Is the Median Hourly Ambulatory Heart Rate Range Helpful in Stratifying Mortality Risk among Newly Diagnosed Atrial Fibrillation Patients?
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Design and Subject Enrollment
2.2. Holter Parameters Calculation
2.3. Demographic Covariates and Outcome
2.4. Statistical Analysis
3. Results
3.1. Baseline Demographic Features of Enrollees
3.2. Associations of and Baseline Demographic Features with All-Cause Mortality
3.3. Lower than 20 bpm was Associated with Higher All-Cause Mortality
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kornej, J.; Börschel, C.S.; Benjamin, E.J.; Schnabel, R.B. Epidemiology of atrial fibrillation in the 21st century. Circ. Res. 2020, 127, 4–20. [Google Scholar] [CrossRef]
- Proietti, M.; Farcomeni, A.; Romiti, G.F.; Di Rocco, A.; Placentino, F.; Diemberger, I.; YH Lip, G.; Boriani, G. Association between clinical risk scores and mortality in atrial fibrillation: Systematic review and network meta-regression of 669,000 patients. Eur. J. Prev. Cardiol. 2020, 27, 633–644. [Google Scholar] [CrossRef]
- Chao, T.-F.; Lin, Y.-J.; Tsao, H.-M.; Tsai, C.-F.; Lin, W.-S.; Chang, S.-L.; Lo, L.-W.; Hu, Y.-F.; Tuan, T.-C.; Suenari, K.; et al. CHADS(2) and CHA(2)DS(2)-VASc scores in the prediction of clinical outcomes in patients with atrial fibrillation after catheter ablation. J. Am. Coll. Cardiol. 2011, 58, 2380–2385. [Google Scholar] [CrossRef] [Green Version]
- Teodorovich, N.; Swissa, M.S.; Kogan, Y.; Gandelman, G.; Jonas, M.; George, J.; Swissa, M. Atrial fibrillation and CHADS2 score as mortality predictors in young versus elderly patients undergoing coronary angiography. J. Geriatr. Cardiol. 2017, 14, 582–586. [Google Scholar] [PubMed]
- Khan, A.A.; Lip, G.Y.H.; Shantsila, A. Heart rate variability in atrial fibrillation: The balance between sympathetic and parasympathetic nervous system. Eur. J. Clin. Invest. 2019, 49, e13174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hämmerle, P.; Eick, C.; Blum, S.; Schlageter, V.; Bauer, A.; Rizas, K.D.; Eken, C.; Coslovsky, M.; Aeschbacher, S.; Krisai, P.; et al. Heart rate variability triangular index as a predictor of cardiovascular mortality in patients with atrial fibrillation. J. Am. Heart Assoc. 2020, 9, e016075. [Google Scholar] [CrossRef]
- Habboushe, J.; Altman, C.; Lip, G.Y.H. Time trends in use of the CHADS2 and CHA2DS2VASc scores.; and the geographical and specialty uptake of these scores from a popular online clinical decision tool and medical reference. Int. J. Clin. Pract. 2019, 73, e13280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melgaard, L.; Gorst-Rasmussen, A.; Lane, D.A.; Rasmussen, L.H.; Larsen, T.B.; Lip, G.Y. Assessment of the CHA2DS2-VASc score in predicting ischemic stroke; Thromboembolism; and death in patients with heart failure with and without atrial fibrillation. JAMA 2015, 314, 1030–1038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lahiri, M.K.; Kannankeril, P.J.; Goldberger, J.J. Assessment of autonomic function in cardiovascular disease: Physiological basis and prognostic implications. J. Am. Coll. Cardiol. 2008, 51, 1725–1733. [Google Scholar] [CrossRef] [Green Version]
