Peptic Ulcer Disease Associated with Central Obesity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Subjects
2.2. Measurement of Anthropometric Parameters and Bone Mineral Density
2.3. Definition of Metabolic Syndrome and Low Bone Mineral Density
2.4. Statistical Analyses
3. Results
3.1. Prevalence of Peptic Ulcer Disease and Metabolic Syndrome
3.2. Differences between Subjects with Peptic Ulcer Disease and Non-Peptic Ulcer Disease
3.3. Univariate and Multivariate Logistic Regression Analyses of Variables Associated with Peptic Ulcer Disease
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Makola, D.; Peura, D.A.; Crowe, S.E. Helicobacter pylori infection and related gastrointestinal diseases. J. Clin. Gastroenterol. 2007, 41, 548–558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenstock, S.; Jorgensen, T.; Bonnevie, O.; Andersen, L. Risk factors for peptic ulcer disease: A population based prospective cohort study comprising 2416 Danish adults. Gut 2003, 52, 186–193. [Google Scholar] [CrossRef] [PubMed]
- Lau, J.Y.; Sung, J.; Hill, C.; Henderson, C.; Howden, C.W.; Metz, D.C. Systematic Review of the Epidemiology of Complicated Peptic Ulcer Disease: Incidence, Recurrence, Risk Factors and Mortality. Digestion 2011, 84, 102–113. [Google Scholar] [CrossRef] [PubMed]
- Johnell, O.; Kamis, J.A. An estimated of worldwide prevalence and disability associated with osteoporosis fractures. Osteoporos. Int. 2006, 17, 1726–1733. [Google Scholar] [CrossRef] [PubMed]
- Hwang, D.K.; Choi, H.J. The relationship between low bone mass and metabolic syndrome in Korean women. Osteoporos. Int. 2010, 21, 425–431. [Google Scholar] [CrossRef] [PubMed]
- Park, K.K.; Kim, S.J.; Moon, E.S. Association between bone mineral density and metabolic syndrome in postmenopausal Korean women. Gynecol. Obstet. Investig. 2010, 69, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Boylan, M.R.; Khalili, H.; Huang, E.S.; Chan, A.T. Measures of adiposity are associated with increased risk of peptic ulcer. Clin. Gastroenterol. Hepatol. 2014, 12, 1688–1694. [Google Scholar] [CrossRef] [Green Version]
- Ding, C.; Parameswaran, V.; Udayan, R.; Burgess, J.; Jones, G. Circulating levels of inflammatory markers predict change in bone mineral density and resorption in older adults: A longitudinal study. J. Clin. Endocrinol. Metab. 2008, 93, 1952–1958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, T.; Li, X.; Zhang, Q.; Ge, B.; Zhang, J.; Yu, L.; Cai, T.; Zhang, Y.; Xiong, H. Relationship between Helicobacter pylori infection and osteoporosis: A systematic review and meta-analysis. BMJ Open 2019, 9, e027356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kakehasi, C.; Mendes, M.C.; Coelho, L.G.V.; Castro, L.P.; Barbosa, A.J.A. The presence of Helicobacter pylori in postmenopausal women is not a factor to the decrease of bone mineral density. Arq. Gastroenterol. 2007, 44, 266–270. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.H.; Kim, N.; Kwon, J.W.; Kim, S.E.; Baik, G.H.; Lee, J.Y.; Park, K.S.; Shin, J.E.; Song, H.J.; Myung, D.S.; et al. Positive association between Helicobacter pylori infection and metabolic syndrome in a Korean population: A multicenter nationwide study. Dig. Dis. Sci. 2019, 64, 2219–2230. [Google Scholar] [CrossRef]
