Towards a Consensus on an ICF-Based Classification System for Horizontal Sound-Source Localization
Abstract
:1. Introduction
1.1. The Importance of Sound Localization
1.2. Physiological Mechanism of Sound Localization
1.3. Factors Which Affect the Accuracy of Sound Localization
1.4. Sound-Localization Ability and Hearing Loss
1.5. Measures of Sound Localization
1.6. Variations in Localization Test Procedures
- (a)
- The geometry of the testing environment, such as the physical dimensions of the space, the use of anechoic rooms versus testing booths, etc.
- (b)
- The type, number, and location of sound sources, the distance of the loudspeakers to the listener, the inter-speaker angle, etc.
- (c)
- The type, number, presentation level, and duration of sound stimuli, which can be pure tones, wide- or narrow-band noise, speech-shaped noise, babble, individual human voices or conversations, or environmental sounds.
- (d)
- The manner of listener response, such as verbal identification of the source speaker according to a pre-arranged naming scheme (1-2-3, A-B-C, etc.) or according to the analog clock scheme, or by pointing with hands or other instruments, or the use of a point-and-click computer interface or drawings on paper.
Publication | Response Points | Stimulus Type | Stimulus Duration (s) | Stimulus Level (dB SPL Unless Otherwise Stated) | Presentations per Speaker | Number of Listeners | Listener Type (s) | Speaker Azimuth Range | Number of Speakers | Distance the Listener to Speaker (m) | Reporting Metric |
---|---|---|---|---|---|---|---|---|---|---|---|
Ausili et al., 2020 [13] | NR | LP, HP, and BB | 0.2 | 50–70 dBA | NR | 25 | BiCI | ±75° | 5 | 1.5 | MAE |
Brown, 2018 [14] | NR | Gaussian | 0.5 | 62–68 | NR | 6 | BiCI | ±90° | 13 | 1.7 | RMSE |
Ehrmann-Mueller et al., 2020 [15] | NR | CCITT | NR | 55–70 | NR | 7 | UHL/SSD | ±90° | 3–9 | NR | RMSE |
Grantham et al., 2012 [16] | 54 | Human speech | 0.3; 1.25 | 60 | 9 | 12 | UHL/SSD | ±84° | 9 | 1.9 | RMSE |
Grossmann et al., 2016 [17] | 135 | CCITT | 1.0 | 55–65 | 15 | 12 | UHL/SSD | ±90° | 9 | 1.5 | RMSE |
Killan et al., 2019 [18] | 30 | Human speech | NR | 70 dBA | 6 | 127 | BiCI | ±60° | 5 | 1.5 | RMSE |
Kurz et al., 2020 [19] | NR | CCITT | 1.0 | 65–75 dBA | 6 | 23 | UHL/SSD | ±90° | 9 | 1.5 | RMSE |
Kurz et al., 2021 [20] | 54 | CCITT | 1.0 | 65–75 dBA | 6 | 29 | UHL/SSD | ±90° | 9 | NR | RMSE |
Lopez-Poveda et al., 2019 [21] | 88 | BB | 0.2 | 68–72 | 8 | 12 | BiCI | ±75° | Virtual | 1.0 | RMSE |
Lorens et al., 2021 [22] | 242 | Envr. sounds | NR | NR | 22 | 11 | UHL/SSD | ±50° | 11 | 1.0 | RMSE |
Marx et al., 2021 [23] | NR | White | 0.4 | NR | NR | 51 | SSD and AHL | ±90° | 7 | 0.6 | RMSE |
Mertens et al., 2016 [10] | 27 | LP, HP, and BB | 0.2 | 54–66 | 9 | 10 | UHL/SSD | ±90° | 9 | 0.8 | RMSE |
Mertens et al., 2017 [24] | 54 | CCITT | 1.3 | 70–80 | 6 | 23 | SSD and AHL | ±90° | 9 | NR | MAE |
Mertens et al., 2018 [25] | 7 | CCITT | 1.0 | 70–80 | 6 | UHL/SSD | ±90° | 7 | 0.8 | MAE | |
Nopp et al., 2004 [26] | 135 | CCITT | 1.0 | 60–80 | 15 | 20 | BiCI | ±90° | 9 | NR | RMSE |
Seebacher et al., 2019 | 84 | CCITT | 1.3 | 65–75 dBA | 12 | 12 | UHL/SSD | ±90° | 7 | 1.0 | RMSE |