- Majercak, I. The use of heart rate variability in cardiology. Bratisl. Lek. Listy. 2002, 103, 368–377. [Google Scholar]
- Bilchick, K.C.; Fetics, B.; Djoukeng, R.; Fisher, S.G.; Fletcher, R.D.; Singh, S.N.; Nevo, E.; Ronald, D.B. Prognostic value of heart rate variability in chronic congestive heart failure (veterans affairs’ survival trial of antiarrhythmic therapy in congestive heart failure). Am. J. Cardiol. 2002, 90, 24–28. [Google Scholar] [CrossRef]
- Hayano, J.; Ueda, N.; Kisohara, M.; Yuda, E.; Carney, R.M.; Blumenthal, J.A. Survival predictors of heart rate variability after myocardial infarction with and without low left ventricular ejection fraction. Front. Neurosci. 2021, 15, 610955. [Google Scholar] [CrossRef] [PubMed]
- Ozdemir, M.; Arslan, U.; Türkoğlu, S.; Balcioğlu, S.; Cengel, A. Losartan improves heart rate variability and heart rate turbulence in heart failure due to ischemic cardiomyopathy. J. Card. Fail. 2007, 13, 812–817. [Google Scholar] [CrossRef]
- Aronson, D.; Burger, A.J. Effect of beta-blockade on heart rate variability in decompensated heart failure. Int. J. Cardiol. 2001, 79, 31–39. [Google Scholar] [CrossRef]
- Yamada, A.; Hayano, J.; Sakata, S.; Okada, A.; Mukai, S.; Ohte, N.; Kimura, G. Reduced ventricular response irregularity is associated with increased mortality in patients with chronic atrial fibrillation. Circulation 2000, 102, 300–306. [Google Scholar] [CrossRef]
- Cygankiewicz, I.; Corino, V.; Vazquez, R.; Bayes-Genis, A.; Mainardi, L.; Zareba, W.; Bayes de Luna, A.; Platonov, P.G. Reduced irregularity of ventricular response during atrial fibrillation and long-term outcome in patients with heart failure. Am. J. Cardiol. 2015, 116, 1071–1075. [Google Scholar] [CrossRef]
- Fox, K.; Borer, J.S.; Camm, A.J.; Dancjin, N.; Ferrari, R.; Lopez Sendon, J.S.; Steg, P.G.; Tardif, J.-C.; Tavazzi, L.; Tendera, M.; et al. Resting heart rate in cardiovascular disease. J. Am. Coll. Cardiol. 2007, 50, 823–830. [Google Scholar] [CrossRef] [Green Version]
- Palatini, P.; Thijs, L.; Staessen, J.A.; Fagard, R.H.; Bulpitt, C.J.; Clement, D.L.; de Leeuw, P.W.; Jaaskivi, M.; Leonetti, G.; Nachev, C.; et al. Predictive value of clinic and ambulatory heart rate for mortality in elderly subjects with systolic hypertension. Arch. Intern. Med. 2002, 162, 2313–2321. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.L.; Chan, Y.H.; Lee, H.F.; Hsiao, F.C.; Chu, P.H. High nighttime heart rate is associated with increased risk of all-cause mortality in patients with heart failure and reduced ejection fraction. Int. Heart J. 2020, 61, 289–294. [Google Scholar] [CrossRef] [PubMed]