- Refaeli, R.; Chodick, G.; Haj, S.; Goren, S.; Shalev, V.; Muhsen, K. Relationships of H. pylori infection and its related gastroduodenal morbidity with metabolic syndrome: A large cross-sectional study. Sci. Rep. 2018, 8, 4088. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.P.; Hung, H.F.; Chen, M.K.; Lai, H.H.; Hsu, W.F.; Huang, K.C.; Yang, K.C. Helicobacter pylori infection is positively associated with metabolic syndrome in Taiwanese adults: A cross-sectional study. Helicobacter 2015, 20, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Grundy, S.M.; Cleeman, J.I.; Daniels, S.R.; Donato, K.A.; Eckel, R.H.; Franklin, B.A.; Gordon, D.J.; Krauss, R.M.; Savage, P.J.; Smith, S.C. Diagnosis and management of the metabolic syndrome: An American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 2005, 112, 2735–2752. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.W.; Tu, M.S.; Mar, G.Y.; Chuang, H.Y.; Yu, H.C.; Cheng, L.C.; Hsu, P.I. Prevalence and risk factors of asymptomatic peptic ulcer disease in Taiwan. World J. Gastroenterol. 2011, 17, 1199–1203. [Google Scholar] [CrossRef] [PubMed]
- Hwang, L.C.; Bai, C.H.; Chen, C.J. Prevalence of obesity and metabolic syndrome in Taiwan. J. Formos. Med. Assoc. 2006, 105, 626–635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sogabe, M.; Okahisa, T.; Kimura, T.; Okamoto, K.; Miyamoto, H.; Muguruma, N.; Takayama, T. Influence of metabolic syndrome on upper gastrointestinal disease. Clin. J. Gastroenterol. 2016, 9, 191–202. [Google Scholar] [CrossRef] [PubMed]
- Ding, S.; Chi, M.M.; Scull, B.P.; Rigby, R.; Schwerbrock, N.M.J.; Magness, S.; Jobin, C.; Lund, P.K. High-fat diet: Bacteria interactions promote intestinal inflammation which precedes and correlates with obesity and insulin resistance in mouse. PLoS ONE 2010, 5, e12191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsai, W.L.; Yang, C.Y.; Lin, S.F.; Fang, F.M. Impact of obesity on medical problems and quality of life in Taiwan. Am. J. Epidemiol. 2004, 160, 557–565. [Google Scholar] [CrossRef] [Green Version]
- Lee, B.J.; Kim, J.; Kim, K.H. Association of gastric and duodenal ulcers with anthropometry and nutrients: Korean national health and nutrition examination survey (knhanes ii–iv) 2001–2009. PLoS ONE 2018, 13, e0207373. [Google Scholar] [CrossRef] [PubMed]
- Garrow, D.; Delegge, M.H. Risk factors for gastrointestinal ulcer disease in the US population. Dig. Dis. Sci. 2010, 55, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Barak, N.; Ehrenpreis, E.D.; Harrison, J.R.; Sitrin, M.D. Gastro-oesophageal reflux disease in obesity: Pathophysiological and therapeutic considerations. Obes. Rev. 2002, 3, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Wisén, O.; Rössner, S.; Johansson, C. Gastric secretion in massive obesity. Evidence for abnormal response to vagal stimulation. Dig. Dis. Sci. 1987, 32, 968–972. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, P.; Magro, F.; Martel, F. Metabolic inflammation in inflammatory bowel disease: Crosstalk between adipose tissue and bowel. Inflamm. Bowel Dis. 2015, 21, 453–467. [Google Scholar] [CrossRef]