Seebacher et al., 2022 | 84 | LP, HP, and BB | 1.3 | 65–75 dBA | 12 | 12 | UHL/SSD | ±90° | 7 | NR | RMSE |
Skarzynski et al., 2017 [27] | 141 | Envr. sounds | NR | NR | 2 | UHL/SSD | ±50° | 11 | 2.0 | RMSE | |
Tȧvora-Vieira et al., 2015 [28] | NR | 4 kHz sound | NR | NR | NR | 29 | UHL/SSD | ±60° | Virtual | NR | RMSE |
Thompson et al., 2022 [9] | 132 | BB | 0.2 | 52–72 | 12 | 20 | UHL/SSD | ±90° | 11 | 1.0 | RMSE |
van Hoesel et al., 2003 | 40 | Pink | 0.8 | 61–69 | 5 | 20 | BICI | ±54° | 8 | 1.4 | RMSE |
Wedekind et al., 2020 | NR | 4 kHz sound | NR | NR | NR | 29 | UHL/SSD | ±60° | Virtual | NR | RMSE |
Speck et al., 2021 | NR | Human speech | NR | 59–71 | NR | 51 | SSD and AHL | ±90° | 7 | NR | MAE |
Dorbeau et al., 2018 | ≥48 | Gunshot | NR | 59–71 | 12 | 18 | UHL/SSD | ±90° | 12 | 1.0 | RMSE |
Yost et al., 2013 | 132 | LP, HP, and BB | 0.2 | 65 | 12 | NH | ±77° | 11 | 1.6 | RMSE |
1.7. Variations in Localization Test Reporting Metrics
1.8. A Classification System for Quantifying Localization Error Based on the ICF Framework
2. Methods
2.1. Development of the Consensus
2.2. Calculation of the HEARRING_LOC_ICF Scale
2.3. Institutes, Localization Testing Setups, and Listeners
- (a)
- Comparability across institutes
- (b)
- Comparability across localization testing setup
- (c)
- Comparability across listeners
3. Results
- (a)
- Comparability across institutes
- (b)
- Comparability across localization testing setup
- (c)
- Comparability across listeners
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ciocca, V. The auditory organization of complex sounds. Front. Biosci. 2008, 13, 148–169. [Google Scholar] [CrossRef] [Green Version]
- Kaya, E.M.; Elhilali, M. Modelling auditory attention. Philos. Trans. Soc. Lond. Biol. Sci. 2017, 372, 1714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roman, N.; Wang, D.; Brown, G.J. Speech segregation based on sound localization. J. Acoust. Soc. Am. 2003, 114, 2236–2252. [Google Scholar] [CrossRef]
- Roggerone, V.; Vacher, J.; Tarlao, C.; Guastavino, C. Auditory motion perception emerges from successive sound localizations integrated over time. Sci. Rep. 2019, 9, 16437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Risoud, M.; Hanson, J.N.; Gauvrit, F.; Renard, C.; Lemesre, P.E.; Bonne, N.X.; Vincent, C. Sound source localization. Eur. Ann. Otorhinolaryngol. Head Neck Dis. 2018, 135, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Avan, P.; Giraudet, F.; Buki, B. Importance of binaural hearing. Audiol. Neurootol. 2015, 20 (Suppl. S1), 3–6. [Google Scholar] [CrossRef] [PubMed]
- Keating, P.; King, A.J. Developmental plasticity of spatial hearing following asymmetric hearing loss: Context-dependent cue integration and its clinical implications. Front. Syst. Neurosci. 2013, 7, 123. [Google Scholar] [CrossRef] [Green Version]
- Dorman, M.F.; Loiselle, L.H.; Cook, S.J.; Yost, W.A.; Gifford, R.H. Sound Source Localization by Normal-Hearing Listeners, Hearing-Impaired Listeners and Cochlear Implant Listeners. Audiol. Neurootol. 2016, 21, 127–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, N.J.; Dillon, M.T.; Buss, E.; Rooth, M.A.; Richter, M.E.; Pillsbury, H.C.; Brown, K.D. Long-Term Improvement in Localization for Cochlear Implant Users with Single-Sided Deafness. Laryngoscope 2020, 132, 2453–2458. [Google Scholar] [CrossRef]