- Cubbon, R.M.; Ruff, N.; Groves, D.; Eleuteri, A.; Denby, C.; Kearney, L.; Ali, N.; Walker, A.M.N.; Jamil, H.; Gierula, J.; et al. Ambulatory heart rate range predicts mode-specific mortality and hospitalisation in chronic heart failure. Heart 2016, 102, 223–229. [Google Scholar] [CrossRef] [Green Version]
- Hirano, K.; Yamashita, T.; Suzuki, S.; Hayama, E.; Matsuoka, J.; Otsuka, T.; Sagara, K.; Fu, L.-T.; Sawada, H.; Aizawa, T.; et al. Relationship between 24-h Holter recordings and clinical outcomes in patients with permanent atrial fibrillation. J. Cardiol. 2012, 60, 42–46. [Google Scholar] [CrossRef] [Green Version]
- Costa, O.; Lago, P.; Rocha, A.P.; Carvalho, M.J.; Freitas, A.; Freitas, J.; Puig, J.; Brandão, A.; de Freitas, F. Heart rate variability in 24-hour Holter recordings. Comparative study between short- and long-term time- and frequency-domain analyses. J. Electrocardiol. 1994, 27, 251–254. [Google Scholar] [CrossRef]
- Wu, H.-T.; Lewis, G.F.; Davila, M.I.; Daubechies, I.; Porges, S.W. Optimizing estimates of instantaneous heart rate from pulse wave signals with the synchrosqueezing transform. Methods Inf. Med. 2016, 55, 463472. [Google Scholar]
- Apiyasawat, S.; Tangcharoen, T.; Wisaratapong, T.; Yamwong, S.; Wiboonpolprasert, S.; Sritara, P. CHA(2)DS(2)-VASc scores predict mortality after hospitalization for atrial fibrillation. Int. J. Cardiol. 2015, 185, 293–296. [Google Scholar] [CrossRef]
- Morrone, D.; Kroep, S.; Ricci, F.; Renda, G.; Patti, G.; Kirchhof, P.; Chuang, L.-H.; van Hout, B.; De Caterina, R. Mortality prediction of the CHA2DS2-VASc score, the has-bled score, and their combination in anticoagulated patients with atrial fibrillation. J. Clin. Med. 2020, 9, 3987. [Google Scholar] [CrossRef] [PubMed]
- Gažová, A.; Leddy, J.J.; Rexová, M.; Hlivák, P.; Hatala, R.; Kyselovič, J. Predictive value of CHA2DS2-VASc scores regarding the risk of stroke and all-cause mortality in patients with atrial fibrillation (CONSORT compliant). Medicine 2019, 98, e16560. [Google Scholar] [CrossRef]
- Liu, X. Classification accuracy and cut point selection. Stat. Med. 2012, 31, 2676–2686. [Google Scholar] [CrossRef]
- Chen, P.S.; Chen, L.S.; Fishbein, M.C.; Lin, S.F.; Nattel, S. Role of the autonomic nervous system in atrial fibrillation: Pathophysiology and therapy. Circ. Res. 2014, 114, 1500–1515. [Google Scholar] [CrossRef] [Green Version]
- Ciobanu, D.M.; Crăciun, A.E.; Vereşiu, I.A.; Bala, C.; Roman, G. Ambulatory heart rate variability correlates with high-sensitivity C—Reactive protein in type 2 diabetes and control subjects. In Proceedings of the International Conference on Advancements of Medicine and Health Care through Technology, Cluj-Napoca, Romania, 12–15 October 2016; pp. 17–20. [Google Scholar]