- Kahn, C.R.; Wang, G.; Lee, K.Y. Altered adipose tissue and adipocyte function in the pathogenesis of metabolic syndrome. J. Clin. Investig. 2019, 129, 3990–4000. [Google Scholar] [CrossRef] [PubMed]
- Karmiris, K.; Koutroubakis, I.E.; Xidakis, C.; Polychronaki, M.; Kouroumalis, E.A. The effect of infliximab on circulating levels of leptin, adiponectin and resistin in patients with inflammatory bowel disease. Eur. J. Gastroenterol. Hepatol. 2007, 19, 789–794. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kim, K.H.; Lee, B.J. Association of peptic ulcer disease with obesity, nutritional components, and blood parameters in the Korean population. PLoS ONE 2017, 12, e0183777. [Google Scholar] [CrossRef] [Green Version]
- Shimamoto, T.; Yamamichi, N.; Gondo, K.; Takahashi, Y.; Takeuchi, C.; Wada, R.; Mitsushima, T.; Koike, K. The association of Helicobacter pylori infection with serum lipid profiles: An evaluation based on a combination of meta-analysis and a propensity score-based observational approach. PLoS ONE 2020, 15, e0234433. [Google Scholar] [CrossRef]
- Choi, H.G.; Rhim, C.C.; Yoon, J.Y.; Park, B.J.; Min, C.Y.; Lee, S.W. Increased risk of osteoporosis in patients with peptic ulcer: A follow-up study using a national sample cohort. Arch. Osteoporos. 2019, 14, 105. [Google Scholar] [CrossRef] [PubMed]
- Yoon, P.H.; An, S.J.; Jeong, S.H.; Yang, Y.J.; Hong, Y.P. Association between peptic ulcer disease and osteoporosis: The population-based longitudinal cohort study in Korea. Int. J. Environ. Res. Public Health 2019, 16, 2777. [Google Scholar] [CrossRef] [PubMed]
- Lai, S.W.; Kuo, Y.H.; Liao, K.F. Association between peptic ulcer disease and osteoporosis. Arch. Osteoporos. 2020, 15, 39. [Google Scholar] [CrossRef]
- Zhao, S.; Ding, L.; Xie, Q.; Zhang, J.; Yang, S.; Xu, W.; Yang, J.; Xu, Y.; Zheng, C. Is there an association between peptic ulcer disease and osteoporosis: A systematic review and cumulative analysis. Eur. J. Gastroenterol. Hepatol. 2021, 33, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Boehme, M.W.; Autschbach, F.; Ell, C.; Raeth, U. Prevalence of silent gastric ulcer, erosions or severe acute gastritis in patients with type 2 diabetes mellitu—A cross-sectional study. Hepatogastroenterology 2007, 54, 643–648. [Google Scholar] [PubMed]
- Parkman, H.P.; Schwartz, S.S. Esophagitis and gastroduodenal disorders associated with diabetic gastroparesis. Arch. Intern. Med. 1987, 147, 1477–1480. [Google Scholar] [CrossRef]
- Tseng, P.H.; Lee, Y.C.; Chiu, H.M.; Chen, C.C.; Liao, W.C.; Tu, C.H.; Yang, W.S.; Wu, M.S. Association of diabetes and HbA1c levels with gastrointestinal manifestations. Diabetes Care 2012, 35, 1053–1060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, G.H.; Wu, J.S.; Yang, Y.C.; Huang, Y.H.; Lu, F.H.; Chang, C.J. Gastric helicobacter pylori infection associated with risk of diabetes mellitus, but not prediabetes. J. Gastroenterol. Hepatol. 2014, 29, 1794–1799. [Google Scholar] [CrossRef] [PubMed]
