- World Health Organization. International Classification of Functioning, Disability and Health (ICF). Available online: https://www.who.int/standards/classifications/international-classification-of-functioning-disability-and-health (accessed on 2 August 2022).
- Riener, R.; Lünenburger, L.; Maier, I.C.; Colombo, G.; Dietz, V. Locomotor training in subjects with sensori-motor deficits: An overview of the robotic gait orthosis Lokomat. J. Healthc. Eng. 2010, 1, 197–216. [Google Scholar] [CrossRef] [Green Version]
- Pop, N.O.; Tit, D.M.; Diaconu, C.C.; Munteanu, M.A.; Babes, E.E.; Stoicescu, M.; Popescu, M.I.; Bungau, S. The Alberta Stroke Program Early CT score (ASPECTS): A predictor of mortality in acute ischemic stroke. Exp. Ther. Med. 2021, 22, 1371. [Google Scholar] [CrossRef]
- Stein, J. Robotics in rehabilitation: Technology as destiny. Am. J. Phys. Med. Rehabil. 2012, 91, 119–203. [Google Scholar] [CrossRef]
- Mehrholz, J.; Elsner, B.; Werner, C.; Kugler, J.; Pohl, M. Electromechanical-assisted training for walking after stroke. Cochrane Database Syst. Rev. 2020, 10, CD006185. [Google Scholar] [CrossRef]
- Waldner, A.; Tomelleri, C.; Hesse, S. Transfer of scientific concepts to clinical practice: Recent robot-assisted training studies. Funct. Neurol. 2009, 24, 173–177. [Google Scholar]
- Chang, W.H.; Kim, Y.-H. Robot-assisted Therapy in Stroke Rehabilitation. J. Stroke 2013, 15, 174–181. [Google Scholar] [CrossRef]
- Colombo, G.; Joerg, M.; Schreier, R.; Dietz, V. Treadmill training of paraplegic patients using a robotic orthosis. J. Rehabil. Res. Dev. 2000, 37, 693–700. [Google Scholar]
- Morone, G.; Paolucci, S.; Cherubini, A.; De Angelis, D.; Venturiero, V.; Coiro, P.; Iosa, M. Robot-assisted gait training for stroke patients: Current state of the art and perspectives of robotics. Neuropsychiatr. Dis. Treat. 2017, 13, 1303–1311. [Google Scholar] [CrossRef] [Green Version]
- Geroin, C.; Mazzoleni, S.; Smania, N.; Gandolfi, M.; Bonaiuti, D.; Gasperini, G.; Sale, P.; Munari, D.; Waldner, A.; Spidalieri, R.; et al. Systematic review of outcome measures of walking training using electromechanical and robotic devices in patients with stroke. J. Rehabil. Med. 2013, 45, 987–996. [Google Scholar] [CrossRef] [Green Version]
- Winstein, C.J.; Stein, J.; Arena, R.; Bates, B.; Cherney, L.R.; Cramer, S.C.; Deruyter, F.; Eng, J.J.; Fisher, B.; Harvey, R.L.; et al. Guidelines for Adult Stroke Rehabilitation and Recovery: A Guideline for Healthcare Professionals from the American Heart Association/American Stroke Association. Stroke 2016, 47, e98–e169. [Google Scholar] [CrossRef]
- Han, E.Y.; Im, S.H.; Kim, B.R.; Seo, M.J.; Kim, M.O. Robot-assisted gait training improves brachial-ankle pulse wave velocity and peak aerobic capacity in subacute stroke patients with totally dependent ambulation: Randomized controlled trial. Medicine 2016, 95, e5078. [Google Scholar] [CrossRef] [PubMed]
- Advanced Technologies for Movement Rehabilitation. Hocoma. Available online: https://www.hocoma.com/us (accessed on 2 August 2022).
