Innate-Immunity Genes in Obesity
Abstract
:1. Adipose-Tissue Types and Functions
2. Adipose Tissue in Obesity
3. Innate-Immunity Genes in Obesity
3.1. Obesity Caused by Knockouts (KOs) of Innate-Immunity Genes in Animal Models
3.2. Human Innate-Immunity Gene Variants Associated with Obesity
3.2.1. PRRs
3.2.2. NF-κB Signaling
3.2.3. The Complement System
3.2.4. Interleukins and Their Receptors
3.2.5. Other Cytokines
3.2.6. The Tumor Necrosis Factor Superfamily
3.2.7. Chemokines and Their Receptors
3.2.8. JAK–STAT Signaling Components
4. The Microbiota and Innate-Immunity Genes
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Corvera, S. Cellular Heterogeneity in Adipose Tissues. Annu. Rev. Physiol. 2021, 83, 257–278. [Google Scholar] [CrossRef]
- Eto, H.; Suga, H.; Matsumoto, D.; Inoue, K.; Aoi, N.; Kato, H.; Araki, J.; Yoshimura, K. Characterization of structure and cellular components of aspirated and excised adipose tissue. Plast. Reconstr. Surg. 2009, 124, 1087–1097. [Google Scholar] [CrossRef] [Green Version]
- Chan, C.C.; Damen, M.S.M.A.; Alarcon, P.C.; Sanchez-Gurmaches, J.; Divanovic, S. Inflammation and Immunity: From an Adipocyte’s Perspective. J. Interferon Cytokine Res. 2019, 39, 459–471. [Google Scholar] [CrossRef]
- Kumari, M.; Heeren, J.; Scheja, L. Regulation of immunometabolism in adipose tissue. Semin. Immunopathol. 2018, 40, 189–202. [Google Scholar] [CrossRef] [PubMed]
- Song, T.; Kuang, S. Adipocyte dedifferentiation in health and diseases. Clin. Sci. 2019, 133, 2107–2119. [Google Scholar] [CrossRef] [PubMed]
- Wajchenberg, B.L. Subcutaneous and visceral adipose tissue: Their relation to the metabolic syndrome. Endocr. Rev. 2000, 21, 697–738. [Google Scholar] [CrossRef] [PubMed]
- Chau, Y.Y.; Bandiera, R.; Serrels, A.; Martínez-Estrada, O.M.; Qing, W.; Lee, M.; Slight, J.; Thornburn, A.; Berry, R.; McHaffie, S.; et al. Visceral and subcutaneous fat have different origins and evidence supports a mesothelial source. Nat. Cell Biol. 2014, 16, 367–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duffaut, C.; Zakaroff-Girard, A.; Bourlier, V.; Decaunes, P.; Maumus, M.; Chiotasso, P.; Sengenès, C.; Lafontan, M.; Galitzky, J.; Bouloumié, A. Interplay between human adipocytes and T lymphocytes in obesity: CCL20 as an adipochemokine and T lymphocytes as lipogenic modulators. Arterioscler. Thromb. Vasc. Biol. 2009, 29, 1608–1614. [Google Scholar] [CrossRef] [Green Version]
- Harman-Boehm, I.; Blüher, M.; Redel, H.; Sion-Vardy, N.; Ovadia, S.; Avinoach, E.; Shai, I.; Klöting, N.; Stumvoll, M.; Bashan, N.; et al. Macrophage infiltration into omental versus subcutaneous fat across different populations: Effect of regional adiposity and the comorbidities of obesity. J. Clin. Endocrinol. Metab. 2007, 92, 2240–2247. [Google Scholar] [CrossRef] [Green Version]
- Skrypnik, K.; Suliburska, J.; Skrypnik, D.; Pilarski, Ł.; Reguła, J.; Bogdański, P. The genetic basis of obesity complications. Acta Sci. Pol. Technol. Aliment. 2017, 16, 83–91. [Google Scholar] [CrossRef] [Green Version]
- Poulain-Godefroy, O.; Le Bacquer, O.; Plancq, P.; Lecoeur, C.; Pattou, F.; Frühbeck, G.; Froguel, P. Inflammatory role of Toll-like receptors in human and murine adipose tissue. Mediators Inflamm. 2010, 2010, 823486. [Google Scholar] [CrossRef]
- Lee, K.Y.; Luong, Q.; Sharma, R.; Dreyfuss, J.M.; Ussar, S.; Kahn, C.R. Developmental and functional heterogeneity of white adipocytes within a single fat depot. EMBO J. 2019, 38, e99291. [Google Scholar] [CrossRef] [PubMed]
- Sidossis, L.; Kajimura, S. Brown and beige fat in humans: Thermogenic adipocytes that control energy and glucose homeostasis. J. Clin. Investig. 2015, 125, 478–486. [Google Scholar] [CrossRef] [PubMed]
- Berry, D.C.; Jiang, Y.; Graff, J.M. Emerging Roles of Adipose Progenitor Cells in Tissue Development, Homeostasis, Expansion and Thermogenesis. Trends Endocrinol. Metab. 2016, 27, 574–585. [Google Scholar] [CrossRef] [PubMed]
- Cinti, S. Pink Adipocytes. Trends Endocrinol. Metab. 2018, 29, 651–666. [Google Scholar] [CrossRef]
- Arner, P.; Bernard, S.; Salehpour, M.; Possnert, G.; Liebl, J.; Steier, P.; Buchholz, B.A.; Eriksson, M.; Arner, E.; Hauner, H.; et al. Dynamics of human adipose lipid turnover in health and metabolic disease. Nature 2011, 478, 110–113. [Google Scholar] [CrossRef] [Green Version]
- Arner, P. Fat Tissue Growth and Development in Humans. Nestle Nutr. Inst. Workshop Ser. 2018, 89, 37–45. [Google Scholar]
- Spalding, K.L.; Arner, E.; Westermark, P.O.; Bernard, S.; Buchholz, B.A.; Bergmann, O.; Blomqvist, L.; Hoffstedt, J.; Näslund, E.; Britton, T.; et al. Dynamics of fat cell turnover in humans. Nature 2008, 453, 783–787. [Google Scholar] [CrossRef]
- Qian, S.; Tang, Y.; Tang, Q.Q. Adipose tissue plasticity and the pleiotropic roles of BMP signaling. J. Biol. Chem. 2021, 296, 100678. [Google Scholar] [CrossRef]
- Sárvári, A.K.; Doan-Xuan, Q.M.; Bacsó, Z.; Csomós, I.; Balajthy, Z.; Fésüs, L. Interaction of differentiated human adipocytes with macrophages leads to trogocytosis and selective IL-6 secretion. Cell Death Dis. 2015, 6, e1613. [Google Scholar] [CrossRef] [Green Version]
- Engin, A. Fat Cell and Fatty Acid Turnover in Obesity. Adv. Exp. Med. Biol. 2017, 960, 135–160. [Google Scholar] [PubMed]
- Cancello, R.; Tordjman, J.; Poitou, C.; Guilhem, G.; Bouillot, J.L.; Hugol, D.; Coussieu, C.; Basdevant, A.; Bar Hen, A.; Bedossa, P.; et al. Increased infiltration of macrophages in omental adipose tissue is associated with marked hepatic lesions in morbid human obesity. Diabetes 2006, 55, 1554–1561. [Google Scholar] [CrossRef] [Green Version]
- Ye, R.Z.; Richard, G.; Gévry, N.; Tchernof, A.; Carpentier, A.C. Fat Cell Size: Measurement Methods, Pathophysiological Origins, and Relationships with Metabolic Dysregulations. Endocr. Rev. 2021, bnab018, Online ahead of print. [Google Scholar] [CrossRef]
- Cinti, S.; Mitchell, G.; Barbatelli, G.; Murano, I.; Ceresi, E.; Faloia, E.; Wang, S.; Fortier, M.; Greenberg, A.S.; Obin, M.S. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J. Lipid Res. 2005, 46, 2347–2355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giordano, A.; Murano, I.; Mondini, E.; Perugini, J.; Smorlesi, A.; Severi, I.; Barazzoni, R.; Scherer, P.E.; Cinti, S. Obese adipocytes show ultrastructural features of stressed cells and die of pyroptosis. J. Lipid Res. 2013, 54, 2423–23436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braune, J.; Lindhorst, A.; Fröba, J.; Hobusch, C.; Kovacs, P.; Blüher, M.; Eilers, J.; Bechmann, I.; Gericke, M. Multinucleated Giant Cells in Adipose Tissue Are Specialized in Adipocyte Degradation. Diabetes 2021, 70, 538–548. [Google Scholar] [CrossRef]
- Cox, A.R.; Chernis, N.; Masschelin, P.M.; Hartig, S.M. Immune Cells Gate White Adipose Tissue Expansion. Endocrinology 2019, 160, 1645–1658. [Google Scholar] [CrossRef]
- Medeiros, N.I.; Mattos, R.T.; Menezes, C.A.; Fares, R.C.G.; Talvani, A.; Dutra, W.O.; Rios-Santos, F.; Correa-Oliveira, R.; Gomes, J.A.S. IL-10 and TGF-β unbalanced levels in neutrophils contribute to increase inflammatory cytokine expression in childhood obesity. Eur. J. Nutr. 2018, 57, 2421–2430. [Google Scholar] [CrossRef]
- Weisberg, S.P.; McCann, D.; Desai, M.; Rosenbaum, M.; Leibel, R.L.; Ferrante, A.W., Jr. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Investig. 2003, 112, 1796–1808. [Google Scholar] [CrossRef]
- Wensveen, F.M.; Valentić, S.; Šestan, M.; Turk Wensveen, T.; Polić, B. The “Big Bang” in obese fat: Events initiating obesity-induced adipose tissue inflammation. Eur. J. Immunol. 2015, 45, 2446–2456. [Google Scholar] [CrossRef]
