Biosensors for the Rapid Detection of Cardiovascular Biomarkers of Vital Interest: Needs, Analysis and Perspectives
Abstract
:1. Introduction
2. Cardiovascular Biomarkers of Interest Identified by Physicians
2.1. Troponin
2.1.1. Structure
2.1.2. Clinical Relevance
2.1.3. Biological Assay
2.2. D-Dimers
2.2.1. Structure
2.2.2. Clinical Relevance
2.2.3. Biological Assay
2.3. BNP/NT-ProBNP
2.3.1. Structure
2.3.2. Clinical Relevance
2.3.3. Biological Assay
3. Should Biological Results for These Markers Be Accelerated?
4. Development of Diagnostic Tools with a Shorter Time to Result
4.1. Biosensors for Cardiac Biomarkers
4.2. Marketed Biosensors
4.3. Obstacles to the Use and the Commercialization of Biosensors in Medical Setting for Cardiac Markers
4.3.1. High Cost and Financial Pressure
4.3.2. Habits and Integration into Good Practices
4.3.3. Performances
4.3.4. Barriers to Innovation
4.3.5. Constraints Related to the Sample
4.4. Perspectives
4.4.1. Tools for Faster Analysis
4.4.2. Tools Centered on Biology
4.4.3. Towards Multi-Marker Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abensur Vuillaume, L.; Leichle, T.; Le Borgne, P.; Grajoszex, M.; Goetz, C.; Voss, P.L.; Ougazzaden, A.; Salvestrini, J.-P.; d’Ortho, M.-P. Relevant Biomarkers in Medical Practices: An Analysis of the Needs Addressed by an International Survey. J. Pers. Med. 2022, 12, 106. [Google Scholar] [CrossRef] [PubMed]
- Thygesen, K.; Alpert, J.S.; White, H.D.; Jaffe, A.S.; Apple, F.S.; Galvani, M.; Joint ESC/ACCF/AHA/WHF Task Force for the Redefinition of Myocardial Infarction. Universal definition of myocardial infarction. Eur. Heart J. 2007, 28, 2525–2538. [Google Scholar] [PubMed]
- Guidelines on Management of Acute Myocardial Infarction in Patients Presenting with ST-Segment Elevation. 2017. Available online: https://www.escardio.org/Guidelines/Clinical-Practice-Guidelines/Acute-Myocardial-Infarction-in-patients-presenting-with-ST-segment-elevation-Ma (accessed on 10 November 2022).
- Roffi, M.; Patrono, C.; Collet, J.P.; Mueller, C.; Valgimigli, M.; Andreotti, F.; Bax, J.J.; Borger, M.A.; Brotons, C.; Chew, D.P.; et al. ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: Task Force for the Management of Acute Coronary Syndromes in Patients Presenting without Persistent ST-Segment Elevation of the European Society of Cardiology (ESC). Eur. Heart J. 2016, 37, 267–315. [Google Scholar] [PubMed]
- White, H.D. Pathobiology of troponin elevations: Do elevations occur with myocardialischemia as well as necrosis? J. Am. Coll. Cardiol. 2011, 57, 2406–2408. [Google Scholar] [CrossRef] [Green Version]
- Jaffe, A.S.; Babuin, L.; Apple, F.S. Biomarkers in acute cardiac disease: The present andthe future. J. Am. Coll. Cardiol. 2006, 48, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Collet, J.-P.; Thiele, H.; Barbato, E.; Barthélémy, O.; Bauersachs, J.; Bhatt, D.L.; Dendale, P.; Dorobantu, M.; Edvardsen, T.; Folliguet, T.; et al. Guidelines on Non-ST-Segment Elevation Acute Coronary Syndromes. ESC Guidelines. Eur. Heart J. 2020, 42, 1289–1367. [Google Scholar] [CrossRef]