- Wieser, M.; Haefeli, J.; Bütler, L.; Jäncke, L.; Riener, R.; Koeneke, S. Temporal and spatial patterns of cortical activation during assisted lower limb movement. Exp. Brain Res. 2010, 203, 181–191. [Google Scholar] [CrossRef] [PubMed]
- Swinnen, E.; Beckwée, D.; Meeusen, R.; Baeyens, J.P.; Kerckhofs, E. Does Robot-Assisted Gait Rehabilitation Improve Balance in Stroke Patients? A Systematic Review. Top. Stroke Rehabil. 2014, 21, 87–100. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, H.; Werner, C.; Bernhardt, R.; Hesse, S.; Krüger, J. Gait rehabilitation machines based on programmable footplates. J. Neuroeng. Rehabil. 2007, 4, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guidali, M.; Keller, U.; Klamroth-Marganska, V.; Nef, T.; Riener, R. Estimating the patient’s contribution during robot-assisted therapy. J. Rehabil. Res. Dev. 2013, 50, 379–394. [Google Scholar] [CrossRef]
- Palermo, E.; Hayes, D.R.; Russo, E.F.; Calabrò, R.S.; Pacilli, A.; Filoni, S. Translational effects of robot-mediated therapy in subacute stroke patients: An experimental evaluation of upper limb motor recovery. PeerJ 2018, 6, e5544. [Google Scholar] [CrossRef]
- Yáñez-Sánchez, A.; Cuesta-Gómez, A. Effectiveness of the Armeo ® device in the rehabilitation of the upper limb of stroke’s patients. A review of the literature. Rev. Neurol. 2020, 70, 93–102. [Google Scholar] [CrossRef]
- Lo, A.C.; Guarino, P.D.; Richards, L.G.; Haselkorn, J.K.; Wittenberg, G.F.; Federman, D.G.; Ringer, R.J.; Wagner, T.H.; Krebs, H.I.; Volpe, B.T.; et al. Robot-assisted therapy for long-term upper-limb impairment after stroke. N. Engl. J. Med. 2010, 362, 1772–1783. [Google Scholar] [CrossRef] [Green Version]
- Volpe, B.T.; Krebs, H.I.; Hogan, N.; Edelstein, L.; Diels, C.; Aisen, M. A novel approach to stroke rehabilitation: Robot-aided sensorimotor stimulation. Neurology 2000, 54, 1938–1944. [Google Scholar] [CrossRef]
- Gandolfi, M.; Valè, N.; Dimitrova, E.K.; Mazzoleni, S.; Battini, E.; Filippetti, M.; Picelli, A.; Santamato, A.; Gravina, M.; Saltuari, L.; et al. Effectiveness of Robot-Assisted Upper Limb Training on Spasticity, Function and Muscle Activity in Chronic Stroke Patients Treated With Botulinum Toxin: A Randomized Single-Blinded Controlled Trial. Front. Neurol. 2019, 10, 41. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Tyson, S.; Weightman, A. Professionals’ Views and Experiences of Using Rehabilitation Robotics with Stroke Survivors: A Mixed Methods Survey. Front. Med. Technol. 2021, 3, 780090. [Google Scholar] [CrossRef]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to conduct a bibliometric analysis: An overview and guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Radu, A.F.; Bungau, S.G.; Negru, P.A.; Marcu, M.F.; Andronie-Cioara, F.L. In-depth bibliometric analysis and current scientific mapping research in the context of rheumatoid arthritis pharmacotherapy. Biomed. Pharmacother. 2022, 154, 113614. [Google Scholar] [CrossRef]
- Carter-Templeton, H.; Frazier, R.M.; Wu, L.H.; Wyatt, T. Robotics in Nursing: A Bibliometric Analysis. J. Nurs. Scholarsh. 2018, 50, 582–589. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Wang, L.; Perka, C.; Trampuz, A. Clinical application of robotic orthopedic surgery: A bibliometric study. BMC Musculoskelet. Disord. 2021, 22, 968. [Google Scholar] [CrossRef]
- Web of ScienceTM. Available online: https://www-webofscience-com.am.e-nformation.ro/wos/woscc/basic-search (accessed on 26 September 2022).