- Soares-Miranda, L.; Sattelmair, J.; Chaves, P.; Duncan, G.E.; Siscovick, D.S.; Stein, P.K.; Mozaffarian, D. Physical activity and heart rate variability in older adults: The cardiovascular health study. Circulation 2014, 129, 2100–2110. [Google Scholar] [CrossRef] [Green Version]
- Hayano, J.; Yamasaki, F.; Sakata, S.; Okada, A.; Mukai, S.; Fujinami, T. Spectral characteristics of ventricular response to atrial fibrillation. Am. J. Physiol. 1997, 273, H2811–H2816. [Google Scholar] [CrossRef] [PubMed]
- Horan, L.G.; Kistler, J.C. Study of ventricular response in atrial fibrillation. Cir. Res. 1961, 9, 305–311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borst, C.; Meuler, F.L. Baroreflex modulation of ventricular rhythm in atrial fibrillation. Eur. Heart J. 1984, 5, 870–875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hellestrand, K.J.; Nathan, A.W.; Camm, A.J. Differential response to carotid sinus pressure during sinus rhythm and atrial fibrillation. Br. Heart J. 1982, 47, 504–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raeder, E.A. Circadian fluctuations in ventricular response to atrial fibrillation. Am. J. Cardiol. 1990, 66, 1013–1016. [Google Scholar] [CrossRef]
- Platonov, P.G.; Holmqvist, F. Atrial fibrillatory rate and irregularity of ventricular response as predictors of clinical outcome in patients with atrial fibrillation. J. Electrocardiol. 2011, 44, 673–677. [Google Scholar] [CrossRef]
- Chattipakorn, N.; Incharoen, T.; Kanlop, N.; Chattipakorn, S. Heart rate variability in myocardial infarction and heart failure. Int. J. Cardiol. 2007, 120, 289–296. [Google Scholar] [CrossRef]
- Nolan, J.; Batin, P.D.; Andrews, R.; Lindsay, S.J.; Brooksby, P.; Mullen, M.; Baig, W.; Flapan, A.D.; Cowley, A.; Prescott, R.J.; et al. Prospective study of heart rate variability and mortality in chronic heart failure: Results of the United Kingdom heart failure evaluation and assessment of risk trial (UK-heart). Circulation 1998, 98, 1510–1516. [Google Scholar] [CrossRef] [Green Version]
Covariates | All Patients (n = 521) | Alive (n = 416) | Deceased (n = 105) | p |
---|---|---|---|---|
Age (years) | 69.4 (13.1) | 67.6 (12.9) | 76.7 (11.4) | <0.001 |
<75 | 311 (59.7%) | 277 (66.6%) | 34 (32.4%) | <0.001 |
≥75 | 210 (40.3%) | 139 (33.4%) | 71 (67.6%) | |
Gender | ||||
Female | 210 (40.3%) | 158 (38.0%) | 52 (49.5%) | 0.031 |
Male | 311 (59.7%) | 258 (62.0%) | 53 (50.5%) | |
Co-morbidities | ||||
Hypertension | 298 (57.3%) | 229 (55.2%) | 69 (65.7%) | 0.051 |
Diabetes mellitus | 132 (25.4%) | 98 (23.6%) | 34 (32.4%) | 0.065 |
Heart failure | 154 (29.6%) | 105 (25.3%) | 49 (46.7%) | <0.001 |
Stroke | 93 (17.9%) | 64 (15.4%) | 29 (27.6%) | 0.004 |
Vascular diseases | 69 (13.3%) | 48 (11.6%) | 21 (20.0%) | 0.023 |
CHA2DS2-VASc score | 3.1 (1.9) | 2.8 (1.8) | 4.2 (1.8) | <0.001 |
Medications | ||||
Anticoagulant | 326 (62.6%) | 277 (66.6%) | 49 (46.7%) | <0.001 |