- Vaubourdolle, M.; Alvarez, J.C.; Barbé, F.; Beaudeux, J.-L.; Boissier, E.; Caillon, H.; Chatron, P.; Joly-Guillou, M.-L.; Mailloux, A.; Tournoys, M.-H. Biologie d’urgence: Les recommandations 2018 de la SFBC. Ann. Biol. Clin. 2018, 76, 23–44. [Google Scholar]
- Brunel, V.; Larson, T.; Peschanski, N.; Cauliez, B. Evaluation of haemolysis in emergency department samples requesting high sensitivity troponin T measurement. Ann. Clin. Biochem. 2012, 49, 509–510. [Google Scholar] [CrossRef] [Green Version]
- Konstantinides, S.V.; Meyer, G.; Becattini, C.; Bueno, H.; Geersing, G.J.; Harjola, V.P.; Huisman, M.V.; Humbert, M.; Jennings, C.S.; Jiménez, D.; et al. 2019 ESC Guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS): The Task Force for the diagnosis and management of acute pulmonary embolism of the European Society of Cardiology (ESC). Eur. Respir. J. 2019, 54, 1901647. [Google Scholar]
- Wells, P.; Anderson, D.D.; Rodger, M.; Forgie, M.; Kearon, C.; Dreyer, J.; Kovacs, G.; Mitchell, M.; Lewandowski, B.; Kovacs, M.J. Evaluation of d-Dimer in the Diagnosis of Suspected Deep-Vein Thrombosis. New Engl. J. Med. 2003, 349, 1227. [Google Scholar] [CrossRef] [Green Version]
- Wells, P.S.; Anderson, D.R.; Rodger, M.; Stiell, I.; Dreyer, J.F.; Barnes, D.; Forgie, M.; Kovacs, G.; Ward, J.; Kovacs, M.J. Excluding pulmonary embolism at the bedside without diagnosticimaging: Management of patients with suspected pulmonary embolism presenting to the emergency departmentby using a simple clinical model and D-dimer. Ann. Intern. Med. 2001, 135, 98–107. [Google Scholar] [CrossRef]
- Freund, Y.; Chauvin, A.; Jimenez, S.; Philippon, A.L.; Curac, S.; Fémy, F.; Gorlicki, J.; Chouihed, T.; Goulet, H.; Montassier, E.; et al. Effect of a Diagnostic Strategy Using an Elevated and Age-Adjusted D-Dimer Threshold on Thromboembolic Events in Emergency Department Patients with Suspected Pulmonary Embolism: A Randomized Clinical Trial. JAMA 2021, 326, 2141–2149. [Google Scholar] [CrossRef]
- Martinez-Rumayor, A.; Richards, A.M.; Burnett, J.C.; Januzzi, J.L. Biologyof the natriuretic peptides. Am. J. Cardiol. 2008, 101, 3–8. [Google Scholar] [CrossRef]
- Chen, H.H.; Burnett, J.C. The natriuretic peptides in heart failure: Diagnostic and therapeutic potentials. Proc. Assoc. Am. Phys. 1999, 111, 406–416. [Google Scholar] [CrossRef]
- Jourdain, P.; Lefèvre, G.; Oddoze, C.; Sapin, V.; Dievart, F.; Jondeau, G.; Meune, C.; Galinier, M. NT-proBNP en pratique «De la biologie à la clinique». Ann. Cardiol. Angeiol. 2009, 58, 165–179. [Google Scholar] [CrossRef]
- HAS. Les Marqueurs Cardiaques Dans la Maladie Coronarienne et L’insuffisance Cardiaque en Médecine Ambulatoire. 2010. Available online: https://www.has-sante.fr/upload/docs/application/pdf/2010-09/rapport_marqueurs_cardiaques.pdf (accessed on 31 October 2022).