- Fugl-Meyer, A.R.; Jaasko, L.; Leyman, I.; Olsson, S.; Steglind, S. The post-stroke hemiplegic patient. 1. A method for evaluation of physical performance. Scand. J. Rehabil. Med. 1975, 7, 13–31. [Google Scholar]
- Basso, D.M.; Beattie, M.S.; Bresnahan, J.C. A sensitive and reliable locomotor rating scale for open field testing in rats. J. Neurotrauma 1995, 12, 1–21. [Google Scholar] [CrossRef]
- Shadmehr, R.; Mussa-Ivaldi, F.A. Adaptive representation of dynamics during learning of a motor task. J. Neurosci. 1994, 14, 3208–3224. [Google Scholar] [CrossRef]
- Nudo, R.J.; Wise, B.M.; SiFuentes, F.; Milliken, G.W. Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science 1996, 272, 1791–1794. [Google Scholar] [CrossRef] [Green Version]
- Schallert, T.; Fleming, S.M.; Leasure, J.L.; Tillerson, J.L.; Bland, S.T. CNS plasticity and assessment of forelimb sensorimotor outcome in unilateral rat models of stroke, cortical ablation, parkinsonism and spinal cord injury. Neuropharmacology 2000, 39, 777–787. [Google Scholar] [CrossRef]
- Bonita, R.; Beaglehole, R. Recovery of motor function after stroke. Stroke 1988, 19, 1497–1500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bracken, M.B.; Shepard, M.J.; Holford, T.R.; Leo-Summers, L.; Aldrich, E.F.; Fazl, M.; Fehlings, M.; Herr, D.L.; Hitchon, P.W.; Marshall, L.F.; et al. Administration of Methylprednisolone for 24 or 48 Hours or Tirilazad Mesylate for 48 Hours in the Treatment of Acute Spinal Cord Injury: Results of the Third National Acute Spinal Cord Injury Randomized Controlled Trial. JAMA 1997, 277, 1597–1604. [Google Scholar] [CrossRef] [PubMed]
- Chollet, F.; Dipiero, V.; Wise, R.J.S.; Brooks, D.J.; Dolan, R.J.; Frackowiak, R.S.J. The functional anatomy of motor recovery after stroke in humans: A study with positron emission tomography. Ann. Neurol. 1991, 29, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Cramer, S.C.; Nelles, G.; Benson, R.R.; Kaplan, J.D.; Parker, R.A.; Kwong, K.K.; Kennedy, D.N.; Finklestein, S.P.; Rosen, B.R. A functional MRI study of subjects recovered from hemiparetic stroke. Stroke 1997, 28, 2518–2527. [Google Scholar] [CrossRef] [PubMed]
- Weiller, C.; Chollet, F.; Friston, K.J.; Wise, R.J.S.; Frackowiak, R.S.J. Functional reorganization of the brain in recovery from striatocapsular infarction in man. Ann. Neurol. 1992, 31, 463–472. [Google Scholar] [CrossRef]
- Wolpaw, J.R.; Birbaumer, N.; McFarland, D.J.; Pfurtscheller, G.; Vaughan, T.M. Brain-computer interfaces for communication and control. Clin. Neurophysiol. 2002, 113, 767–791. [Google Scholar] [CrossRef]
- Feigin, V.L.; Lawes, C.M.; Bennett, D.A.; Barker-Collo, S.L.; Parag, V. Worldwide stroke incidence and early case fatality reported in 56 population-based studies: A systematic review. Lancet Neurol. 2009, 8, 355–369. [Google Scholar] [CrossRef]
- Bouhassira, D.; Attal, N.; Alchaar, H.; Boureau, F.; Brochet, B.; Bruxelle, J.; Cunin, G.; Fermanian, J.; Ginies, P.; Grun-Overdyking, A.; et al. Comparison of pain syndromes associated with nervous or somatic lesions and development of a new neuropathic pain diagnostic questionnaire (DN4). Pain 2005, 114, 29–36. [Google Scholar] [CrossRef]
- Cogan, S.F. Neural stimulation and recording electrodes. Annu. Rev. Biomed. Eng. 2008, 10, 275–309. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Li, Y.; Wang, L.; Zhang, Z.; Lu, D.; Lu, M.; Chopp, M. Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke 2001, 32, 1005–1011. [Google Scholar] [CrossRef] [Green Version]
- Cabeza, R.; Anderson, N.D.; Locantore, J.K.; McIntosh, A.R. Aging gracefully: Compensatory brain activity in high-performing older adults. Neuroimage 2002, 17, 1394–1402. [Google Scholar] [CrossRef]