Antiarrhythmic agents | 142 (27.4%) | 116 (28.0%) | 26 (25.0%) | 0.54 |
RAAS blockers | 363 (69.8%) | 295 (70.9%) | 68 (65.4%) | 0.27 |
Calcium channel blocker | 276 (53.2%) | 213 (51.3%) | 63 (60.6%) | 0.091 |
β-blocker | 377 (72.5%) | 314 (75.5%) | 63 (60.6%) | 0.002 |
Digoxin | 222 (42.7%) | 168 (40.4%) | 54 (51.9%) | 0.033 |
Physio-biochemical profiles | ||||
MAP (mmHg) | 93.6 (14.3) | 93.4 (14.0) | 94.3 (15.6) | 0.59 |
Resting heart rate (bpm) | 80.7 (20.4) | 80.7 (20.2) | 80.5 (21.3) | 0.91 |
Cholesterol (mg/dL) | 162.5 (35.3) | 165.4 (34.9) | 150.9 (34.7) | <0.001 |
Triglyceride (mg/dL) | 105.7 (62.1) | 106.3 (62.2) | 103.1 (62.1) | 0.65 |
Creatinine (mg/dL) | 1.3 (1.3) | 1.1 (0.9) | 2.0 (2.3) | <0.001 |
eGFR (mL/min) | 72.3 (37.2) | 76.8 (35.4) | 54.8 (39.0) | <0.001 |
LVEF (%) | 58.7 (15.2) | 58.7 (14.7) | 58.6 (17.1) | 0.94 |
Holter parameters | ||||
(bpm) | 22.8 (8.4) | 24.0 (8.3) | 18.4 (6.8) | <0.001 |
24-h AHRR (bpm) | 58.1 (21.8) | 60.2 (21.5) | 49.6 (21.2) | <0.001 |
Covariates | Univariate | Multivariate | ||||
---|---|---|---|---|---|---|
Unadjusted HR (95% CI) | p | Adjusted HR (95% CI) | p | |||
Age (years) | ||||||
<75 | reference | reference | ||||
≥75 | 3.87 | (2.57–5.81) | <0.001 | 1.62 | (0.51–5.12) | 0.413 |
Gender | ||||||
Female | reference | reference | ||||
Male | 0.60 | (0.41–0.88) | 0.010 | 1.21 | (0.47–3.14) | 0.697 |
Co-morbidities | ||||||
Hypertension | 1.54 | (1.03–2.31) | 0.036 | 0.88 | (0.29–2.70) | 0.821 |
Diabetes mellitus | 1.49 | (0.99–2.24) | 0.054 | 0.98 | (0.37–2.63) | 0.974 |
Heart failure | 2.23 | (1.52–3.27) | <0.001 | 1.48 | (0.58–3.76) | 0.410 |
Stroke | 1.78 | (1.16–2.71) | 0.008 | 0.89 | (0.19–4.04) | 0.876 |
Vascular disease | 1.68 | (1.04–2.71) | 0.035 | 0.72 | (0.26–2.01) | 0.531 |
CHA2DS2-VASc score | 1.43 | (1.30–1.56) | <0.001 | 1.30 | (0.59–2.84) | 0.518 |
Medications | ||||||
Anticoagulant | 0.45 | (0.31–0.66) | <0.001 | 0.44 | (0.28–0.69) | <0.001 |
Antiarrhythmic agents | 0.91 | (0.59–1.43) | 0.695 | 0.96 | (0.56–1.66) | 0.892 |
RAAS blockers | 0.79 | (0.52–1.20) | 0.270 | 0.68 | (0.41–1.14) | 0.141 |
Calcium channel blocker | 1.39 | (0.94–2.06) | 0.095 | 0.77 | (0.43–1.39) | 0.390 |
β-blocker | 0.57 | (0.38–0.84) | 0.005 | 0.57 | (0.35–0.93) | 0.024 |
Digoxin | 1.47 | (1.00–2.15) | 0.051 | 2.07 | (1.25–3.42) | 0.005 |
Physio-biochemical profiles | ||||||
MAP (increase per 10 mmHg) | 1.06 | (0.92–1.22) | 0.450 | 1.07 | (0.91–1.26) | 0.427 |
Resting heart rate (increase per 10 bpm) | 0.99 | (0.90–1.10) | 0.903 | 1.02 | (0.89–1.16) | 0.804 |
Cholesterol (increase per10 mg/dL) | 0.89 | (0.83–0.94) | <0.001 | 0.92 | (0.85–1.00) | 0.064 |
Triglyceride (increase per 10 mg/dL) | 0.99 | (0.96–1.03) | 0.660 | 1.01 | (0.97–1.04) | 0.727 |
Creatinine (mg/dL) | 1.26 | (1.18–1.34) | <0.001 | 1.12 | (0.99–1.28) | 0.073 |
eGFR (increase per 10 mL/min) | 0.78 | (0.71–0.87) | <0.001 | 0.93 | (0.80–1.07) | 0.296 |