- Skurk, T.; Alberti-Huber, C.; Herder, C.; Hauner, H. Relationship between adipocyte size and adipokine expression and secretion. J. Clin. Endocrinol. Metab. 2007, 92, 1023–1033. [Google Scholar] [CrossRef]
- Lumeng, C.N.; Bodzin, J.L.; Saltiel, A.R. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Investig. 2007, 117, 175–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujisaka, S.; Usui, I.; Bukhari, A.; Ikutani, M.; Oya, T.; Kanatani, Y.; Tsuneyama, K.; Nagai, Y.; Takatsu, K.; Urakaze, M.; et al. Regulatory mechanisms for adipose tissue M1 and M2 macrophages in diet-induced obese mice. Diabetes 2009, 58, 2574–2582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, L.; Yang, X.; Lin, Y.; Li, S.; Jiang, J.; Qian, S.; Tang, Q.; He, R.; Li, X. Large adipocytes function as antigen-presenting cells to activate CD4(+) T cells via upregulating MHCII in obesity. Int. J. Obes. 2016, 40, 112–120. [Google Scholar] [CrossRef] [Green Version]
- Kuroda, M.; Sakaue, H. Adipocyte Death and Chronic Inflammation in Obesity. J. Med. Investig. 2017, 64, 193–196. [Google Scholar] [CrossRef] [Green Version]
- Engin, A.B. Adipocyte-Macrophage Cross-Talk in Obesity. Adv. Exp. Med. Biol. 2017, 960, 327–343. [Google Scholar] [PubMed]
- Engin, A. The Pathogenesis of Obesity-Associated Adipose Tissue Inflammation. Adv. Exp. Med. Biol. 2017, 960, 221–245. [Google Scholar]
- Amar, J.; Burcelin, R.; Ruidavets, J.B.; Cani, P.D.; Fauvel, J.; Alessi, M.C.; Chamontin, B.; Ferriéres, J. Energy intake is associated with endotoxemia in apparently healthy men. Am. J. Clin. Nutr. 2008, 87, 1219–1223. [Google Scholar] [CrossRef] [Green Version]
- Pendyala, S.; Walker, J.M.; Holt, P.R. A high-fat diet is associated with endotoxemia that originates from the gut. Gastroenterology 2012, 142, 1100–1101.e2. [Google Scholar] [CrossRef] [Green Version]
- Saad, M.J.; Santos, A.; Prada, P.O. Linking Gut Microbiota and Inflammation to Obesity and Insulin Resistance. Physiology 2016, 31, 283–293. [Google Scholar] [CrossRef]
- Reilly, S.M.; Saltiel, A.R. Adapting to obesity with adipose tissue inflammation. Nat. Rev. Endocrinol. 2017, 13, 633–643. [Google Scholar] [CrossRef] [PubMed]
- Saltiel, A.R.; Olefsky, J.M. Inflammatory mechanisms linking obesity and metabolic disease. J. Clin. Investig. 2017, 127, 1–4. [Google Scholar] [CrossRef]
- Sekimoto, R.; Fukuda, S.; Maeda, N.; Tsushima, Y.; Matsuda, K.; Mori, T.; Nakatsuji, H.; Nishizawa, H.; Kishida, K.; Kikuta, J.; et al. Visualized macrophage dynamics and significance of S100A8 in obese fat. Proc. Natl. Acad. Sci. USA 2015, 112, E2058–E2066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wernstedt Asterholm, I.; Tao, C.; Morley, T.S.; Wang, Q.A.; Delgado-Lopez, F.; Wang, Z.V.; Scherer, P.E. Adipocyte inflammation is essential for healthy adipose tissue expansion and remodeling. Cell Metab. 2014, 20, 103–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, T.; Muise, E.S.; Iyengar, P.; Wang, Z.V.; Chandalia, M.; Abate, N.; Zhang, B.B.; Bonaldo, P.; Chua, S.; Schere, P.E. Metabolic dysregulation and adipose tissue fibrosis: Role of collagen VI. Mol. Cell. Biol. 2009, 29, 1575–1591. [Google Scholar] [CrossRef] [Green Version]
- Shimobayashi, M.; Albert, V.; Woelnerhanssen, B.; Frei, I.C.; Weissenberger, D.; Meyer-Gerspach, A.C.; Clement, N.; Moes, S.; Colombi, M.; Meier, J.A.; et al. Insulin resistance causes inflammation in adipose tissue. J. Clin. Investig. 2018, 28, 1538–1550. [Google Scholar] [CrossRef]
- Tchernof, A.; Després, J.P. Pathophysiology of human visceral obesity: An update. Physiol. Rev. 2013, 93, 359–404. [Google Scholar] [CrossRef]
- Salsberry, P.J.; Reagan, P.B. Effects of heritability, shared environment, and nonshared intrauterine conditions on child and adolescent BMI. Obesity 2010, 18, 1775–1780. [Google Scholar] [CrossRef] [PubMed]
- Albuquerque, D.; Nóbrega, C.; Manco, L.; Padez, C. The contribution of genetics and environment to obesity. Br. Med. Bull. 2017, 123, 159–173. [Google Scholar] [CrossRef]
- Davis, J.E.; Braucher, D.R.; Walker-Daniels, J.; Spurlock, M.E. Absence of Tlr2 protects against high-fat diet-induced inflammation and results in greater insulin-stimulated glucose transport in cultured adipocytes. J. Nutr. Biochem. 2011, 22, 136–141. [Google Scholar] [CrossRef]
- Zhang, K.; Liew, C.W.; Qiang, G.; Sun, Q.; Liu, C. Toll-like receptor 3 ablation prevented high-fat diet-induced obesity and metabolic disorder. J. Nutr. Biochem. 2021, 95, 108761. [Google Scholar] [CrossRef]
- Davis, J.E.; Gabler, N.K.; Walker-Daniels, J.; Spurlock, M.E. Tlr-4 deficiency selectively protects against obesity induced by diets high in saturated fat. Obesity 2008, 16, 1248–1255. [Google Scholar] [CrossRef] [PubMed]
- Saberi, M.; Woods, N.B.; de Luca, C.; Schenk, S.; Lu, J.C.; Bandyopadhyay, G.; Verma, I.M.; Olefsky, J.M. Hematopoietic cell-specific deletion of toll-like receptor 4 ameliorates hepatic and adipose tissue insulin resistance in high-fat-fed mice. Cell Metab. 2009, 10, 419–429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rau, C.S.; Wu, S.C.; Lu, T.H.; Wu, Y.C.; Wu, C.J.; Chien, P.C.; Kuo, P.J.; Lin, C.W.; Tsai, C.W.; Hsieh, C.H. Effect of Low-Fat Diet in Obese Mice Lacking Toll-like Receptors. Nutrients 2018, 10, 1464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, S.C.; Rau, C.S.; Lu, T.H.; Tzeng, S.L.; Wu, Y.C.; Wu, C.J.; Lin, C.W.; Hsieh, C.H. Effect of Weight-Reduction in Obese Mice Lacking Toll-Like Receptor 5 and C57BL/6 Mice Fed a Low-Fat Diet. Mediat. Inflamm. 2015, 2015, 852126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanna Kazazian, N.; Wang, Y.; Roussel-Queval, A.; Marcadet, L.; Chasson, L.; Laprie, C.; Desnues, B.; Charaix, J.; Irla, M.; Alexopoulou, L. Lupus Autoimmunity and Metabolic Parameters Are Exacerbated Upon High Fat Diet-Induced Obesity Due to TLR7 Signaling. Front. Immunol. 2019, 10, 2015. [Google Scholar] [CrossRef]
- Hong, C.P.; Yun, C.H.; Lee, G.W.; Park, A.; Kim, Y.M.; Jang, M.H. TLR9 regulates adipose tissue inflammation and obesity-related metabolic disorders. Obesity 2015, 23, 2199–2206. [Google Scholar] [CrossRef] [Green Version]
- Roncon-Albuquerque, R., Jr.; Moreira-Rodrigues, M.; Faria, B.; Ferreira, A.P.; Cerqueira, C.; Lourenço, A.P.; Pestana, M.; von Hafe, P.; Leite-Moreira, A.F. Attenuation of the cardiovascular and metabolic complications of obesity in CD14 knockout mice. Life Sci. 2008, 83, 502–510. [Google Scholar] [CrossRef] [Green Version]
- Bjursell, M.; Admyre, T.; Göransson, M.; Marley, A.E.; Smith, D.M.; Oscarsson, J.; Bohlooly, Y.M. Improved glucose control and reduced body fat mass in free fatty acid receptor 2-deficient mice fed a high-fat diet. Am. J. Physiol. Endocrinol. Metab. 2011, 300, E211–E220. [Google Scholar] [CrossRef] [Green Version]
- Oh, D.Y.; Olefsky, J.M. Omega 3 fatty acids and GPR120. Cell Metab. 2012, 15, 564–565. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, M.; Ikeda, K.; Suganami, T.; Komiya, C.; Ochi, K.; Shirakawa, I.; Hamaguchi, M.; Nishimura, S.; Manabe, I.; Matsuda, T.; et al. Macrophage-inducible C-type lectin underlies obesity-induced adipose tissue fibrosis. Nat. Commun. 2014, 5, 4982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Beek, L.; Vroegrijk, I.O.; Katiraei, S.; Heemskerk, M.M.; van Dam, A.D.; Kooijman, S.; Rensen, P.C.; Koning, F.; Verbeek, J.S.; Willems van Dijk, K.; et al. FcRγ-chain deficiency reduces the development of diet-induced obesity. Obesity 2015, 23, 2435–2444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Capell, W.; Yoon, J.H.; Faubel, S.; Eckel, R.H. Obesity development in caspase-1-deficient mice. Int. J. Obes. 2014, 38, 152–155. [Google Scholar] [CrossRef]