- Langhorne, P.; Bernhardt, J.; Kwakkel, G. Stroke Care 2: Stroke rehabilitation. Lancet 2011, 377, 1693–1702. [Google Scholar] [CrossRef]
- Kleim, J.A.; Jones, T.A. Principles of experience-dependent neural plasticity: Implications for rehabilitation after brain damage. J. Speech Lang. Hear. Res. 2008, 51, 225–239. [Google Scholar] [CrossRef] [Green Version]
- Langhorne, P.; Coupar, F.; Pollock, A. Motor recovery after stroke: A systematic review. Lancet. Neurol. 2009, 8, 741–754. [Google Scholar] [CrossRef]
- Murphy, T.H.; Corbett, D. Plasticity during stroke recovery: From synapse to behaviour. Nat. Rev. Neurosci. 2009, 10, 861–872. [Google Scholar] [CrossRef]
- Jovin, T.G.; Chamorro, A.; Cobo, E.; de Miquel, M.A.; Molina, C.A.; Rovira, A.; San Román, L.; Serena, J.; Abilleira, S.; Ribó, M.; et al. Thrombectomy within 8 hours after symptom onset in ischemic stroke. N. Engl. J. Med. 2015, 372, 2296–2306. [Google Scholar] [CrossRef] [Green Version]
- Vos, T.; Lim, S.S.; Abbafati, C.M.; Abbas, K.M.; Abbasi, M.; Abbasifard, M.; Abbasi-Kangevari, M.; Abbastabar, H.; Abd-Allah, F.; Abdelaim, A.; et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1204–1222. [Google Scholar] [CrossRef]
- Hochberg, L.R.; Bacher, D.; Jarosiewicz, B.; Masse, N.Y.; Simeral, J.D.; Vogel, J.; Haddadin, S.; Liu, J.; Cash, S.S.; Van Der Smagt, P.; et al. Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature 2012, 485, 372–375. [Google Scholar] [CrossRef] [Green Version]
- Lefaucheur, J.P.; Aleman, A.; Baeken, C.; Benninger, D.H.; Brunelin, J.; Di Lazzaro, V.; Filipović, S.R.; Grefkes, C.; Hasan, A.; Hummel, F.C.; et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): An update (2014-2018). Clin. Neurophysiol. 2020, 131, 474–528. [Google Scholar] [CrossRef]
- Nicolas-Alonso, L.F.; Gomez-Gil, J. Brain computer interfaces, a review. Sensors 2012, 12, 1211–1279. [Google Scholar] [CrossRef]
- Anttila, V.; Bulik-Sullivan, B.; Finucane, H.K.; Walters, R.K.; Bras, J.; Duncan, L.; Escott-Price, V.; Falcone, G.J.; Gormley, P.; Malik, R.; et al. Analysis of shared heritability in common disorders of the brain. Science 2018, 360, eaap8757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiong, Y.; Mahmood, A.; Chopp, M. Animal models of traumatic brain injury. Nat. Rev. Neurosci. 2013, 14, 128–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polygerinos, P.; Wang, Z.; Galloway, K.C.; Wood, R.J.; Walsh, C.J. Soft robotic glove for combined assistance and at-home rehabilitation. Rob. Auton. Syst. 2015, 73, 135–143. [Google Scholar] [CrossRef]
- Murray, C.J.L.; Aravkin, A.Y.; Zheng, P.; Abbafati, C.; Abbas, K.M.; Abbasi-Kangevari, M.; Abd-Allah, F.; Abdelaim, A.; Abdollahi, M.; Abdollahpour, I.; et al. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1223–1249. [Google Scholar] [CrossRef]
Robotic Systems/ Commercialization/ Invention Year | Basic Principle | Applications | Evaluation | Ref. |
---|---|---|---|---|
Lower-limb robotics—exoskeleton type | ||||
Lokomat/ (Hocoma AG, Switzerland)/ 2001 | A robot-driven exoskeleton orthosis comprises of a software-controlled robotic exoskeleton that operates the patient’s legs in an adaptable manner in connection with a body-weight support structure | Individuals with: spinal cord injuries; traumatic brain injuries; non-traumatic brain injuries (including stroke); cerebral palsy (Children and adults); Parkinson’s disease; multiple sclerosis; Guillain-Barré syndrome; post-surgery (meniscus injury, lumbar discectomy, and arthroscopic total knee) | Walking autonomy, speed, endurance, balance; controlling muscular tone and decreasing stiffness cardiovascular implications; physical characteristics; life quality | [15,22] |