- Mertens, G.; Desmet, J.; De Bodt, M.; Van de Heyning, P. Prospective case-controlled sound localisation study after cochlear implantation in adults with single-sided deafness and ipsilateral tinnitus. Clin. Otolaryngol. 2016, 41, 511–518. [Google Scholar] [CrossRef]
- Nassiri, A.M.; Sorkin, D.L.; Carlson, M.L. Current Estimates of Cochlear Implant Utilization in the United States. Otol. Neurotol. 2022, 43, e558–e562. [Google Scholar] [CrossRef] [PubMed]
- Gatehouse, S.; Noble, W. The Speech, Spatial and Qualities of Hearing Scale (SSQ). Int. J. Audiol. 2004, 43, 85–99. [Google Scholar] [CrossRef] [PubMed]
- Ausili, S.A.; Agterberg, M.J.H.; Engel, A.; Voelter, C.; Thomas, J.P.; Brill, S.; Snik, A.F.M.; Dazert, S.; Van Opstal, A.J.; Mylanus, E.A.M. Spatial Hearing by Bilateral Cochlear Implant Users With Temporal Fine-Structure Processing. Front. Neurol. 2020, 11, 915. [Google Scholar] [CrossRef] [PubMed]
- Brown, C.A. Corrective binaural processing for bilateral cochlear implant patients. PLoS ONE 2018, 13, e0187965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ehrmann-Mueller, D.; Kurz, A.; Kuehn, H.; Rak, K.; Mlynski, R.; Hagen, R.; Shehata-Dieler, W. Usefulness of cochlear implantation in children with single sided deafness. Int. J. Pediatr. Otorhinolaryngol. 2020, 130, 109808. [Google Scholar] [CrossRef] [PubMed]
- Grantham, D.W.; Ashmead, D.H.; Haynes, D.S.; Hornsby, B.W.; Labadie, R.F.; Ricketts, T.A. Horizontal plane localization in single-sided deaf adults fitted with a bone-anchored hearing aid (Baha). Ear Hear. 2012, 33, 595–603. [Google Scholar] [CrossRef] [PubMed]
- Grossmann, W.; Brill, S.; Moeltner, A.; Mlynski, R.; Hagen, R.; Radeloff, A. Cochlear Implantation Improves Spatial Release From Masking and Restores Localization Abilities in Single-sided Deaf Patients. Otol. Neurotol. 2016, 37, 658–664. [Google Scholar] [CrossRef]
- Killan, C.; Scally, A.; Killan, E.; Totten, C.; Raine, C. Factors Affecting Sound-Source Localization in Children With Simultaneous or Sequential Bilateral Cochlear Implants. Ear Hear. 2019, 40, 870–877. [Google Scholar] [CrossRef]
- Kurz, A.; Rak, K.; Hagen, R.; Ehrmann-Muller, D. Evaluating the Decision for Cochlear Implantation in Individuals With Single-Sided Deafness (SSD); Implementing the SSD Consensus Protocol Into Clinical Routine. Otol. Neurotol. 2020, 41, 727–735. [Google Scholar] [CrossRef]
- Kurz, A.; Zanzinger, M.; Hagen, R.; Rak, K. The impact of cochlear implant microphone settings on the binaural hearing of experienced cochlear implant users with single-sided deafness. Eur. Arch. Otorhinolaryngol. 2021, 278, 2067–2077. [Google Scholar] [CrossRef]
- Lopez-Poveda, E.A.; Eustaquio-Martin, A.; Fumero, M.J.; Stohl, J.S.; Schatzer, R.; Nopp, P.; Wolford, R.D.; Gorospe, J.M.; Polo, R.; Revilla, A.G.; et al. Lateralization of virtual sound sources with a binaural cochlear-implant sound coding strategy inspired by the medial olivocochlear reflex. Hear. Res. 2019, 379, 103–116. [Google Scholar] [CrossRef] [PubMed]
- Lorens, A.; Obrycka, A.; Skarzynski, P.H.; Skarzynski, H. Benefits of Binaural Integration in Cochlear Implant Patients with Single-Sided Deafness and Residual Hearing in the Implanted Ear. Life 2021, 11, 265. [Google Scholar] [CrossRef]