- Murphy, A.J.; Kraakman, M.J.; Kammoun, H.L.; Dragoljevic, D.; Lee, M.K.; Lawlor, K.E.; Wentworth, J.M.; Vasanthakumar, A.; Gerlic, M.; Whitehead, L.W.; et al. IL-18 Production from the NLRP1 Inflammasome Prevents Obesity and Metabolic Syndrome. Cell Metab. 2016, 23, 155–164. [Google Scholar] [CrossRef] [Green Version]
- Almog, T.; Kandel Kfir, M.; Levkovich, H.; Shloma, G.; Barshack, I.; Stienstra, R.; Lustig, Y.; Leikin Frenkel, A.; Harari, A.; Bujanover, Y.; et al. Interleukin-1α deficiency reduces adiposity, glucose intolerance and hepatic de-novo lipogenesis in diet-induced obese mice. BMJ Open Diabetes Res. Care 2019, 7, e000650. [Google Scholar] [CrossRef]
- Nov, O.; Shapiro, H.; Ovadia, H.; Tarnovscki, T.; Dvir, I.; Shemesh, E.; Kovsan, J.; Shelef, I.; Carmi, Y.; Voronov, E.; et al. Interleukin-1β regulates fat-liver crosstalk in obesity by auto-paracrine modulation of adipose tissue inflammation and expandability. PLoS ONE 2013, 8, e53626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Huang, C.; Yin, H.; Zhang, X.; Wang, D.; Ma, C.; Li, J.; Zhao, Y.; Li, X. Interleukin-6 mediated exercise-induced alleviation of adiposity and hepatic steatosis in mice. BMJ Open Diabetes Res Care 2021, 9, e001431. [Google Scholar] [CrossRef]
- Wallenius, V.; Wallenius, K.; Ahrén, B.; Rudling, M.; Carlsten, H.; Dickson, S.L.; Ohlsson, C.; Jansso, J.O. Interleukin-6-deficient mice develop mature-onset obesity. Nat. Med. 2002, 8, 75–79. [Google Scholar] [CrossRef]
- Barra, N.G.; Reid, S.; MacKenzie, R.; Werstuck, G.; Trigatti, B.L.; Richards, C.; Holloway, A.C.; Ashkar, A.A. Interleukin-15 contributes to the regulation of murine adipose tissue and human adipocytes. Obesity 2010, 18, 1601–1607. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Jhun, J.; Byun, J.K.; Kim, E.K.; Jung, K.; Lee, J.E.; Choi, J.Y.; Park, S.H.; Cho, M.L. IL-17 axis accelerates the inflammatory progression of obese in mice via TBK1 and IKBKE pathway. Immunol. Lett. 2017, 184, 67–75. [Google Scholar] [CrossRef]
- Zorrilla, E.P.; Sanchez-Alavez, M.; Sugama, S.; Brennan, M.; Fernandez, R.; Bartfai, T.; Conti, B. Interleukin-18 controls energy homeostasis by suppressing appetite and feed efficiency. Proc. Natl. Acad. Sci. USA 2007, 104, 11097–11102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García, M.C.; Wernstedt, I.; Berndtsson, A.; Enge, M.; Bell, M.; Hultgren, O.; Horn, M.; Ahrén, B.; Enerback, S.; Ohlsson, C.; et al. Mature-onset obesity in interleukin-1 receptor I knockout mice. Diabetes 2006, 55, 1205–1213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGillicuddy, F.C.; Harford, K.A.; Reynolds, C.M.; Oliver, E.; Claessens, M.; Mills, K.H.; Roche, H.M. Lack of interleukin-1 receptor I (IL-1RI) protects mice from high-fat diet-induced adipose tissue inflammation coincident with improved glucose homeostasis. Diabetes 2011, 60, 1688–1698. [Google Scholar] [CrossRef] [Green Version]
- Somm, E.; Henrichot, E.; Pernin, A.; Juge-Aubry, C.E.; Muzzin, P.; Dayer, J.M.; Nicklin, M.J.; Meier, C.A. Decreased fat mass in interleukin-1 receptor antagonist-deficient mice: Impact on adipogenesis, food intake, and energy expenditure. Diabetes 2005, 54, 3503–3509. [Google Scholar] [CrossRef] [Green Version]
- Netea, M.G.; Joosten, L.A.; Lewis, E.; Jensen, D.R.; Voshol, P.J.; Kullberg, B.J.; Tack, C.J.; van Krieken, H.; Kim, S.H.; Stalenhoef, A.F.; et al. Deficiency of interleukin-18 in mice leads to hyperphagia, obesity and insulin resistance. Nat. Med. 2006, 12, 650–656. [Google Scholar] [CrossRef] [PubMed]
- Pamir, N.; McMillen, T.S.; Kaiyala, K.J.; Schwartz, M.W.; LeBoeuf, R.C. Receptors for tumor necrosis factor-alpha play a protective role against obesity and alter adipose tissue macrophage status. Endocrinology 2009, 150, 4124–4134. [Google Scholar] [CrossRef]
- Na, H.N.; Nam, J.H. Adenovirus 36 as an obesity agent maintains the obesity state by increasing MCP-1 and inducing inflammation. J. Infect. Dis. 2012, 205, 914–922. [Google Scholar] [CrossRef]
- Weisberg, S.P.; Hunter, D.; Huber, R.; Lemieux, J.; Slaymaker, S.; Vaddi, K.; Charo, I.; Leibel, R.L.; Ferrante, A.W., Jr. CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J. Clin. Investig. 2006, 116, 115–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, M.; Qiu, S.; He, Y.; Li, L.; Wu, T.; Ding, N.; Li, F.; Zhao, A.Z.; Yang, G. Genetic ablation of C-reactive protein gene confers resistance to obesity and insulin resistance in rats. Diabetologia 2021, 64, 1169–1183. [Google Scholar] [CrossRef] [PubMed]
- van Dam, A.D.; van Beek, L.; Pronk, A.C.M.; van den Berg, S.M.; Van den Bossche, J.; de Winther, M.P.J.; Koning, F.; van Kooten, C.; Rensen, P.C.N.; Boon, M.R.; et al. IgG is elevated in obese white adipose tissue but does not induce glucose intolerance via Fcγ-receptor or complement. Int. J. Obes. (Lond.) 2018, 42, 260–269. [Google Scholar] [CrossRef]
- Mamane, Y.; Chung Chan, C.; Lavallee, G.; Morin, N.; Xu, L.J.; Huang, J.; Gordon, R.; Thomas, W.; Lamb, J.; Schadt, E.E.; et al. The C3a anaphylatoxin receptor is a key mediator of insulin resistance and functions by modulating adipose tissue macrophage infiltration and activation. Diabetes 2009, 58, 2006–2017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phieler, J.; Chung, K.J.; Chatzigeorgiou, A.; Klotzsche-von Ameln, A.; Garcia-Martin, R.; Sprott, D.; Moisidou, M.; Tzanavari, T.; Ludwig, B.; Baraban, E.; et al. The complement anaphylatoxin C5a receptor contributes to obese adipose tissue inflammation and insulin resistance. J. Immunol. 2013, 191, 4367–4374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paglialunga, S.; Schrauwen, P.; Roy, C.; Moonen-Kornips, E.; Lu, H.; Hesselink, M.K.; Deshaies, Y.; Richard, D.; Cianflone, K. Reduced adipose tissue triglyceride synthesis and increased muscle fatty acid oxidation in C5L2 knockout mice. J. Endocrinol. 2007, 194, 293–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stienstra, R.; Dijk, W.; van Beek, L.; Jansen, H.; Heemskerk, M.; Houtkooper, R.H.; Denis, S.; van Harmelen, V.; Willems van Dijk, K.; Tack, C.J.; et al. Mannose-binding lectin is required for the effective clearance of apoptotic cells by adipose tissue macrophages during obesity. Diabetes 2014, 63, 4143–4153. [Google Scholar] [CrossRef] [Green Version]
- Bhatt, B.A.; Dedousis, N.; Sipula, I.J.; O’Doherty, R.M. Elevated metabolic rate and skeletal muscle oxidative metabolism contribute to the reduced susceptibility of NF-κB p50 null mice to obesity. Physiol. Rep. 2018, 6, e13836. [Google Scholar] [CrossRef]
- Douglass, J.D.; Dorfman, M.D.; Fasnacht, R.; Shaffer, L.D.; Thale, J.P. Astrocyte IKKβ/NF-κB signaling is required for diet-induced obesity and hypothalamic inflammation. Mol. Metab. 2017, 6, 366–373. [Google Scholar] [CrossRef]
- Chiang, S.H.; Bazuine, M.; Lumeng, C.N.; Geletka, L.M.; Mowers, J.; White, N.M.; Ma, J.T.; Zhou, J.; Qi, N.; Westcott, D.; et al. The protein kinase IKKepsilon regulates energy balance in obese mice. Cell 2009, 138, 961–975. [Google Scholar] [CrossRef] [Green Version]
- Cao, C.; Li, L.; Chen, W.; Zhu, Y.; Qi, Y.; Wang, X.; Wan, X.; Chen, X. Deficiency of IKKε inhibits inflammation and induces cardiac protection in high-fat diet-induced obesity in mice. Int. J. Mol. Med. 2014, 34, 244–252. [Google Scholar] [CrossRef] [Green Version]