Erigo Pro/ Hocoma AG, Switzerland/2014 | A robot-driven exoskeleton combining verticality and gradual mobilization with functional electrical stimulation | Massive brain injury patients spinal cord injured patients experiencing orthostatic stress; reduce the time spent in intensive care, time spent in hospital and the overall cost of therapy; reduce medical complications associated with immobility and relieves the strain on the therapist) step-like actions improve brain function in a similar way to overground activity | Cardiovascular normalization; quick and safe movement even during acute care | [23,24] |
Gait Trainer I/Reha-Stim Medtec GmbH & Co. Kastanienallee 32 Berlin, Germany/2000 | End-Effector system-is built on a dual crank and rocker gear system that possesses two foot plates that are placed on two bars, each of which includes rockers and cranks that serve as the propulsion; although the sufferer is using the device, the foot plates accurately replicate the stance and swing stages of walking. | Adjusts the mass center in both the horizontal and vertical directions, replicates the stages of gait, and supports the participants based on their skills. | Rehabilitation of gait in stroke survivors during the acute stage | [25,26] |
Upper-limb robotics | ||||
Armeo- (Hocoma AG, Switzerland)/2008 | Exoskeleton system-allows patients to practice and repeat hand and arm movements to improve their recovery; consists of three unique devices, each of which targets a particular patient need. | Individuals who have experienced strokes, brain trauma, or neurological conditions that affect their hands and arms should have their strength, flexibility, quality of mobility, and rigidity evaluated. | Daily tasks, arm strength, and arm functionality; motor performance action that is accurate; shorter time to complete activities | [27,28,29] |
InMotion robot (Massachusetts Institute of Technology, Mit-Manus): | Five effective degrees of freedom are available at the elbow, shoulder, and wrist due to a wrist robotic device with three active degrees of freedom that is attached at the tip of a companion planar robot (MIT-MANUS) | Patients recovering from neurological disorders and accidents benefit from improved upper-extremity motor retraining in patients with all degrees of muscular strength; restores motor control and enhances results | Arm movement, function, and quality of life. | [30,31] |
ARMOTION (Reha Technology AG, Switzerland) | It enables data gathering, monitoring, and precise patient performance measurement; it also enables informative and repeatable activities with video feedback in a 2D workspace. | Optimize the therapeutic impact for patients suffering from severe and mild upper-extremity neurological dysfunctions; early-stage patients can safely observe and acquire shoulder and elbow movements with the help of passive therapy methods. | In the management of severe and mild upper extremity neurological dysfunction | [32] |
Country | Papers | Citations | Average Citation/ Paper | TLS |
---|---|---|---|---|
United States | 685 | 55,811 | 81.48 | 94 |
England | 115 | 11,618 | 101.03 | 30 |
Japan | 95 | 3600 | 37.89 | 14 |
Germany | 94 | 9310 | 99.04 | 27 |
Italy | 67 | 5478 | 81.76 | 26 |
Sweden | 62 | 7769 | 125.31 | 27 |
Canada | 59 | 6600 | 111.86 | 8 |
France | 52 | 4529 | 87.10 | 19 |
Australia | 39 | 1785 | 45.77 | 10 |
Switzerland | 30 | 2117 | 70.57 | 18 |
Journals | No. | C | Average Citation/Paper | IF | IF without Self-Citations | Publisher |
---|---|---|---|---|---|---|
Stroke | 170 | 20,092 | 118.19 | 10.170 | 9.344 | LWW |
Archives of physical medicine and rehabilitation | 71 | 6233 | 87.79 | 4.060 | 3.804 | W B SAUNDERS CO-ELSEVIER INC |