- Mant, J.; Doust, J.; Roalfe, A.; Barton, P.; Cowie, M.R.; Glasziou, P.; Mant, D.; McManus, R.J.; Holder, R.; Deeks, J.; et al. Systematic review and individual patient data meta-analysis of diagnosis of heart failure, with modelling of implications of different diagnostic strategies in primary care. Health Technol. Assess. 2009, 13, 1–207. [Google Scholar] [CrossRef] [Green Version]
- Dickstein, K.; Cohen-Solal, A.; Filippatos, G.; McMurray, J.J.; Ponikowski, P.; Poole-Wilson, P.A.; Strömberg, A.; van Veldhuisen, D.J.; Atar, D.; Hoes, A.W.; et al. 2015 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2008: The Task Force for the diagnosis and treatment of acute and chronic heart failure 2008 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association of the ESC (HFA) and endorsed by the European Society of Intensive Care Medicine (ESICM). Eur. J. Heart Fail. 2008, 10, 933–989. [Google Scholar]
- Wang, C.S.; FitzGerald, J.M.; Schulzer, M.; Mak, E.; Ayas, N.T. Does this dyspneic patient in the emergency department have congestive heart failure? JAMA 2005, 294, 1944–1956. [Google Scholar] [CrossRef]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) With the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef]
- Alawieh, H.; Chemaly, T.E.; Alam, S.; Khraiche, M. Towards Point-of-Care Heart Failure Diagnostic Platforms: BNP and NT-proBNP Biosensors. Sensors 2019, 19, 5003. [Google Scholar] [CrossRef] [Green Version]
- Ruppé, E.; Aubert, C.; Capeau, J.; Lefèvre, G. Dosage du BNP et du NT-proBNP: Influence de l’étape pré-analytique. Immunoanal. Biol. Spec. 2005, 20, 78–85. [Google Scholar]
- Shimizu, H.; Aono, K.; Masuta, K. Degradation of human brain natriu-retic peptide (BNP) by contact activation of blood coagulation system. Clin. Chim. Acta. 2001, 305, 181–186. [Google Scholar] [CrossRef]
- Lewis, R.A.; Durrington, C.; Condliffe, R.; Kiely, D.G. BNP/NT-proBNP in pulmonary arterial hypertension: Time for point-of-care testing? Eur. Respir. Rev. 2020, 29, 200009. [Google Scholar] [CrossRef]
- Ray, P.; Birolleau, S.; Lefort, Y.; Becquemin, M.H.; Beigelman, C.; Isnard, R.; Teixeira, A.; Arthaud, M.; Riou, B.; Boddaert, J. Acute respiratory failure in the elderly: Etiology, emergency diagnosis and prognosis. Crit Care. 2006, 10, R82. [Google Scholar] [CrossRef] [PubMed]
- Jobs, A.; Simon, R.; de Waha, S.; Rogacev, K.; Katalinic, A.; Babaev, V.; Thiele, H. Pneumonia and inflammation in acute decompensated heart failure: A registry-based analysis of 1939 patients. Eur. Heart J. Acute Cardiovasc. Care 2018, 7, 362–370. [Google Scholar] [CrossRef] [Green Version]
- Price, S.P.E.; Cullen, L.; Tavazzi, G.; Christ, M.; Cowie, M.R.; Cowie, M.R.; Maisel, A.S.; Masip, J.; Miro, O.; McMurray, J.J.; et al. Expert consensus document: Echocardiography and lung ultrasonography for the assessment and management of acute heart failure. Nat. Rev. Cardiol. 2017, 14, 427–440. [Google Scholar] [CrossRef]
- Wuerz, R.C.; Meador, S.A. Effects of prehospital medications on mortality and length of stay in congestive heart failure. Ann. Emerg. Med. 1992, 21, 669–674. [Google Scholar] [CrossRef]