LVEF (increase per 10%) | 0.99 | (0.86–1.14) | 0.889 | 1.07 | (0.90–1.26) | 0.448 |
Holter parameters | ||||||
(Reduction per 10 bpm) | 2.44 | (1.82–3.23) | <0.001 | 2.70 | (1.75–4.17) | <0.001 |
Covariates | (n = 305) | (n = 216) | p |
---|---|---|---|
Age (years) | 68.1 (13.1) | 71.2 (12.9) | 0.009 |
<75 | 193 (63.3%) | 118 (54.6%) | 0.047 |
≥75 | 112 (36.7%) | 98 (45.4%) | |
Gender | |||
Female | 110 (36.1%) | 100 (46.3%) | 0.019 |
Male | 195 (63.9%) | 116 (53.7%) | |
Co-morbidities | |||
Hypertension | 162 (53.3%) | 136 (63.0%) | 0.028 |
Diabetes mellitus | 68 (22.4%) | 64 (29.6%) | 0.061 |
Heart failure | 83 (27.3%) | 71 (32.9%) | 0.17 |
Stroke | 50 (16.4%) | 43 (19.9%) | 0.31 |
Vascular disease | 29 (9.5%) | 40 (18.5%) | 0.003 |
CHA2DS2-VASc score | 2.8 (1.8) | 3.5 (1.9) | <0.001 |
Medications | |||
Anticoagulant | 192 (63.0%) | 134 (62.0%) | 0.83 |
Antiarrhythmic agents | 80 (26.4%) | 62 (28.8%) | 0.54 |
ACEi/ARB | 205 (67.4%) | 158 (73.1%) | 0.16 |
Calcium channel blocker | 150 (49.5%) | 126 (58.3%) | 0.047 |
β-blocker | 212 (69.7%) | 165 (76.4%) | 0.094 |
Digoxin | 119 (39.1%) | 103 (47.7%) | 0.052 |
Physio-biochemical profiles | |||
MAP (mmHg) | 94.4 (13.8) | 92.4 (14.9) | 0.12 |
Resting heart rate (bpm) | 82.9 (20.6) | 77.6 (19.8) | 0.003 |
Cholesterol (mg/dL) | 165.2 (34.2) | 158.7 (36.5) | 0.045 |
Triglyceride (mg/dL) | 104.6 (57.5) | 107.2 (68.2) | 0.65 |
Creatinine (mg/dL) | 1.0 (0.5) | 1.6 (1.9) | <0.001 |
eGFR (mL/min) | 76.4 (33.6) | 66.6 (41.2) | 0.003 |
LVEF (%) | 58.1 (14.4) | 59.6 (16.1) | 0.26 |
Mortality | |||
All-cause mortality | 34 (11.1%) | 71 (32.9%) | <0.001 |
Cardiovascular mortality | 20 (6.6%) | 45 (20.8%) | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.-Y.; Malik, J.; Wu, H.-T.; Wang, C.-L. Is the Median Hourly Ambulatory Heart Rate Range Helpful in Stratifying Mortality Risk among Newly Diagnosed Atrial Fibrillation Patients? J. Pers. Med. 2021, 11, 1202. https://doi.org/10.3390/jpm11111202
Chen H-Y, Malik J, Wu H-T, Wang C-L. Is the Median Hourly Ambulatory Heart Rate Range Helpful in Stratifying Mortality Risk among Newly Diagnosed Atrial Fibrillation Patients? Journal of Personalized Medicine. 2021; 11(11):1202. https://doi.org/10.3390/jpm11111202
Chicago/Turabian StyleChen, Hsing-Yu, John Malik, Hau-Tieng Wu, and Chun-Li Wang. 2021. "Is the Median Hourly Ambulatory Heart Rate Range Helpful in Stratifying Mortality Risk among Newly Diagnosed Atrial Fibrillation Patients?" Journal of Personalized Medicine 11, no. 11: 1202. https://doi.org/10.3390/jpm11111202
APA StyleChen, H.-Y., Malik, J., Wu, H.-T., & Wang, C.-L. (2021). Is the Median Hourly Ambulatory Heart Rate Range Helpful in Stratifying Mortality Risk among Newly Diagnosed Atrial Fibrillation Patients? Journal of Personalized Medicine, 11(11), 1202. https://doi.org/10.3390/jpm11111202