Neurology | 56 | 5803 | 103.63 | 11.800 | 11.318 | LWW |
American journal of physical medicine & rehabilitation | 46 | 2361 | 51.33 | 3.412 | 3.176 | LWW |
Acta neurologica scandinavica | 33 | 1463 | 44.33 | 3.915 | 3.799 | WILEY |
Journal of neurology neurosurgery and psychiatry | 29 | 1889 | 65.14 | 13.661 | 13.185 | BMJ PUBLISHING GROUP |
Brain research | 28 | 1371 | 48.96 | 3.610 | 3.556 | ELSEVIER |
Clinical rehabilitation | 28 | 1366 | 48.79 | 2.884 | 2.796 | SAGE PUBLICATIONS LTD |
Experimental neurology | 26 | 1525 | 58.65 | 5.620 | 5.347 | ACADEMIC PRESS INC ELSEVIER SCIENCE |
Scandinavian journal of rehabilitation medicine * | 26 | 4297 | 165.27 | 1.333 (2002) | 1.333 (2002) | TAYLOR & FRANCIS AS |
First Author | Title | Journal | IF | C | Ref. |
---|---|---|---|---|---|
Fugl-Meyer (1975) | Post-stroke hemiplegic patient. 1. Method for evaluation of physical performance | Scandinavian journal of rehabilitation medicine | 1.333 (2002) | 3333 | [39] |
Basso (1995) | A sensitive and reliable locomotor rating-scale for open-field testing in rats | Journal of Neurotrauma | 4.869 | 3251 | [40] |
Shadmehr (1994) | Adaptive representation of dynamics during learning of a motor task | Journal of Neuroscience | 6.709 | 1705 | [41] |
Nudo (1996) | Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct | Science | 63.714 | 1302 | [42] |
Schallert (2000) | CNS plasticity and assessment of forelimb sensorimotor outcome in unilateral rat models of stroke, cortical ablation, parkinsonism and spinal cord injury | Neuropharmacology | 5.273 | 1030 | [43] |
Bonita (1988) | Recovery of motor function after stroke | Stroke | 10.170 | 988 | [44] |
Bracken (1997) | Administration of methylprednisolone for 24 or 48 h or tirilazad mesylate for 48 h in the treatment of acute spinal cord injury—Results of the Third National Acute Spinal Cord Injury Randomized Controlled Trial | JAMA-journal of the American medical association | 157.335 | 964 | [45] |
Chollet (1991) | The functional-anatomy of motor recovery after stroke in humans—a study with positron emission tomography | Annals of neurology | 11.274 | 872 | [46] |
Cramer (1997) | A functional MRI study of subjects recovered from hemiparetic stroke | Stroke | 10.17 | 752 | [47] |
Weiller (1992) | Functional reorganization of the brain in recovery from striatocapsular infarction in man | Annals of neurology | 11.274 | 710 | [48] |
Country | Papers | Citations | Average Citation/ Paper | TLS |
---|---|---|---|---|
United States | 2902 | 226,890 | 78.18 | 885 |
Canada | 604 | 43,364 | 71.79 | 310 |
England | 601 | 46,621 | 77.57 | 451 |
Germany | 481 | 44,900 | 93.35 | 366 |
Japan | 406 | 18,725 | 46.12 | 164 |
Italy | 389 | 30,604 | 78.67 | 236 |
Australia | 281 | 17,238 | 61.35 | 177 |
Netherlands | 267 | 24,299 | 91.01 | 171 |
South Korea | 265 | 10,156 | 38.32 | 72 |
China | 251 | 9890 | 39.40 | 154 |
No. | C | Average Citation/Paper | IF | IF without Self-Citations | Publisher | |
---|---|---|---|---|---|---|
Archives of physical medicine and rehabilitation | 275 | 22,633 | 82.30 | 4.060 | 3.804 | W B SAUNDERS CO-ELSEVIER INC |
Stroke | 257 | 32,110 | 124.94 | 10.17 | 9.344 | LWW |
Neurorehabilitation and neural repair | 249 | 21,311 | 85.59 | 4.895 | 4.602 | SAGE PUBLICATIONS INC |
Clinical rehabilitation | 193 | 10,054 | 52.09 | 2.884 | 2.796 | SAGE PUBLICATIONS INC |
Journal of rehabilitation medicine * | 132 | 7560 | 57.27 | 3.959 | 3.777 | FOUNDATION REHABILITATION INFORMATION |
Disability and rehabilitation | 128 | 5844 | 45.66 | 2.439 | 2.182 | TAYLOR & FRANCIS LTD |
Topics in stroke rehabilitation | 124 | 4165 | 33.59 | 2.177 | 2.113 | TAYLOR & FRANCIS LTD |
American journal of physical medicine & rehabilitation | 105 | 4121 | 39.25 | 3.412 | 3.176 | LWW |