- Claret, P.G.; Bobbia, X.; Roger, C.; Sebbane, M.; de La Coussaye, J.E. Review of point-of-care testing and biomarkers of cardiovascular diseases in emergency and prehospital medicine. Acta Cardiol. 2015, 70, 510–515. [Google Scholar] [CrossRef]
- Kobayashi, M.; Douair, A.; Duarte, K.; Jaeger, D.; Giacomin, G.; Bassand, A.; Jeangeorges, V.; Vuillaume, L.A.; Preud’homme, G.; Huttin, O.; et al. Diagnostic performance of congestion score index evaluated from chest radiography for acute heart failure in the emergency department: A retrospective analysis from the PARADISE cohort. PLoS Med. 2020, 18, e1003562. [Google Scholar] [CrossRef]
- Thévenot, D.R.; Toth, K.; Durst, R.A.; Wilson, G.S. Electrochemical biosensors: Recommended definitions and classification. Biosens. Bioelectron. 2001, 16, 121–131. [Google Scholar] [CrossRef]
- Ouyang, M.; Tu, D.; Tong, L.; Sarwar, M.; Bhimaraj, A.; Li, C.; Coté, G.L.; Carlo, D.D. A review of biosensor technologies for blood biomarkers toward monitoring cardiovascular diseases at the point-of-care. Biosens. Bioelectron. 2021, 171, 112621. [Google Scholar] [CrossRef]
- Savonnet, M.; Rolland, T.; Cubizolles, M.; Roupioz, Y.; Buhot, A. Recent advances in cardiac biomarkers detection: From commercial devices to emerging technologies. J. Pharm. Biomed. Anal. 2021, 194, 113777. [Google Scholar] [CrossRef]
- Nicu, L.; Leichle, T. Biosensors and tools for surface functionalization from the macro- to the nanoscale: The way forward. J. Appl. Phys. 2008, 104, 12. [Google Scholar] [CrossRef]
- Gervais, L.; de Rooij, N.; Delamarche, E. Microfluidic Chips for Point-of-Care Immunodiagnostics. Adv. Mater. 2011, 23, H151–H176. [Google Scholar] [CrossRef]
- Land, K.J.; Boeras, D.I.; Chen, X.S.; Ramsay, A.R.; Peeling, R.W. REASSURED diagnostics to inform disease control strategies, strengthen health systems and improve patient outcomes. Nat. Microbiol. 2019, 4, 46–54. [Google Scholar] [CrossRef]
- Arlett, J.L.; Myers, E.B.; Roukes, M.L. Comparative advantages of mechanical biosensors. Nat. Nanotechnol. 2011, 6, 203–215. [Google Scholar] [CrossRef] [Green Version]
- Sarangadharan, I.; Regmi, A.; Chen, Y.W.; Hsu, C.P.; Chen, C.; Chang, W.H.; Lee, Y.-G.; Chyi, J.-I.; Shiesh, S.-C.; Lee, G.-B.; et al. High sensitivity cardiac troponin I detection in physiological environment using AlGaN/GaN High Electron Mobility Transistor (HEMT). Biosens. Bioelectron. 2018, 100, 282–289. [Google Scholar] [CrossRef]
- Liu, J.; Chen, D.; Wang, P.; Song, G.; Zhang, X.; Li, Z.; Wang, Y.; Wang, J.; Yang, J. A microfabricated thickness shear mode electroacoustic resonator for the label-free detection of cardiac troponin in serum. Talanta 2020, 215, 120890. [Google Scholar] [CrossRef]
- Kurita, R.; Yokota, Y.; Sato, Y.; Mizutani, F.; Niwa, O. On-Chip Enzyme Immunoassay of a Cardiac Marker Using a Microfluidic Device Combined with a Portable Surface Plasmon Resonance System. Anal. Chem. 2006, 78, 5525–5531. [Google Scholar] [CrossRef]