- Marx, M.; Mosnier, I.; Venail, F.; Mondain, M.; Uziel, A.; Bakhos, D.; Lescanne, E.; N’Guyen, Y.; Bernardeschi, D.; Sterkers, O.; et al. Cochlear Implantation and Other Treatments in Single-Sided Deafness and Asymmetric Hearing Loss: Results of a National Multicenter Study Including a Randomized Controlled Trial. Audiol. Neurootol. 2021, 26, 414–424. [Google Scholar] [CrossRef]
- Mertens, G.; De Bodt, M.; Van de Heyning, P. Evaluation of Long-Term Cochlear Implant Use in Subjects With Acquired Unilateral Profound Hearing Loss: Focus on Binaural Auditory Outcomes. Ear Hear. 2017, 38, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Mertens, G.; Gilles, A.; Bouzegta, R.; Van de Heyning, P. A Prospective Randomized Crossover Study in Single Sided Deafness on the New Non-Invasive Adhesive Bone Conduction Hearing System. Otol. Neurotol. 2018, 39, 940–949. [Google Scholar] [CrossRef] [PubMed]
- Nopp, P.; Schleich, P.; D’Haese, P. Sound localization in bilateral users of MED-EL COMBI 40/40+ cochlear implants. Ear Hear. 2004, 25, 205–214. [Google Scholar] [CrossRef] [Green Version]
- Skarzynski, H.; Lorens, A.; Kruszynska, M.; Obrycka, A.; Pastuszak, D.; Skarzynski, P.H. The hearing benefit of cochlear implantation for individuals with unilateral hearing loss, but no tinnitus. Acta Otolaryngol. 2017, 137, 723–729. [Google Scholar] [CrossRef]
- Tȧvora-Vieira, D.; De Ceulaer, G.; Govaerts, P.J.; Rajan, G.P. Cochlear implantation improves localization ability in patients with unilateral deafness. Ear Hear. 2015, 36, e93–e98. [Google Scholar] [CrossRef]
- Van de Heyning, P.; Tȧvora-Vieira, D.; Mertens, G.; Van Rompaey, V.; Rajan, G.P.; Muller, J.; Hempel, J.M.; Leander, D.; Polterauer, D.; Marx, M.; et al. Towards a Unified Testing Framework for Single-Sided Deafness Studies: A Consensus Paper. Audiol. Neurootol. 2016, 21, 391–398. [Google Scholar] [CrossRef]
- Willmott, C.J.; Matsuura, K. Advantages of the Mean Absolute Error (MAE) over the Root Mean Square Error (RMSE) in Assessing Average Model Performance. Clim. Res. 2005, 30, 79–82. [Google Scholar] [CrossRef]
- Kerber, S.; Seeber, B.U. Localization in reverberation with cochlear implants: Predicting performance from basic psychophysical measures. J. Assoc. Res. Otolaryngol. 2013, 14, 379–392. [Google Scholar] [CrossRef] [Green Version]
- Mueller, M.F.; Meisenbacher, K.; Lai, W.K.; Dillier, N. Sound localization with bilateral cochlear implants in noise: How much do head movements contribute to localization? Cochlear Implants Int. 2014, 15, 36–42. [Google Scholar] [CrossRef]
- Danermark, B.; Cieza, A.; Gange, J.P.; Gimigliano, F.; Granberg, S.; Hickson, L.; Kramer, S.E.; McPherson, B.; Moller, C.; Russo, I.; et al. International classification of functioning, disability, and health core sets for hearing loss: A discussion paper and invitation. Int. J. Audiol. 2010, 49, 256–262. [Google Scholar] [CrossRef] [PubMed]
- Danermark, B.; Granberg, S.; Kramer, S.E.; Selb, M.; Moller, C. The creation of a comprehensive and a brief core set for hearing loss using the international classification of functioning, disability and health. Am. J. Audiol. 2013, 22, 323–328. [Google Scholar] [CrossRef] [PubMed]