- Shi, S.Y.; Zhang, W.; Luk, C.T.; Sivasubramaniyam, T.; Brunt, J.J.; Schroer, S.A.; Desai, H.R.; Majerski, A.; Woo, M. JAK2 promotes brown adipose tissue function and is required for diet- and cold-induced thermogenesis in mice. Diabetologia 2016, 59, 187–196. [Google Scholar] [CrossRef] [Green Version]
- Kaltenecker, D.; Mueller, K.M.; Benedikt, P.; Feiler, U.; Themanns, M.; Schlederer, M.; Kenner, L.; Schweiger, M.; Haemmerle, G.; Moriggl, R. Adipocyte STAT5 deficiency promotes adiposity and impairs lipid mobilisation in mice. Diabetologia 2017, 60, 296–305. [Google Scholar] [CrossRef] [Green Version]
- Val, C.H.; de Oliveira, M.C.; Lacerda, D.R.; Barroso, A.; Batista, N.V.; Menezes-Garcia, Z.; de Assis, D.R.R.; Cramer, A.T.; Brant, F.; Teixeira, M.M.; et al. SOCS2 modulates adipose tissue inflammation and expansion in mice. J. Nut. Biochem. 2020, 76, 108304. [Google Scholar] [CrossRef]
- Soydas, T.; Karaman, O.; Arkan, H.; Yenmis, G.; Ilhan, M.M.; Tombulturk, K.; Tasan, E.; Kanigur Sultuybek, G. The Correlation of Increased CRP Levels with NFKB1 and TLR2 Polymorphisms in the Case of Morbid Obesity. Scand. J. Immunol. 2016, 84, 278–283. [Google Scholar] [CrossRef]
- Penas-Steinhardt, A.; Barcos, L.S.; Belforte, F.S.; de Sereday, M.; Vilariño, J.; Gonzalez, C.D.; Martínez-Larrad, M.T.; Tellechea, M.L.; Serrano-Ríos, M.; Poskus, E.; et al. Functional characterization of TLR4 +3725 G/C polymorphism and association with protection against overweight. PLoS ONE 2012, 7, e50992. [Google Scholar] [CrossRef] [PubMed]
- Weyrich, P.; Staiger, H.; Stančáková, A.; Machicao, F.; Machann, J.; Schick, F.; Stefan, N.; Kuusisto, J.; Laakso, M.; Schäfer, S.; et al. The D299G/T399I Toll-like receptor 4 variant associates with body and liver fat: Results from the TULIP and METSIM Studies. PLoS ONE 2010, 5, e13980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Locke, A.E.; Kahali, B.; Berndt, S.I.; Justice, A.E.; Pers, T.H.; Day, F.R.; Powell, C.; Vedantam, S.; Buchkovich, M.L.; Yang, J.; et al. Genetic studies of body mass index yield new insights for obesity biology. Nature 2015, 518, 197–206. [Google Scholar] [CrossRef] [Green Version]
- Al-Daghri, N.M.; Clerici, M.; Al-Attas, O.; Forni, D.; Alokail, M.S.; Alkharfy, K.M.; Sabico, S.; Mohammed, A.K.; Cagliani, R.; Sironi, M. A nonsense polymorphism (R392X) in TLR5 protects from obesity but predisposes to diabetes. J. Immunol. 2013, 190, 3716–3720. [Google Scholar] [CrossRef] [PubMed]
- Plourde, M.; Vohl, M.C.; Bellis, C.; Carless, M.; Dyer, T.; Dolley, G.; Marette, A.; Després, J.P.; Bouchard, C.; Blangero, J.; et al. A variant in the LRRFIP1 gene is associated with adiposity and inflammation. Obesity 2013, 21, 185–192. [Google Scholar] [CrossRef]
- Shin, H.D.; Park, K.S.; Park, B.L.; Cheong, H.S.; Cho, Y.M.; Lee, H.K.; Lee, J.Y.; Lee, J.K.; Kim, H.T.; Han, B.G.; et al. Common promoter polymorphism in monocyte differentiation antigen CD14 is associated with serum triglyceride levels and body mass index in non-diabetic individuals. Diabet. Med. 2006, 23, 72–76. [Google Scholar] [CrossRef]
- Ahmad, S.; Zhao, W.; Renström, F.; Rasheed, A.; Samuel, M.; Zaidi, M.; Shah, N.; Mallick, N.H.; Zaman, K.S.; Ishaq, M.; et al. Physical activity, smoking, and genetic predisposition to obesity in people from Pakistan: The PROMIS study. BMC Med. Genet. 2015, 16, 114. [Google Scholar] [CrossRef] [Green Version]
- Muller, Y.L.; Hanson, R.L.; Piaggi, P.; Chen, P.; Wiessner, G.; Okani, C.; Skelton, G.; Kobes, S.; Hsueh, W.C.; Knowler, W.C.; et al. Assessing the Role of 98 Established Loci for BMI in American Indians. Obesity 2019, 27, 845–854. [Google Scholar] [CrossRef]
- de Moraes Rodrigues, J.; Souza de Lima, D.; Leal, V.N.C.; Bosco, A.A.; Sandrim, V.; Pontillo, A. Gain-of-function SNPs in NLRP3 and IL1B genes confer protection against obesity and T2D: Undiscovered role of inflammasome genetics in metabolic homeostasis? Endocrine 2018, 60, 368–371. [Google Scholar] [CrossRef] [PubMed]
- Ichimura, A.; Hirasawa, A.; Poulain-Godefroy, O.; Bonnefond, A.; Hara, T.; Yengo, L.; Kimura, I.; Leloire, A.; Liu, N.; Iida, K.; et al. Dysfunction of lipid sensor GPR120 leads to obesity in both mouse and human. Nature 2012, 483, 350–354. [Google Scholar] [CrossRef] [Green Version]
- Mendoza-Carrera, F.; Ramírez-López, G.; Hernández-Ramos, L.E.; Leal-Cortés, C.; Portilla-de-Buen, E.; Castro-Martínez, X.H.; Castro Martínez, A.G.; López-Quintero, A.; Flores-Martínez, S.E.; Sánchez-Corona, J. Interleukin-1 Alpha Polymorphisms Are Associated With Body Mass Index in Male But Not in Female Adolescents. Arch. Med. Res. 2019, 50, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Um, J.Y.; Rim, H.K.; Kim, S.J.; Kim, H.L.; Hong, S.H. Functional polymorphism of IL-1 alpha and its potential role in obesity in humans and mice. PLoS ONE 2011, 6, e29524. [Google Scholar] [CrossRef] [Green Version]
- Strandberg, L.; Mellström, D.; Ljunggren, O.; Grundberg, E.; Karlsson, M.K.; Holmberg, A.H.; Orwoll, E.S.; Eriksson, A.L.; Svedberg, J.; Bengtsson, M.; et al. IL6 and IL1B polymorphisms are associated with fat mass in older men: The MrOS Study Sweden. Obesity 2008, 16, 710–713. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, K.; Inoue, T.; Yanagisawa, A.; Kimura, A.; Ito, Y.; Hamajima, N. Association between Interleukin-1B C-31T polymorphism and obesity in Japanese. J. Epidemiol. 2009, 19, 131–135. [Google Scholar] [CrossRef] [Green Version]
- Strandberg, L.; Lorentzon, M.; Hellqvist, A.; Nilsson, S.; Wallenius, V.; Ohlsson, C.; Jansson, J.O. Interleukin-1 system gene polymorphisms are associated with fat mass in young men. J. Clin. Endocrinol. Metab. 2006, 91, 2749–2754. [Google Scholar] [CrossRef] [Green Version]
- Andersson, N.; Strandberg, L.; Nilsson, S.; Ljungren, O.; Karlsson, M.K.; Mellström, D.; Lorentzon, M.; Ohlsson, C.; Jansson, J.O. Variants of the interleukin-1 receptor antagonist gene are associated with fat mass in men. Int. J. Obes. 2009, 33, 525–533. [Google Scholar] [CrossRef] [Green Version]
- Kok, Y.Y.; Ong, H.H.; Say, Y.H. Interleukin-1 Receptor Antagonist and Interleukin-4 Genes Variable Number Tandem Repeats Are Associated with Adiposity in Malaysian Subjects. J. Obes. 2017, 2017, 4104137. [Google Scholar] [CrossRef]
- Tabassum, R.; Mahendran, Y.; Dwivedi, O.P.; Chauhan, G.; Ghosh, S.; Marwaha, R.K.; Tandon, N.; Bharadwaj, D. Common variants of IL6, LEPR, and PBEF1 are associated with obesity in Indian children. Diabetes 2012, 61, 626–631. [Google Scholar] [CrossRef] [Green Version]
- Dedoussis, G.V.; Manios, Y.; Choumerianou, D.M.; Yiannakouris, N.; Panagiotakos, D.B.; Skenderi, K.; Zampelas, A. The IL-6 gene G-174C polymorphism related to health indices in Greek primary school children. Obes. Res. 2004, 12, 1037–1041. [Google Scholar] [CrossRef] [Green Version]
- Hu, M.; Yu, Z.; Luo, D.; Zhang, H.; Li, J.; Liang, F.; Chen, R. Association between -174G>C polymorphism in the IL-6 promoter region and the risk of obesity: A meta-analysis. Medicine 2018, 97, e11773. [Google Scholar] [CrossRef] [PubMed]
- Boeta-Lopez, K.; Duran, J.; Elizondo, D.; Gonzales, E.; Rentfro, A.; Schwarzbach, A.E.; Nair, S. Association of interleukin-6 polymorphisms with obesity or metabolic traits in young Mexican-Americans. Obes. Sci. Pract. 2017, 4, 85–96. [Google Scholar] [CrossRef] [PubMed]
- Andersson, N.; Strandberg, L.; Nilsson, S.; Adamovic, S.; Karlsson, M.K.; Ljunggren, O.; Mellström, D.; Lane, N.E.; Zmuda, J.M.; Nielsen, C.; et al. A variant near the interleukin-6 gene is associated with fat mass in Caucasian men. Int. J. Obes. 2010, 34, 1011–1019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, Y.; Miyaki, K.; Araki, J.; Zhang, L.; Omae, K.; Muramatsu, M. The interaction between the interleukin 6 receptor gene genotype and dietary energy intake on abdominal obesity in Japanese men. Metabolism 2007, 56, 925–930. [Google Scholar] [CrossRef] [PubMed]