- Weil, J.; Langman, M.J.; Wainwright, P.; Lawson, D.H.; Rawlins, M.; Logan, R.F.; Brown, T.P.; Vessey, M.P.; Murphy, M.; Colin-Jones, D.G. Peptic ulcer bleeding: Accessory risk factors and interactions with non-steroidal anti-inflammatory drugs. Gut 2000, 46, 27–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thursby, E.; Juge, N. Introduction to the human gut microbiota. Biochem. J. 2017, 474, 1823–1836. [Google Scholar] [CrossRef]
- Kawano, Y.; Edwards, M.; Huang, Y.; Bilate, A.M.; Araujo, L.P.; Tanoue, T.; Atarashi, K.; Ladinsky, M.S.; Reiner, S.L.; Wang, H.H.; et al. Microbiota imbalance induced by dietary sugar disrupts immune-mediated protection from metabolic syndrome. Cell 2022, 185, 3501–3519.e20. [Google Scholar] [CrossRef]
- Adolph, T.E.; Meyer, M.; Schwärzler, J.; Mayr, L.; Grabherr, F.; Tilg, H. The metabolic nature of inflammatory bowel diseases. Nat. Rev. Gastroenterol. Hepatol. 2022, 19, 753–767. [Google Scholar] [CrossRef]
- Silva, Y.P.; Bernardi, A.; Frozza, R.L. The Role of Short-Chain Fatty Acids From Gut Microbiota in Gut-Brain Communication. Front. Endocrinol. 2020, 11, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez-Reytor, D.; Puebla, C.; Karahanian, E.; García, K. Use of Short-Chain Fatty Acids for the Recovery of the Intestinal Epithelial Barrier Affected by Bacterial Toxins. Front. Physiol. 2021, 12, 650313. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Zogg, H.; Wei, L.; Bartlett, A.; Ghoshal, U.C.; Rajender, S.; Ro, S. Gut Microbial Dysbiosis in the Pathogenesis of Gastrointestinal Dysmotility and Metabolic Disorders. J. Neurogastroenterol. Motil. 2021, 27, 19–34. [Google Scholar] [CrossRef] [PubMed]
- Martin-Nuñez, G.M.; Cornejo-Pareja, I.; Clemente-Postigo, M.; Tinahones, F.J. Gut Microbiota: The Missing Link Between Helicobacter pylori Infection and Metabolic Disorders? Front. Endocrinol. 2021, 12, 639856. [Google Scholar] [CrossRef]
All (n = 5102) | Peptic Ulcer Disease (n = 1332) | Non-Peptic Ulcer Disease (n = 3770) | p Value | |
---|---|---|---|---|
Demography & laboratory data | ||||
Age, years | 52.4 ± 12.0 | 55.9 ± 10.9 | 51.2 ± 12.1 | <0.001 *. |
Sex | <0.001 * | |||
Female, n (%) | 2159 (42.3) | 413 (31.0) | 1746 (46.3) | |
Male, n (%) | 2943 (57.7) | 919 (69.0) | 2024 (53.7) | |
BMI, kg/m2 | 24.2 ± 3.8 | 24.7 ± 3.7 | 23.9 ± 3.8 | <0.001 * |
WC, cm | 82.1 ± 10.9 | 84.5 ±10.7 | 81.3 ±10.8 | <0.001 * |
BP, mmHg | ||||
Systolic | 124.9 ± 18.9 | 128.2 ± 19.2 | 123.8 ± 18.7 | <0.001 * |
Diastolic | 83.2 ± 11.0 | 84.8 ± 10.9 | 82.6 ± 11.0 | <0.001 * |
Fasting glucose, mg/dL | 102.9 ± 25.9 | 107.1 ± 30.2 | 101.4 ± 24.0 | <0.001 * |
Total cholesterol, mg/dL | 205.2 ± 39.3 | 206.8 ± 38.6 | 204.7 ± 39.5 | 0.09 |
HDL-C, mg/dL | 51.4 ± 13.7 | 49.7 ± 13.2 | 52.0 ± 13.8 | <0.001 * |
Triglycerides, mg/dL | 123.0 ± 87.0 | 129.2 ± 88.4 | 120.8 ± 86.5 | 0.002 * |
LDL-C, mg/dL | 127.0 ± 35.0 | 128.8 ± 34.1 | 126.3 ± 35.3 | 0.025 * |
Uric acid, mg/dL | 6.4 ± 1.6 | 6.6 ± 1.6 | 6.3 ± 1.6 | <0.001 * |
eGFR, mL/min/1.73 m2 (missing value = 2) | 89.6 ± 20.2 | 85.9 ± 20.4 | 90.9 ± 20.0 | <0.001 * |
GOT, U/L (missing value = 3) | 26.4 ± 16.2 | 28.3 ± 20.3 | 25.7 ± 14.4 | <0.001 * |