Experimental neurology | 103 | 7584 | 73.63 | 5.620 | 5.347 | ACADEMIC PRESS INC ELSEVIER SCIENCE |
Journal of neuroscience | 98 | 15,300 | 156.12 | 6.709 | 6.454 | SOC NEUROSCIENCE |
First Author | Title | Journal | IF | C | Ref. |
---|---|---|---|---|---|
Wolpaw (2002) | Brain-computer interfaces for communication and control | Clinical neurophysiology | 4.861 | 4707 | [49] |
Feigin (2009) | Worldwide stroke incidence and early case fatality reported in 56 population-based studies: a systematic review | Lancet neurology | 59.935 | 1727 | [50] |
Bouhassira (2005) | Comparison of pain syndromes associated with nervous or somatic lesions and development of a new neuropathic pain diagnostic questionnaire (DN4) | Pain | 7.926 | 1393 | [51] |
Cogan (2008) | Neural stimulation and recording electrodes | Annual review of biomedical engineering | 11.324 | 1321 | [52] |
Chen (2001) | Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats | Stroke | 10.170 | 1309 | [53] |
Cabeza (2002) | Aging gracefully: Compensatory brain activity in high-performing older adults | Neuroimage | 7.400 | 1299 | [54] |
Langhorne (2011) | Stroke Care 2 Stroke rehabilitation | Lancet | 202.731 | 1290 | [55] |
Kleim (2008) | Principles of experience-dependent neural plasticity: Implications for rehabilitation after brain damage | Journal of speech language and hearing research | 2.674 | 1178 | [56] |
Langhorne (2009) | Motor recovery after stroke: a systematic review | Lancet neurology | 59.935 | 1138 | [57] |
Murphy (2009) | Plasticity during stroke recovery: from synapse to behaviour | Nature reviews neuroscience | 38.755 | 1100 | [58] |
Country | Papers | Citations | Average Citation/ Paper | TLS |
---|---|---|---|---|
United States | 6656 | 165,666 | 24.89 | 5183 |
China | 3899 | 56,938 | 14.60 | 2371 |
England | 1682 | 52,805 | 31.39 | 3507 |
Japan | 1670 | 33,000 | 19.76 | 1549 |
Canada | 1625 | 50,447 | 31.04 | 2511 |
South Korea | 1494 | 29,322 | 19.63 | 1257 |
Italy | 1440 | 44,803 | 31.11 | 2541 |
Australia | 1436 | 40,921 | 28.50 | 2563 |
Germany | 1268 | 53,450 | 42.15 | 2861 |
Taiwan | 743 | 18,624 | 25.07 | 1047 |
Journals | No. | C | Average Citation/ Paper | IF | IF without Self-Citations | Publisher |
---|---|---|---|---|---|---|
Frontiers in neurology | 566 | 4637 | 8.19 | 4.086 | 3.838 | FRONTIERS MEDIA SA |
Journal of stroke & cerebrovascular diseases | 534 | 4237 | 7.93 | 2.677 | 2.498 | ELSEVIER |
Journal of NeuroEngineering and Rehabilitation | 484 | 11,093 | 22.92 | 5.208 | 4.785 | BMC |
PLOS ONE | 466 | 11,267 | 24.18 | 3.752 | 3.608 | PUBLIC LIBRARY SCIENCE |
Topics in stroke rehabilitation | 451 | 4938 | 10.95 | 2.177 | 2.113 | TAYLOR & FRANCIS LTD |
Neurorehabilitation and neural repair | 434 | 11,917 | 27.46 | 4.895 | 4.602 | SAGE PUBLICATIONS INC |
Disability and rehabilitation | 382 | 4271 | 11.18 | 2.439 | 2.182 | TAYLOR & FRANCIS LTD |
Neurorehabilitation | 303 | 3556 | 11.74 | 1.986 | 1.919 | IOS PRESS |
IEEE transactions on neural systems and rehabilitation engineering | 296 | 4926 | 16.64 | 4.528 | 4.167 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
Archives of physical medicine and rehabilitation | 274 | 6388 | 23.31 | 4.060 | 3.804 | W B SAUNDERS CO-ELSEVIER INC |
First Author | Title | Journal | IF | C | Ref. |
---|---|---|---|---|---|
Jovin (2015) | Thrombectomy within 8 Hours after Symptom Onset in Ischemic Stroke | New England Journal of Medicine | 176.079 | 2925 | [59] |
Vos (2020) | Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019 | Lancet | 202.731 | 1500 | [60] |
Hochberg (2012) | Reach and grasp by people with tetraplegia using a neurally controlled robotic arm | Nature | 69.504 | 1431 | [61] |