- Wolford, J.K.; Colligan, P.B.; Gruber, J.D.; Bogardus, C. Variants in the interleukin 6 receptor gene are associated with obesity in Pima Indians. Mol. Genet. Metab. 2003, 80, 338–343. [Google Scholar] [CrossRef]
- Esteve, E.; Villuendas, G.; Mallolas, J.; Vendrell, J.; López-Bermejo, A.; Rodríguez, M.; Recasens, M.; Ricart, W.; San Millán, J.L.; Escobar-Morreale, H.; et al. Polymorphisms in the interleukin-6 receptor gene are associated with body mass index and with characteristics of the metabolic syndrome. Clin. Endocrinol. 2006, 65, 88–91. [Google Scholar] [CrossRef] [PubMed]
- Escobar-Morreale, H.F.; Calvo, R.M.; Villuendas, G.; Sancho, J.; San Millán, J.L. Association of polymorphisms in the interleukin 6 receptor complex with obesity and hyperandrogenism. Obes. Res. 2003, 11, 987–996. [Google Scholar] [CrossRef] [Green Version]
- Scarpelli, D.; Cardellini, M.; Andreozzi, F.; Laratta, E.; Hribal, M.L.; Marini, M.A.; Tassi, V.; Lauro, R.; Perticone, F.; Sesti, G. Variants of the interleukin-10 promoter gene are associated with obesity and insulin resistance but not type 2 diabetes in caucasian Italian subjects. Diabetes 2006, 55, 1529–1533. [Google Scholar] [CrossRef] [Green Version]
- Namjou, B.; Keddache, M.; Marsolo, K.; Wagner, M.; Lingren, T.; Cobb, B.; Perry, C.; Kennebeck, S.; Holm, I.A.; Li, R.; et al. EMR-linked GWAS study: Investigation of variation landscape of loci for body mass index in children. Front. Genet. 2013, 4, 268. [Google Scholar] [CrossRef] [Green Version]
- Pistilli, E.; Devaney, J.M.; Gordish-Dressman, H.; Bradbury, M.K.; Seip, R.L.; Thompson, P.D.; Angelopoulos, T.J.; Clarkson, P.M.; Moyna, N.M.; Pescatello, L.S.; et al. Interleukin-15 and interleukin-15R alpha SNPs and associations with muscle, bone, and predictors of the metabolic syndrome. Cytokine 2008, 43, 45–53. [Google Scholar] [CrossRef] [Green Version]
- Di Renzo, L.; Bigioni, M.; Bottini, F.G.; Del Gobbo, V.; Premrov, M.G.; Cianci, R.; De Lorenzo, A. Normal Weight Obese syndrome: Role of single nucleotide polymorphism of IL-1 5Ralpha and MTHFR 677C-->T genes in the relationship between body composition and resting metabolic rate. Eur. Rev. Med. Pharmacol. Sci. 2006, 10, 235–245. [Google Scholar]
- Kim, H.L.; Cho, S.O.; Kim, S.Y.; Kim, S.H.; Chung, W.S.; Chung, S.H.; Kim, S.S.; Ko, S.G.; Jeong, C.H.; Kim, S.J.; et al. Association of interleukin-18 gene polymorphism with body mass index in women. Reprod. Biol. Endocrinol. 2012, 10, 31. [Google Scholar] [CrossRef] [Green Version]
- Fatima, S.S.; Jamil, Z.; Abidi, S.H.; Nadeem, D.; Bashir, Z.; Ansari, A. Interleukin-18 polymorphism as an inflammatory index in metabolic syndrome: A preliminary study. World J. Diabetes 2017, 8, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Jourdan, C.; Kloiber, S.; Nieters, A.; Seiler, H.; Himmerich, H.; Kohli, M.A.; Lucae, S.; Wolfram, G.; Gieger, C.; Wichmann, H.E.; et al. Gene-PUFA interactions and obesity risk. Br. J. Nutr. 2011, 106, 1263–1272. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Barquero, V.; Marco, G.; Martínez-Hervas, S.; Adam-Felici, V.; Pérez-Soriano, C.; Gonzalez-Albert, V.; Rojo, G.; Ascaso, J.F.; Real, J.T.; Garcia-Garcia, A.B.; et al. Are IL18RAP gene polymorphisms associated with body mass regulation? A cross-sectional study. BMJ Open 2017, 7, e017875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angeles-Martínez, J.; Posadas-Sánchez, R.; Llorente, L.; Alvarez-León, E.; Ramírez-Bello, J.; Villarreal-Molina, T.; Lima, G.; Cardoso-Saldaña, G.; Rodríguez-Pérez, J.M.; Pérez-Hernández, N.; et al. The rs7044343 Polymorphism of the Interleukin 33 Gene Is Associated with Decreased Risk of Developing Premature Coronary Artery Disease and Central Obesity, and Could Be Involved in Regulating the Production of IL-33. PLoS ONE 2017, 12, e0168828. [Google Scholar]
- Yu, G.I.; Song, D.K.; Shin, D.H. Associations of IL1RAP and IL1RL1 gene polymorphisms with obesity and inflammation mediators. Inflamm. Res. 2020, 69, 191–202. [Google Scholar] [CrossRef]
- Heitkamp, M.; Siegrist, M.; Molnos, S.; Brandmaier, S.; Wahl, S.; Langhof, H.; Grallert, H.; Halle, M. Obesity Genes and Weight Loss During Lifestyle Intervention in Children With Obesity. JAMA Pediatr. 2021, 175, e205142. [Google Scholar] [CrossRef] [PubMed]
- Coban, N.; Onat, A.; Yildirim, O.; Can, G.; Erginel-Unaltuna, N. Oxidative stress-mediated (sex-specific) loss of protection against type-2 diabetes by macrophage migration inhibitory factor (MIF)-173G/C polymorphism. Clin. Chim. Acta. 2015, 438, 1–6. [Google Scholar] [CrossRef]
- Sakaue, S.; Ishimaru, S.; Hizawa, N.; Ohtsuka, Y.; Tsujino, I.; Honda, T.; Suzuki, J.; Kawakami, Y.; Nishihira, J.; Nishimura, M. Promoter polymorphism in the macrophage migration inhibitory factor gene is associated with obesity. Int. J. Obes. 2006, 30, 238–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rathwa, N.; Patel, R.; Palit, S.P.; Ramachandran, A.V.; Begum, R. Genetic variants of resistin and its plasma levels: Association with obesity and dyslipidemia related to type 2 diabetes susceptibility. Genomics 2019, 111, 980–985. [Google Scholar] [CrossRef]
- Zayani, N.; Hamdouni, H.; Boumaiza, I.; Achour, O.; Neffati, F.; Omezzine, A.; Najjar, M.F.; Bouslama, A. Resistin polymorphims, plasma resistin levels and obesity in Tunisian volunteers. J. Clin. Lab. Anal. 2018, 32, e22227. [Google Scholar] [CrossRef]
- Jain, V.; Kumar, A.; Ahmad, N.; Jana, M.; Kalaivani, M.; Kumar, B.; Shastri, S.; Jain, O.; Kabra, M. Genetic polymorphisms associated with obesity and non-alcoholic fatty liver disease in Asian Indian adolescents. J. Pediatr. Endocrinol. Metab. 2019, 32, 749–758. [Google Scholar] [CrossRef]
- Ghareeb, D.; Abdelazem, A.S.; Hussein, E.M.; Al-Karamany, A.S. Association of TNF-α-308 G>A (rs1800629) polymorphism with susceptibility of metabolic syndrome. J. Diabetes Metab. Disord. 2021, 20, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Phillips, C.M.; Goumidi, L.; Bertrais, S.; Ferguson, J.F.; Field, M.R.; Kelly, E.D.; Mehegan, J.; Peloso, G.M.; Cupples, L.A.; Shen, J.; et al. Additive effect of polymorphisms in the IL-6, LTA, and TNF-{alpha} genes and plasma fatty acid level modulate risk for the metabolic syndrome and its components. J. Clin. Endocrinol. Metab. 2010, 95, 1386–1394. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Kent, J.W., Jr.; Olivier, M.; Ali, O.; Broeckel, U.; Abdou, R.M.; Dyer, T.D.; Comuzzie, A.; Curran, J.E.; Carless, M.A.; et al. QTL-based association analyses reveal novel genes influencing pleiotropy of metabolic syndrome (MetS). Obesity 2013, 21, 2099–2111. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Calleja, A.; Quiróz-Vargas, I.; Parra-Rojas, I.; Muñoz-Valle, J.F.; Leyva-Vázquez, M.A.; Fernández-Tilapa, G.; Vences-Velázquez, A.; Cruz, M.; Salazar-Martínez, E.; Flores-Alfaro, E. Haplotypes in the CRP gene associated with increased BMI and levels of CRP in subjects with type 2 diabetes or obesity from Southwestern Mexico. Exp. Diabetes Res. 2012, 2012, 982683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Copenhaver, M.M.; Yu, C.Y.; Zhou, D.; Hoffman, R.P. Relationships of complement components C3 and C4 and their genetics to cardiometabolic risk in healthy, non-Hispanic white adolescents. Pediatr. Res. 2020, 87, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Guzmán-Ornelas, M.O.; Petri, M.H.; Vázquez-Del Mercado, M.; Chavarría-Ávila, E.; Corona-Meraz, F.I.; Ruíz-Quezada, S.L.; Madrigal-Ruíz, P.M.; Castro-Albarrán, J.; Sandoval-García, F.; Navarro-Hernández, R.E. CCL2 Serum Levels and Adiposity Are Associated with the Polymorphic Phenotypes -2518A on CCL2 and 64ILE on CCR2 in a Mexican Population with Insulin Resistance. J. Diabetes Res. 2016, 2016, 5675739. [Google Scholar] [CrossRef]