GPT, U/L (missing value = 2) | 30.1 ± 25.7 | 32.9 ± 32.7 | 29.1 ± 22.6 | <0.001 * |
Comorbidities | ||||
Diabetes, n (%) | 591 (11.6) | 208 (15.6) | 383 (10.2) | <0.001 * |
Hypertension, n (%) | 1115 (21.9) | 359 (27.0) | 756 (20.1) | <0.001 * |
Hyperlipidemia, n (%) | 214 (4.2) | 74 (5.6) | 140 (3.7) | 0.004 * |
Reflux esophagitis, n (%) | 1452 (28.5) | 374 (28.1) | 1078 (28.6) | 0.72 |
BMD, n (%) | ||||
Normal | 2553 (50.0) | 589 (44.2) | 1964 (52.1) | <0.001 * |
Osteopenia | 1903 (37.3) | 539 (40.5) | 1364 (36.2) | |
Osteoporosis | 646 (12.7) | 204 (15.3) | 442 (11.7) | |
MetS, n (%) | 1620 (31.8) | 502 (37.7) | 1118 (29.7) | <0.001 * |
Variables | Univariate | Multivariate | ||||
---|---|---|---|---|---|---|
Model 1 | Model 2 | |||||
OR (95% CI) | p Value | aOR (95% CI) | p Value | aOR (95% CI) | p Value | |
Demography & laboratory data | ||||||
Age | 1.04 (1.03–1.04) | <0.001 * | 1.03 (1.03–1.04) | <0.001 * | 1.03 (1.03–1.04) | <0.001 * |
Sex (Male vs. Female) | 1.92 (1.68–2.19) | <0.001 * | 1.80 (1.56–2.07) | <0.001 * | 1.89 (1.65–2.17) | <0.001 * |
BMI | 1.06 (1.04–1.08) | <0.001 * | 1.03 (1.01–1.05) | 0.001 * | ||
Uric acid | 1.00 (1.00–1.00) | 0.025 * | ||||
eGFR | 0.99 (0.98–0.99) | <0.001 * | ||||
GOT | 1.01 (1.01–1.01) | <0.001 * | 1.004 (1.00–1.01) | 0.035 * | 1.00 (1.00–1.01) | 0.003 * |
GPT | 1.01 (1.00–1.01) | <0.001 * | ||||
Comorbidities (vs. No/Normal) | ||||||
Diabetes | 1.64 (1.37–1.96) | <0.001 * | 1.23 (1.02–1.49) | 0.033 * | 1.23 (1.01–1.48) | 0.004 * |
Hypertension | 1.47 (1.27–1.70) | <0.001 * | ||||
Hyperlipidemia | 1.53 (1.14–2.04) | 0.004 * | ||||
Reflux esophagitis, n (%) | 0.98 (0.85–1.12) | 0.720 | 0.81 (0.70–0.94) | 0.004 * | 0.81 (0.70–0.94) | 0.005 * |
BMD (vs. Normal) | ||||||
Osteopenia | 1.31 (1.15–1.51) | <0.001 * | ||||
Osteoporosis | 1.54 (1.27–1.86) | <0.001 * | ||||
MetS and parameters (vs. No/Normal) | ||||||
MetS | 1.44 (1.26–1.64) | <0.001 * | ------- | ------- | ||
Large WC | 1.42 (1.25–1.62) | <0.001 * | ------- | ------- | 1.26 (1.10–1.44) | 0.001 * |
High BP | 1.43 (1.26–1.62) | <0.001 * | ------- | ------- | ||
High Fasting glucose | 1.54 (1.36–1.75) | <0.001 * | ------- | ------- | ||
High Triglycerides | 1.22 (1.06–1.40) | 0.006 * | ------- | ------- | ||
Low HDL-C | 1.10 (0.96–1.26) | 0.183 | ------- | ------- |
Variables | Univariate | Multivariate | ||||
---|---|---|---|---|---|---|
Model 1 | Model 2 | |||||
OR (95% CI) | p Value | aOR (95% CI) | p Value | aOR (95% CI) | p Value | |
Demography & laboratory data | ||||||
Age | 1.03 (1.03–1.04) | <0.001 * | 1.03 (1.02–1.04) | <0.001 * | 1.03 (1.02–1.04) | <0.001 * |
Sex (Male vs. Female) | 1.66 (1.420–1.93) | <0.001 * | 1.46 (1.24–1.71) | <0.001 * | 1.43 (1.22–1.68) | <0.001 * |
BMI | 1.08 (1.06–1.10) | <0.001 * | 1.06 (1.04–1.08) | <0.001 * | 1.05 (1.03–1.08) | <0.001 * |
Uric acid | 1.00 (1.00–1.00) | 0.027 * | ||||
eGFR | 0.99 (0.98–0.99) | <0.001 * | ||||
GOT | 1.01 (1.01–1.01) | <0.001 * | 1.00 (1.00–1.01) | 0.034 * | 1.00 (1.00–1.01) | 0.045 * |
GPT | 1.01 (1.00–1.01) | <0.001 * | ||||
Comorbidities (vs. No/Normal) | ||||||
Diabetes | 1.74 (1.43–2.13) | <0.001 * | 1.32 (1.07–1.63) | 0.010 * | 1.31 (1.06–1.62) | 0.012 * |