- Granberg, S. Functioning and Disability in Adults with Hearing Loss: The Preparatory Studies in the ICF Core Sets for Hearing Loss Project. Ph.D. Thesis, Örebro University, Örebro, Sweden, 2015. [Google Scholar]
- Granberg, S.; Dahlstrom, J.; Moller, C.; Kahari, K.; Danermark, B. The ICF Core Sets for hearing loss: Researcher perspective. Part I: Systematic review of outcome measures identified in audiological research. Int. J. Audiol. 2014, 53, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Granberg, S.; Möller, K.; Skagerstrand, Å.; Möller, C.; Danermark, B. The ICF Core Sets for hearing loss: Researcher perspective, Part II: Linking outcome measures to the International Classification of Functioning, Disability and Health (ICF). Int. J. Audiol. 2014, 53, 77–87. [Google Scholar] [CrossRef]
- Granberg, S.; Pronk, M.; Swanepoel, D.W.; Kramer, S.E.; Hagsten, H.; Hjaldahl, J.; Möller, C.; Danermark, B. The ICF core sets for hearing loss project: Functioning and disability from the patient perspective. Int. J. Audiol. 2014, 53, 777–786. [Google Scholar] [CrossRef] [Green Version]
- Granberg, S.; Swanepoel, D.W.; Englund, U.; Möller, C.; Danermark, B. The ICF core sets for hearing loss project: International expert survey on functioning and disability of adults with hearing loss using the international classification of functioning, disability, and health (ICF). Int. J. Audiol. 2014, 53, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Tȧvora-Vieira, D.; Marino, R. Re-training the deaf ear: Auditory training for adult cochlear implant users with singlesided deafness. Cochlear Implants Int. 2019, 20, 231–236. [Google Scholar] [CrossRef]
- Arndt, S.; Aschendorff, A.; Laszig, R.; Beck, R.; Schild, C.; Kroeger, S.; Ihorst, G.; Wesarg, T. Comparison of pseudobinaural hearing to real binaural hearing rehabilitation after cochlear implantation in patients with unilateral deafness and tinnitus. Otol. Neurotol. 2001, 32, 39–47. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mertens, G.; Andries, E.; Kurz, A.; Tȧvora-Vieira, D.; Calvino, M.; Amann, E.; Anderson, I.; Lorens, A. Towards a Consensus on an ICF-Based Classification System for Horizontal Sound-Source Localization. J. Pers. Med. 2022, 12, 1971. https://doi.org/10.3390/jpm12121971
Mertens G, Andries E, Kurz A, Tȧvora-Vieira D, Calvino M, Amann E, Anderson I, Lorens A. Towards a Consensus on an ICF-Based Classification System for Horizontal Sound-Source Localization. Journal of Personalized Medicine. 2022; 12(12):1971. https://doi.org/10.3390/jpm12121971
Chicago/Turabian StyleMertens, Griet, Ellen Andries, Anja Kurz, Dayse Tȧvora-Vieira, Miryam Calvino, Edda Amann, Ilona Anderson, and Artur Lorens. 2022. "Towards a Consensus on an ICF-Based Classification System for Horizontal Sound-Source Localization" Journal of Personalized Medicine 12, no. 12: 1971. https://doi.org/10.3390/jpm12121971
APA StyleMertens, G., Andries, E., Kurz, A., Tȧvora-Vieira, D., Calvino, M., Amann, E., Anderson, I., & Lorens, A. (2022). Towards a Consensus on an ICF-Based Classification System for Horizontal Sound-Source Localization. Journal of Personalized Medicine, 12(12), 1971. https://doi.org/10.3390/jpm12121971