- Kochetova, O.V.; Avzaletdinova, D.S.; Morugova, T.V.; Mustafina, O.E. Chemokine gene polymorphisms association with increased risk of type 2 diabetes mellitus in Tatar ethnic group, Russia. Mol. Biol. Rep. 2019, 46, 887–896. [Google Scholar] [CrossRef] [PubMed]
- Sirois-Gagnon, D.; Chamberland, A.; Perron, S.; Brisson, D.; Gaudet, D.; Laprise, C. Association of common polymorphisms in the fractalkine receptor (CX3CR1) with obesity. Obesity 2011, 19, 222–227. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Tiwari, H.K.; Lin, W.Y.; Allison, D.B.; Chung, W.K.; Leibel, R.L.; Yi, N.; Liu, N. Genetic association analysis of 30 genes related to obesity in a European American population. Int. J. Obes. 2014, 38, 724–729. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.; Wang, G.; Chen, X.; Ou, Z.; Zou, F. Association of STAT3 common variations with obesity and hypertriglyceridemia: Protective and contributive effects. Int. J. Mol. Sci. 2014, 15, 12258–12269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phillips, C.M.; Goumidi, L.; Bertrais, S.; Field, M.R.; Peloso, G.M.; Shen, J.; McManus, R.; Hercberg, S.; Lairon, D.; Planells, R.; et al. Dietary saturated fat modulates the association between STAT3 polymorphisms and abdominal obesity in adults. J. Nutr. 2009, 139, 2011–2017. [Google Scholar] [CrossRef] [Green Version]
- Gylvin, T.; Ek, J.; Nolsøe, R.; Albrechtsen, A.; Andersen, G.; Bergholdt, R.; Brorsson, C.; Bang-Berthelsen, C.H.; Hansen, T.; Karlsen, A.E.; et al. Functional SOCS1 polymorphisms are associated with variation in obesity in whites. Diabetes Obes. Metab. 2009, 11, 196–203. [Google Scholar] [CrossRef]
- Talbert, M.E.; Langefeld, C.D.; Ziegler, J.; Mychaleckyj, J.C.; Haffner, S.M.; Norris, J.M.; Bowden, D.W. Polymorphisms near SOCS3 are associated with obesity and glucose homeostasis traits in Hispanic Americans from the Insulin Resistance Atherosclerosis Family Study. Hum. Genet. 2009, 125, 153–162. [Google Scholar] [CrossRef] [Green Version]
- Boyraz, M.; Yeşilkaya, E.; Ezgü, F.; Bideci, A.; Doğan, H.; Ulucan, K.; Cinaz, P. Effect of Cytokine Signaling 3 Gene Polymorphisms in Childhood Obesity. J. Clin. Res. Pediatr. Endocrinol. 2016, 8, 452–460. [Google Scholar] [CrossRef]
- Tang, W.; Zou, J.J.; Chen, X.F.; Zheng, J.Y.; Zeng, H.Z.; Liu, Z.M.; Shi, Y.Q. Association of two polymorphisms within and near SOCS3 gene with obesity in three nationalities in Xinjiang province of China. Acta Pharmacol. Sin. 2011, 32, 1381–1386. [Google Scholar] [CrossRef] [Green Version]
- Tessier, F.; Fontaine-Bisson, B.; Lefebvre, J.F.; El-Sohemy, A.; Roy-Gagnon, M.H. Investigating Gene-Gene and Gene-Environment Interactions in the Association Between Overnutrition and Obesity-Related Phenotypes. Front. Genet. 2019, 10, 151. [Google Scholar] [CrossRef]
- Ballak, D.B.; van Asseldonk, E.J.; van Diepen, J.A.; Jansen, H.; Hijmans, A.; Joosten, L.A.; Tack, C.J.; Netea, M.G.; Stienstra, R. TLR-3 is present in human adipocytes, but its signalling is not required for obesity-induced inflammation in adipose tissue in vivo. PLoS ONE 2015, 10, e0123152. [Google Scholar] [CrossRef]
- Lin, Y.; Lee, H.; Berg, A.H.; Lisanti, M.P.; Shapiro, L.; Scherer, P.E. The lipopolysaccharide-activated toll-like receptor (TLR)-4 induces synthesis of the closely related receptor TLR-2 in adipocytes. J. Biol. Chem. 2000, 275, 24255–24263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tarkowski, A.; Bjersing, J.; Shestakov, A.; Bokarewa, M.I. Resistin competes with lipopolysaccharide for binding to toll-like receptor 4. J. Cell. Mol. Med. 2010, 14, 1419–1431. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.Y.; Zhao, L.; Youn, H.S.; Weatherill, A.R.; Tapping, R.; Feng, L.; Lee, W.H.; Fitzgerald, K.A.; Hwang, D.H. Saturated fatty acid activates but polyunsaturated fatty acid inhibits Toll-like receptor 2 dimerized with Toll-like receptor 6 or 1. J. Biol. Chem. 2004, 279, 16971–16979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimizu, T.; Nishitani, C.; Mitsuzawa, H.; Ariki, S.; Takahashi, M.; Ohtani, K.; Wakamiya, N.; Kuroki, Y. Mannose binding lectin and lung collectins interact with Toll-like receptor 4 and MD-2 by different mechanisms. Biochim. Biophys. Acta. 2009, 1790, 1705–1710. [Google Scholar] [CrossRef]
- Griffin, C.; Eter, L.; Lanzetta, N.; Abrishami, S.; Varghese, M.; McKernan, K.; Muir, L.; Lane, J.; Lumeng, C.N.; Singer, K. TLR4, TRIF, and MyD88 are essential for myelopoiesis and CD11c+ adipose tissue macrophage production in obese mice. J. Biol. Chem. 2018, 293, 8775–8786. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Zhang, Z.; Lei, Z.; Lei, P. CD14: Biology and role in the pathogenesis of disease. Cytokine Growth Factor Rev. 2019, 48, 24–31. [Google Scholar] [CrossRef]
- Takimoto, M. Multidisciplinary Roles of LRRFIP1/GCF2 in Human Biological Systems and Diseases. Cells 2019, 8, 108. [Google Scholar] [CrossRef] [Green Version]
- Ichioka, M.; Suganami, T.; Tsuda, N.; Shirakawa, I.; Hirata, Y.; Satoh-Asahara, N.; Shimoda, Y.; Tanaka, M.; Kim-Saijo, M.; Miyamoto, Y.; et al. Increased expression of macrophage-inducible C-type lectin in adipose tissue of obese mice and humans. Diabetes 2011, 60, 819–826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyake, Y.; Yamasaki, S. Immune Recognition of Pathogen-Derived Glycolipids Through Mincle. Adv. Exp. Med. Biol. 2020, 1204, 31–56. [Google Scholar]
- Tanaka, M. Molecular mechanism of obesity-induced adipose tissue inflammation; the role of Mincle in adipose tissue fibrosis and ectopic lipid accumulation. Endocr. J. 2020, 67, 107–111. [Google Scholar] [CrossRef] [Green Version]
- Coutermarsh-Ott, S.; Eden, K.; Allen, I.C. Beyond the inflammasome: Regulatory NOD-like receptor modulation of the host immune response following virus exposure. J. Gen. Virol. 2016, 97, 825–838. [Google Scholar] [CrossRef]
- Fernandes, F.P.; Leal, V.N.C.; Souza de Lima, D.; Reis, E.C.; Pontillo, A. Inflammasome genetics and complex diseases: A comprehensive review. Eur. J. Hum. Genet. 2020, 28, 1307–1321. [Google Scholar] [CrossRef]
- Sastalla, I.; Crown, D.; Masters, S.L.; McKenzie, A.; Leppla, S.H.; Moayeri, M. Transcriptional analysis of the three Nlrp1 paralogs in mice. BMC Genom. 2013, 14, 188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barra, N.G.; Henriksbo, B.D.; Anhê, F.F.; Schertzer, J.D. The NLRP3 inflammasome regulates adipose tissue metabolism. Biochem. J. 2020, 477, 1089–1107. [Google Scholar] [CrossRef] [Green Version]
- Lupfer, C.; Kanneganti, T.D. Unsolved Mysteries in NLR Biology. Front. Immunol. 2013, 4, 285. [Google Scholar] [CrossRef] [Green Version]
- Kimura, I.; Ichimura, A.; Ohue-Kitano, R.; Igarashi, M. Free Fatty Acid Receptors in Health and Disease. Physiol. Rev. 2020, 100, 171–210. [Google Scholar] [CrossRef] [PubMed]
- Mulero, M.C.; Huxford, T.; Ghosh, G. NF-κB, IκB, and IKK: Integral Components of Immune System Signaling. Adv. Exp. Med. Biol. 2019, 1172, 207–226. [Google Scholar] [PubMed]
- Papa, S.; Bubici, C.; Zazzeroni, F.; Pham, C.G.; Kuntzen, C.; Knabb, J.R.; Dean, K.; Franzoso, G. The NF-kappaB-mediated control of the JNK cascade in the antagonism of programmed cell death in health and disease. Cell Death Differ. 2006, 13, 712–729. [Google Scholar] [CrossRef]