- Gachpazan, M.; Mohammadinejad, A.; Saeidinia, A.; Rahimi, H.R.; Ghayour-Mobarhan, M.; Vakilian, F.; Rezayi, M. A review of biosensors for the detection of B-type natriuretic peptide as an important cardiovascular biomarker. Anal. Bioanal. Chem. 2021, 413, 5949–5967. [Google Scholar] [CrossRef]
- Tasić, N.; Paixão, T.; Gonçalves, L.M. Biosensing of D-dimer, making the transition from the central hospital laboratory to bedside determination. Talanta 2020, 207, 120270. [Google Scholar] [CrossRef] [PubMed]
- Sarangadharan, I.; Huang, S.-W.; Kuo, W.-C.; Chen, P.-H.; Wang, Y.-L. Rapid detection of NT-proBNP from whole blood using FET based biosensors for homecare. Sens. Actuators: B. Chem. 2019, 285, 209–215. [Google Scholar] [CrossRef]
- Sinha, A.; Tai, T.-Y.; Li, K.-H.; Gopinathan, P.; Chung, Y.-D.; Sarangadharan, I.; Ma, H.-P.; Huang, P.-C.; Shiesh, S.-C.; Wang, Y.-L.; et al. An integrated microfluidic system with field-effect-transistor sensor arrays for detecting multiple cardiovascular biomarkers from clinical samples. Biosens. Bioelectron. 2019, 129, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Nikoleli, G.-P.; Nikolelis, D.P.; Tzamtzis, N.; Psaroudakis, N. A Selective Immunosensor for D-dimer Based on Antibody Immobilized on a Graphene Electrode with Incorporated Lipid Films. Electroanalysis 2014, 26, 1522–1527. [Google Scholar] [CrossRef]
- Li, S.; Jiang, Y.; Eda, S.; Wu, J.J. Low-Cost and Desktop-Fabricated Biosensor for Rapid and Sensitive Detection of Circulating D-Dimer Biomarker. IEEE Sens. J. 2019, 19, 1245–1251. [Google Scholar] [CrossRef]
- Istat Website. Available online: https://www.globalpointofcare.abbott/content/poc/en/pages/product-details/apoc/istat-ctnI-us.html (accessed on 10 November 2022).
- STAT Manual. Available online: https://www.lagaay.com/Catalogus/Product%20information/215720/Procedure%20Manual%20I-STAT.pdf (accessed on 10 November 2022).
- HAS. Available online: https://has-sante.fr/upload/docs/application/pdf/2010-11/fbuts_marcoeurs_necrose.pdf (accessed on 10 November 2022).
- Lim, W.Y.; Thevarajah, T.M.; Goh, B.T.; Khor, S.M. Paper microfluidic device for early diagnosis and prognosis of acute myocardial infarction via quantitative multiplex cardiac biomarker detection. Biosens. Bioelectron. 2019, 128, 176–185. [Google Scholar] [CrossRef]
- Bonnanni, E.; Dupont, Y.; Rerbal, D. Biologie Délocalisée des Urgences. 2014. Available online: https://www.sfmu.org/upload/70_formation/02_eformation/02_congres/Urgences/urgences2014/donnees/pdf/086.pdf (accessed on 10 November 2022).
- Sarangadharan, I.; Wang, S.; Tai, T.; Pulikkathodi, A.K.; Hsu, C.; Chiang, H.K.; Liu, L.Y.-M.; Wang, Y.-L. Risk stratification of heart failure from one drop of blood using hand-held biosensor for BNP detection. Biosens. Bioelectron. 2018, 107, 259–265. [Google Scholar] [CrossRef]
- Arrêté du 4 Octobre 2019 Relatif à L’expérimentation d’un Parcours de Soins Intégrant la Biologie Délocalisée pour des Patients Chroniques sous AVK (Di@pason). 2019. Available online: https://www.legifrance.gouv.fr/jorf/id/JORFTEXT000039206940 (accessed on 10 November 2022).