Lefaucheur (2014) | Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS) | Clinical neurophysiology | 4.861 | 1099 | [62] |
Winstein (2016) | Guidelines for Adult Stroke Rehabilitation and Recovery A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association | Stroke | 10.170 | 1036 | [21] |
Fernando Nicolas-Alonso (2012) | Brain Computer Interfaces, a Review | Sensors | 3.847 | 991 | [63] |
Anttila (2018) | Analysis of shared heritability in common disorders of the brain | Science | 63.714 | 824 | [64] |
Xiong (2013) | Animal models of traumatic brain injury | Nature reviews neuroscience | 38.755 | 800 | [65] |
Polygerinos (2015) | Soft robotic glove for combined assistance and at-home rehabilitation | Robotics and autonomous systems | 3.700 | 742 | [66] |
Murray (2020) | Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019 | Lancet | 202.731 | 644 | [67] |
1975–2000 | Average Publication Year | 2001–2011 | Average Publication Year | 2012–2022 | Average Publication Year |
---|---|---|---|---|---|
Stroke | 1995.22 | Archives of Physical Medicine and Rehabilitation | 2005.92 | Frontiers in Neurology | 2019.55 |
Archives of Physical Medicine and Rehabilitation | 1997.14 | Stroke | 2006.45 | Journal of Stroke & Cerebrovascular Diseases | 2018.18 |
Neurology | 1996.21 | Neurorehabilitation and Neural Repair | 2008 | Journal of Neuroengineering and Rehabilitation | 2017.5 |
American Journal of Physical Medicine & Rehabilitation | 1996.59 | Clinical Rehabilitation | 2006.07 | Plos One | 2016.27 |
Acta Neurologica Scandinavica | 1994.97 | Journal of Rehabilitation Medicine | 2007.63 | Topics in Stroke Rehabilitation | 2017.26 |
Journal of Neurology Neurosurgery and Psychiatry | 1995.97 | Disability and Rehabilitation | 2007.36 | Neurorehabilitation and Neural Repair | 2016.83 |
Brain Research | 1995.25 | Topics in Stroke Rehabilitation | 2009.07 | Disability and Rehabilitation | 2017.67 |
Clinical Rehabilitation | 1998.93 | American Journal of Physical Medicine & Rehabilitation | 2005.8 | Neurorehabilitation | 2016.34 |
Experimental Neurology | 1996.42 | Experimental Neurology | 2007.24 | IEEE Transactions on Neural Systems and Rehabilitation Engineering | 2017.8 |
Scandinavian Journal of Rehabilitation Medicine | 1991.12 | Journal of Neuroscience | 2006.83 | Archives of Physical Medicine and Rehabilitation | 2016.17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uivarosan, D.; Bungau, S.G.; Nistor-Cseppento, C.D.; Negru, P.A.; Bungau, A.F.; Sabau, A.M.; Tit, D.M.; Uivaraseanu, B.; Radu, A.-F. Application of Robotic Recovery Techniques to Stroke Survivors—Bibliometric Analysis. J. Pers. Med. 2022, 12, 2066. https://doi.org/10.3390/jpm12122066
Uivarosan D, Bungau SG, Nistor-Cseppento CD, Negru PA, Bungau AF, Sabau AM, Tit DM, Uivaraseanu B, Radu A-F. Application of Robotic Recovery Techniques to Stroke Survivors—Bibliometric Analysis. Journal of Personalized Medicine. 2022; 12(12):2066. https://doi.org/10.3390/jpm12122066
Chicago/Turabian StyleUivarosan, Diana, Simona Gabriela Bungau, Carmen Delia Nistor-Cseppento, Paul Andrei Negru, Alexa Florina Bungau, Anca Maria Sabau, Delia Mirela Tit, Bogdan Uivaraseanu, and Andrei-Flavius Radu. 2022. "Application of Robotic Recovery Techniques to Stroke Survivors—Bibliometric Analysis" Journal of Personalized Medicine 12, no. 12: 2066. https://doi.org/10.3390/jpm12122066
APA StyleUivarosan, D., Bungau, S. G., Nistor-Cseppento, C. D., Negru, P. A., Bungau, A. F., Sabau, A. M., Tit, D. M., Uivaraseanu, B., & Radu, A.-F. (2022). Application of Robotic Recovery Techniques to Stroke Survivors—Bibliometric Analysis. Journal of Personalized Medicine, 12(12), 2066. https://doi.org/10.3390/jpm12122066