- Klos, A.; Wende, E.; Wareham, K.J.; Monk, P.N. International Union of Basic and Clinical Pharmacology. [corrected]. LXXXVII. Complement peptide C5a, C4a, and C3a receptors. Pharmacol. Rev. 2013, 65, 500–543. [Google Scholar] [CrossRef]
- Shim, K.; Begum, R.; Yang, C.; Wang, H. Complement activation in obesity, insulin resistance, and type 2 diabetes mellitus. World J. Diabetes 2020, 11, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Barbu, A.; Hamad, O.A.; Lind, L.; Ekdahl, K.N.; Nilsson, B. The role of complement factor C3 in lipid metabolism. Mol. Immunol. 2015, 67, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Fraser, D.A.; Bohlson, S.S.; Jasinskiene, N.; Rawal, N.; Palmarini, G.; Ruiz, S.; Rochford, R.; Tenner, A.J. C1q and MBL, components of the innate immune system, influence monocyte cytokine expression. J. Leukoc. Biol. 2006, 80, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Yao, Z.; Zhang, Y.; Wu, H. Regulation of C-reactive protein conformation in inflammation. Inflamm. Res. 2019, 68, 815–823. [Google Scholar] [CrossRef]
- Pattrick, M.; Luckett, J.; Yue, L.; Stover, C. Dual role of complement in adipose tissue. Mol. Immunol. 2009, 46, 755–760. [Google Scholar] [CrossRef] [Green Version]
- Nadeau, L.; Aguer, C. Interleukin-15 as a myokine: Mechanistic insight into its effect on skeletal muscle metabolism. Appl. Physiol. Nutr. Metab. 2019, 44, 229–238. [Google Scholar] [CrossRef]
- Pedersen, B.K.; Febbraio, M.A. Muscles, exercise and obesity: Skeletal muscle as a secretory organ. Nat. Rev. Endocrinol. 2012, 8, 457–465. [Google Scholar] [CrossRef] [PubMed]
- Chiu, J.W.; Binte Hanafi, Z.; Chew, L.C.Y.; Mei, Y.; Liu, H. IL-1α Processing, Signaling and Its Role in Cancer Progression. Cells 2021, 10, 92. [Google Scholar] [CrossRef]
- LaRock, C.N.; Todd, J.; LaRock, D.L.; Olson, J.; O’Donoghue, A.J.; Robertson, A.A.; Cooper, M.A.; Hoffman, H.M.; Nizet, V. IL-1β is an innate immune sensor of microbial proteolysis. Sci. Immunol. 2016, 1, eaah3539. [Google Scholar] [CrossRef] [Green Version]
- Juge-Aubry, C.E.; Somm, E.; Giusti, V.; Pernin, A.; Chicheportiche, R.; Verdumo, C.; Rohner-Jeanrenaud, F.; Burger, D.; Dayer, J.M.; Meier, C.A. Adipose tissue is a major source of interleukin-1 receptor antagonist: Upregulation in obesity and inflammation. Diabetes 2003, 52, 1104–1110. [Google Scholar] [CrossRef] [Green Version]
- Schéle, E.; Benrick, A.; Grahnemo, L.; Egecioglu, E.; Anesten, F.; Pálsdóttir, V.; Jansson, J.O. Inter-relation between interleukin (IL)-1, IL-6 and body fat regulating circuits of the hypothalamic arcuate nucleus. J. Neuroendocrinol. 2013, 25, 580–589. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Molofsky, A.B.; Liang, H.E.; Ricardo-Gonzalez, R.R.; Jouihan, H.A.; Bando, J.K.; Chawla, A.; Locksley, R.M. Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. Science 2011, 332, 243–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho, I.C.; Miaw, S.C. Regulation of IL-4 Expression in Immunity and Diseases. Adv. Exp. Med. Biol. 2016, 941, 31–77. [Google Scholar] [PubMed]
- Tsao, C.H.; Shiau, M.Y.; Chuang, P.H.; Chang, Y.H.; Hwang, J. Interleukin-4 regulates lipid metabolism by inhibiting adipogenesis and promoting lipolysis. J. Lipid Res. 2014, 55, 385–397. [Google Scholar] [CrossRef] [Green Version]
- Huth, C.; Illig, T.; Herder, C.; Gieger, C.; Grallert, H.; Vollmert, C.; Rathmann, W.; Hamid, Y.H.; Pedersen, O.; Hansen, T.; et al. Joint analysis of individual participants’ data from 17 studies on the association of the IL6 variant -174G>C with circulating glucose levels, interleukin-6 levels, and body mass index. Ann. Med. 2009, 41, 128–138. [Google Scholar] [CrossRef]
- Uciechowski, P.; Dempke, W.C.M. Interleukin-6: A Masterplayer in the Cytokine Network. Oncology 2020, 98, 131–137. [Google Scholar] [CrossRef]
- Wunderlich, F.T.; Ströhle, P.; Könner, A.C.; Gruber, S.; Tovar, S.; Brönneke, H.S.; Juntti-Berggren, L.; Li, L.S.; van Rooijen, N.; Libert, C.; et al. Interleukin-6 signaling in liver-parenchymal cells suppresses hepatic inflammation and improves systemic insulin action. Cell Metab. 2010, 12, 237–249. [Google Scholar] [CrossRef]
- Quinn, L.S.; Anderson, B.G. Interleukin-15, IL-15 Receptor-Alpha, and Obesity: Concordance of Laboratory Animal and Human Genetic Studies. J. Obes. 2011, 2011, 456347. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Wu, X.; Khan, R.S.; Kastin, A.J.; Cornelissen-Guillaume, G.G.; Hsuchou, H.; Robert, B.; Halberg, F.; Pan, W. IL-15 receptor deletion results in circadian changes of locomotor and metabolic activity. J. Mol. Neurosci. 2010, 41, 315–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pisarska, M.M.; Dunne, M.R.; O’Shea, D.; Hogan, A.E. Interleukin-17 producing mucosal associated invariant T cells - emerging players in chronic inflammatory diseases? Eur. J. Immunol. 2020, 50, 1098–1108. [Google Scholar] [CrossRef]
- Yasuda, K.; Nakanishi, K.; Tsutsui, H. Interleukin-18 in Health and Disease. Int. J. Mol. Sci. 2019, 20, 649. [Google Scholar] [CrossRef] [Green Version]
- Zorrilla, E.P.; Conti, B. Interleukin-18 null mutation increases weight and food intake and reduces energy expenditure and lipid substrate utilization in high-fat diet fed mice. Brain Behav. Immun. 2014, 37, 45–53. [Google Scholar] [CrossRef] [Green Version]
- Pazos, P.; Lima, L.; Tovar, S.; González-Touceda, D.; Diéguez, C.; García, M.C. Divergent responses to thermogenic stimuli in BAT and subcutaneous adipose tissue from interleukin 18 and interleukin 18 receptor 1-deficient mice. Sci. Rep. 2015, 5, 17977. [Google Scholar] [CrossRef] [Green Version]
- de Oliveira, A.; Hermsdorff, H.H.; Cocate, P.G.; Santos, E.C.; Bressan, J.; Natali, A.J. Accuracy of plasma interleukin-18 and adiponectin concentrations in predicting metabolic syndrome and cardiometabolic disease risk in middle-age Brazilian men. Appl. Physiol. Nutr. Metab. 2015, 40, 1048–1055. [Google Scholar] [CrossRef] [PubMed]
- Wood, I.S.; Wang, B.; Jenkins, J.R.; Trayhurn, P. The pro-inflammatory cytokine IL-18 is expressed in human adipose tissue and strongly upregulated by TNFalpha in human adipocytes. Biochem. Biophys. Res. Commun. 2005, 337, 422–429. [Google Scholar] [CrossRef]
- Liew, F.Y.; Girard, J.P.; Turnquist, H.R. Interleukin-33 in health and disease. Nat. Rev. Immunol. 2016, 16, 676–689. [Google Scholar] [CrossRef]
- Miller, A.M. Role of IL-33 in inflammation and disease. J. Inflamm. 2011, 8, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kasahara, D.I.; Shore, S.A. IL-33, diet-induced obesity, and pulmonary responses to ozone. Respir. Res. 2020, 21, 98. [Google Scholar] [CrossRef] [Green Version]
- Park, H.K.; Kwak, M.K.; Kim, H.J.; Ahima, R.S. Linking resistin, inflammation, and cardiometabolic diseases. Korean J. Intern. Med. 2017, 32, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, D.R.; Lazar, M.A. Human resistin: Found in translation from mouse to man. Trends Endocrinol. Metab. 2011, 22, 259–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sul, H.S. Resistin/ADSF/FIZZ3 in obesity and diabetes. Trends Endocrinol. Metab. 2004, 15, 247–249. [Google Scholar]
- Tian, Y.; Jennings, J.; Gong, Y.; Sang, Y. Viral Infections and Interferons in the Development of Obesity. Biomolecules 2019, 9, 726. [Google Scholar] [CrossRef] [Green Version]