- Mani, V.; Durmus, C.; Khushaim, W.; Ferreira, D.C.; Timur, S.; Arduini, F.; Salama, K.N. Multiplexed sensing techniques for cardiovascular disease biomarkers-A review. Biosens. Bioelectron. 2022, 216, 114680. [Google Scholar] [CrossRef]
Biomarker | Sample | Tube | Sample Treatment | Reference Analytical Method | Cut-Off Value | Detection Limit | Total Time of Analysis (Excluding Routing) |
---|---|---|---|---|---|---|---|
Troponin hs | Peripheral venous blood Serum Plasma | Dry tube Dipotassium EDTA Tripotassium EDTA Lithium sodium heparin | No | Elisa (method related to an international reference standard) troponin T or I (non-standardized methods) Example: ECLIA determination on Cobas 6000 | Baseline < 14 ng/L | 5 ng/L (limit of quantification 13 ng/L) | Analytical cycle (18 min) without pre-analysis |
D-dimer | Peripheral venous blood (total or serum) | Citrate tube | The sample must be analyzed within 8 h | 2nd generation agglutination technique using a suspension of latex microparticles on which are fixed monoclonal antibodies specific to D-dimers | Baseline < 500 ng/mL | 270 ng/mL (linearity zone: 270–20,000 ng/mL) | Analytical cycle (18 min) without pre-analysis |
NT-Probnp | Peripheral venous blood Serum Plasma | Dry tube with or without separating gel EDTA dipotassic EDTA tripotassic with or without separating gel | Ambient temperature | ECLIA | Baseline >350 ng/L if under 50 years old >450 ng/L if 50–75 years old >950 ng/L if >75 years old | 10 pg/mL (limit of quantification 50 pg/mL) | Analytical cycle (18 min) without pre-analysis |
Biomarker | Technology | Transduction /Probe | LOD | Assay Time | Sample | Ref |
---|---|---|---|---|---|---|
NT-proBNP | Field effect transistor | Electrical /monoclonal Antibody | 100 pg/mL | 5 min | 5 µm whole blood | [44] |
Field effect transistor | Electrical /Aptamer | 0.83 pg/mL | 5 min | 4 µL plasma/serum | [45] | |
D-dimer | Graphene electrodes | Electrochemical (potentiometry) /Antibody | 0.3 pg/mL | Dilution time + 15 s analysis time | Diluted serum | [46] |
Interdigitated electrodes on a compact disc | Electrical (capacitive) /Antibody | 1 pg/mL | 1 min after sample dilution | PBS | [47] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abensur Vuillaume, L.; Frija-Masson, J.; Hadjiat, M.; Riquier, T.; d’Ortho, M.-P.; Le Borgne, P.; Goetz, C.; Voss, P.L.; Ougazzaden, A.; Salvestrini, J.-P.; et al. Biosensors for the Rapid Detection of Cardiovascular Biomarkers of Vital Interest: Needs, Analysis and Perspectives. J. Pers. Med. 2022, 12, 1942. https://doi.org/10.3390/jpm12121942
Abensur Vuillaume L, Frija-Masson J, Hadjiat M, Riquier T, d’Ortho M-P, Le Borgne P, Goetz C, Voss PL, Ougazzaden A, Salvestrini J-P, et al. Biosensors for the Rapid Detection of Cardiovascular Biomarkers of Vital Interest: Needs, Analysis and Perspectives. Journal of Personalized Medicine. 2022; 12(12):1942. https://doi.org/10.3390/jpm12121942
Chicago/Turabian StyleAbensur Vuillaume, Laure, Justine Frija-Masson, Meriem Hadjiat, Thomas Riquier, Marie-Pia d’Ortho, Pierrick Le Borgne, Christophe Goetz, Paul L. Voss, Abdallah Ougazzaden, Jean-Paul Salvestrini, and et al. 2022. "Biosensors for the Rapid Detection of Cardiovascular Biomarkers of Vital Interest: Needs, Analysis and Perspectives" Journal of Personalized Medicine 12, no. 12: 1942. https://doi.org/10.3390/jpm12121942
APA StyleAbensur Vuillaume, L., Frija-Masson, J., Hadjiat, M., Riquier, T., d’Ortho, M.-P., Le Borgne, P., Goetz, C., Voss, P. L., Ougazzaden, A., Salvestrini, J.-P., & Leïchlé, T. (2022). Biosensors for the Rapid Detection of Cardiovascular Biomarkers of Vital Interest: Needs, Analysis and Perspectives. Journal of Personalized Medicine, 12(12), 1942. https://doi.org/10.3390/jpm12121942