Hypertension | 1.57 (1.34–1.85) | <0.001 * | ||||
Hyperlipidemia | 1.37 (0.98–1.91) | 0.063 | ||||
Reflux esophagitis, n (%) | 0.97 (0.83–1.14) | 0.716 | 0.82 (0.69–0.97) | 0.018 * | 0.81 (0.69–0.96) | 0.014 * |
BMD (vs. Normal) | ||||||
Osteopenia | 1.37 (1.17–1.60) | <0.001 * | ||||
Osteoporosis | 1.25 (0.99–1.57) | 0.057 | ||||
MetS and parameter (vs. No/Normal) | ||||||
MetS | 1.60 (1.38–1.86) | <0.001 * | ------- | ------- | ||
Large WC | 1.56 (1.35–1.81) | <0.001 * | ------- | ------- | ||
High BP | 1.44 (1.25–1.67) | <0.001 * | ------- | ------- | ||
High Fasting glucose | 1.65 (1.43–1.91) | <0.001 * | ------- | ------- | ||
High Triglycerides | 1.45 (1.24–1.70) | <0.001 * | ------- | ------- | 1.20 (1.01–1.43) | 0.034 * |
Low HDL-C | 1.14 (0.97–1.33) | 0.103 | ------- | ------- |
Variables | Univariate | Multivariate | ||||
---|---|---|---|---|---|---|
Model 1 | Model 2 | |||||
OR (95% CI) | p Value | aOR (95% CI) | p value | aOR (95% CI) | p Value | |
Demography & laboratory data | ||||||
Age | 1.03 (1.03–1.04) | <0.001 * | 1.03 (1.02–1.04) | <0.001 * | 1.03 (1.02–1.04) | <0.001 * |
Sex (Male vs. Female) | 2.12 (1.76–2.56) | <0.001 * | 2.20 (1.81–2.67) | <0.001 * | 2.35 (1.92–2.86) | <0.001 * |
BMI | 1.02 (0.96–1.04) | 0.134 | ||||
Uric acid | 1.00 (0.99–1.00) | 0.539 | ||||
eGFR | 0.99 (0.98–0.99) | <0.001 * | ||||
GOT | 1.01 (1.00–1.01) | 0.010 * | ||||
GPT | 1.00 (1.00–1.01) | 0.004 * | ||||
Comorbidities (vs. No/Normal) | ||||||
Diabetes | 1.49 (1.18–1.90) | 0.001 * | ||||
Hypertension | 1.21 (0.99–1.47) | 0.064 | ||||
Hyperlipidemia | 1.34 (0.91–1.96) | 0.142 | ||||
Reflux esophagitis, n (%) | 1.76 (0.86–1.30) | 0.444 | ||||
BMD (vs. Normal) | ||||||
Osteopenia | 1.19 (0.99–1.44) | 0.065 | 0.88 (0.71–1.09) | 0.233 | 0.88 (0.71–1.09) | 0.254 |
Osteoporosis | 1.89 (1.49–2.40) | <0.001 * | 1.42 (1.07–1.88) | 0.015 * | 1.44 (1.08–1.91) | 0.012 * |
MetS and parameter (vs. No/Normal) | ||||||
MetS | 1.13 (0.94–1.35) | 0.186 | ------- | ------- | ||
Large WC | 1.18 (0.99–1.41) | 0.066 | ------- | ------- | ||
High BP | 1.27 (1.07–1.51) | 0.006 * | ------- | ------- | ||
High Fasting glucose | 1.33 (1.12–1.58) | 0.001 * | ------- | ------- | ||
High Triglycerides | 0.85 (0.70–1.04) | 0.118 | ------- | ------- | 0.67 (0.55–0.85) | 0.001 * |
Low HDL-C | 1.14 (0.95–1.37) | 0.167 | ------- | ------- | 1.31 (1.07–1.59) | 0.007 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loke, S.-S.; Li, W.-C. Peptic Ulcer Disease Associated with Central Obesity. J. Pers. Med. 2022, 12, 1968. https://doi.org/10.3390/jpm12121968
Loke S-S, Li W-C. Peptic Ulcer Disease Associated with Central Obesity. Journal of Personalized Medicine. 2022; 12(12):1968. https://doi.org/10.3390/jpm12121968
Chicago/Turabian StyleLoke, Song-Seng, and Wen-Cheng Li. 2022. "Peptic Ulcer Disease Associated with Central Obesity" Journal of Personalized Medicine 12, no. 12: 1968. https://doi.org/10.3390/jpm12121968
APA StyleLoke, S.-S., & Li, W.-C. (2022). Peptic Ulcer Disease Associated with Central Obesity. Journal of Personalized Medicine, 12(12), 1968. https://doi.org/10.3390/jpm12121968