- Raniga, K.; Liang, C. Interferons: Reprogramming the Metabolic Network against Viral Infection. Viruses 2018, 10, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGillicuddy, F.C.; Chiquoine, E.H.; Hinkle, C.C.; Kim, R.J.; Shah, R.; Roche, H.M.; Smyth, E.M.; Reilly, M.P. Interferon gamma attenuates insulin signaling, lipid storage, and differentiation in human adipocytes via activation of the JAK/STAT pathway. J. Biol. Chem. 2009, 284, 31936–31944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McLaughlin, T.; Ackerman, S.E.; Shen, L.; Engleman, E. Role of innate and adaptive immunity in obesity-associated metabolic disease. J. Clin. Investig. 2017, 127, 5–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voss, J.D.; Dhurandhar, N.V. Viral Infections and Obesity. Curr. Obes. Rep. 2017, 6, 28–37. [Google Scholar] [CrossRef]
- Dostert, C.; Grusdat, M.; Letellier, E.; Brenner, D. The TNF Family of Ligands and Receptors: Communication Modules in the Immune System and Beyond. Physiol. Rev. 2019, 99, 115–160. [Google Scholar] [CrossRef]
- Feng, P.; Jyotaki, M.; Kim, A.; Chai, J.; Simon, N.; Zhou, M.; Bachmanov, A.A.; Huang, L.; Wang, H. Regulation of bitter taste responses by tumor necrosis factor. Brain Behav. Immun. 2015, 49, 32–42. [Google Scholar] [CrossRef] [Green Version]
- Sookoian, S.C.; González, C.; Pirola, C.J. Meta-analysis on the G-308A tumor necrosis factor alpha gene variant and phenotypes associated with the metabolic syndrome. Obes Res. 2005, 13, 2122–2131. [Google Scholar] [CrossRef]
- Yu, Z.; Han, S.; Cao, X.; Zhu, C.; Wang, X.; Guo, X. Genetic polymorphisms in adipokine genes and the risk of obesity: A systematic review and meta-analysis. Obesity 2012, 20, 396–406. [Google Scholar] [CrossRef]
- Wang, H.G.; Yang, J.; Han, H.; Xu, F.; Bian, Y.; Zhang, H.; Wang, J.L. TNF-αG-308A polymorphism is associated with insulin resistance: A meta-analysis. Genet. Mol. Res. 2015, 14, 563–573. [Google Scholar] [CrossRef]
- Rakotoarivelo, V.; Variya, B.; Langlois, M.F.; Ramanathan, S. Chemokines in human obesity. Cytokine 2020, 127, 154953. [Google Scholar] [CrossRef]
- Ignacio, R.M.; Gibbs, C.R.; Lee, E.S.; Son, D.S. Differential Chemokine Signature between Human Preadipocytes and Adipocytes. Immune Netw. 2016, 16, 189–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huber, J.; Kiefer, F.W.; Zeyda, M.; Ludvik, B.; Silberhumer, G.R.; Prager, G.; Zlabinger, G.J.; Stulnig, T.M. CC chemokine and CC chemokine receptor profiles in visceral and subcutaneous adipose tissue are altered in human obesity. J. Clin. Endocrinol. Metab. 2008, 93, 3215–3221. [Google Scholar] [CrossRef] [PubMed]
- Katakura, T.; Miyazaki, M.; Kobayashi, M.; Herndon, D.N.; Suzuki, F. CCL17 and IL-10 as effectors that enable alternatively activated macrophages to inhibit the generation of classically activated macrophages. J. Immunol. 2004, 172, 1407–1413. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, Q.; Ou, J.; Zhang, S.; Ming, Y. Crosstalk between the CX3CL1/CX3CR1 Axis and Inflammatory Signaling Pathways in Tissue Injury. Curr. Protein Pept. Sci. 2019, 20, 844–854. [Google Scholar] [CrossRef] [PubMed]
- Tillmann, S.; Bernhagen, J.; Noels, H. Arrest Functions of the MIF Ligand/Receptor Axes in Atherogenesis. Front. Immunol. 2013, 4, 115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jankauskas, S.S.; Wong, D.W.L.; Bucala, R.; Djudjaj, S.; Boor, P. Evolving complexity of MIF signaling. Cell. Signal. 2019, 57, 76–88. [Google Scholar] [CrossRef]
- Koska, J.; Stefan, N.; Dubois, S.; Trinidad, C.; Considine, R.V.; Funahashi, T.; Bunt, J.C.; Ravussin, E.; Permana, P.A. mRNA concentrations of MIF in subcutaneous abdominal adipose cells are associated with adipocyte size and insulin action. Int. J. Obes. 2009, 33, 842–850. [Google Scholar] [CrossRef] [Green Version]
- Xin, P.; Xu, X.; Deng, C.; Liu, S.; Wang, Y.; Zhou, X.; Ma, H.; Wei, D.; Sun, S. The role of JAK/STAT signaling pathway and its inhibitors in diseases. Int. Immunopharmacol. 2020, 80, 106210. [Google Scholar] [CrossRef] [PubMed]
- Yong, Y.H.; Wang, P.; Jia, R.M.; Gooneratne, R.; Robert Wang, H.C.; Liao, M.; Ju, X.H. SOCS3 control the activity of NF-κB induced by HSP70 via degradation of MyD88-adapter-like protein (Mal) in IPEC-J2 cells. Int. J. Hyperth. 2019, 36, 151–159. [Google Scholar] [CrossRef] [Green Version]
- Fujimoto, M.; Naka, T. Regulation of cytokine signaling by SOCS family molecules. Trends Immunol. 2003, 24, 659–666. [Google Scholar] [CrossRef] [PubMed]
- Terán-Cabanillas, E.; Hernández, J. Role of Leptin and SOCS3 in Inhibiting the Type I Interferon Response During Obesity. Inflammation 2017, 40, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Zheng, D.; Liwinski, T.; Elinav, E. Interaction between microbiota and immunity in health and disease. Cell Res. 2020, 30, 492–506. [Google Scholar] [CrossRef] [PubMed]
- Liwinski, T.; Zheng, D.; Elinav, E. The microbiome and cytosolic innate immune receptors. Immunol. Rev. 2020, 297, 207–224. [Google Scholar] [CrossRef]
- Nardelli, C.; Granata, I.; D’Argenio, V.; Tramontano, S.; Compare, D.; Guarracino, M.R.; Nardone, G.; Pilone, V.; Sacchetti, L. Characterization of the Duodenal Mucosal Microbiome in Obese Adult Subjects by 16S rRNA Sequencing. Microorganisms 2020, 8, 485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cortés-Martín, A.; Colmenarejo, G.; Selma, M.V.; Espín, J.C. Genetic Polymorphisms, Mediterranean Diet and Microbiota-Associated Urolithin Metabotypes can Predict Obesity in Childhood-Adolescence. Sci. Rep. 2020, 10, 7850. [Google Scholar] [CrossRef]
- Granata, I.; Nardelli, C.; D’Argenio, V.; Tramontano, S.; Compare, D.; Guarracino, M.R.; Nardone, G.; Pilone, V.; Sacchetti, L. Duodenal Metatranscriptomics to Define Human and Microbial Functional Alterations Associated with Severe Obesity: A Pilot Study. Microorganisms 2020, 8, 1811. [Google Scholar] [CrossRef] [PubMed]
- Hall, A.B.; Tolonen, A.C.; Xavier, R.J. Human genetic variation and the gut microbiome in disease. Nat. Rev. Genet. 2017, 18, 690–699. [Google Scholar] [CrossRef]
- Turnbaugh, P.J.; Ley, R.E.; Mahowald, M.A.; Magrini, V.; Mardis, E.R.; Gordon, J.I. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006, 444, 1027–1031. [Google Scholar] [CrossRef] [PubMed]
- Bäckhed, F.; Ding, H.; Wang, T.; Hooper, L.V.; Koh, G.Y.; Nagy, A.; Semenkovich, C.F.; Gordon, J.I. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl. Acad. Sci. USA 2004, 101, 15718–15723. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, T.; Hovingh, E.S.; Foerster, E.G.; Abdel-Nour, M.; Philpott, D.J.; Girardin, S.E. NOD1 and NOD2 in inflammation, immunity and disease. Arch. Biochem. Biophys. 2019, 670, 69–81. [Google Scholar] [CrossRef] [PubMed]
- Li, E.; Hamm, C.M.; Gulati, A.S.; Sartor, R.B.; Chen, H.; Wu, X.; Zhang, T.; Rohlf, F.J.; Zhu, W.; Gu, C.; et al. Inflammatory bowel diseases phenotype, C. difficile and NOD2 genotype are associated with shifts in human ileum associated microbial composition. PLoS ONE 2012, 7, e26284. [Google Scholar]
- Bonder, M.J.; Kurilshikov, A.; Tigchelaar, E.F.; Mujagic, Z.; Imhann, F.; Vila, A.V.; Deelen, P.; Vatanen, T.; Schirmer, M.; Smeekens, S.P.; et al. The effect of host genetics on the gut microbiome. Nat. Genet. 2016, 48, 1407–1412. [Google Scholar] [CrossRef]
- Knights, D.; Silverberg, M.S.; Weersma, R.K.; Gevers, D.; Dijkstra, G.; Huang, H.; Tyler, A.D.; van Sommeren, S.; Imhann, F.; Stempak, J.M.; et al. Complex host genetics influence the microbiome in inflammatory bowel disease. Genome Med. 2014, 6, 107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalkanli Tas, S.; Kirkik, D.; Tanoglu, A.; Kahraman, R.; Ozturk, K.; Esen, M.F.; Coskunpinar, M.E.; Cagiltay, E. Polymorphisms in Toll-like receptors 1, 2, 5, and 10 are associated with predisposition to Helicobacter pylori infection. Eur. J. Gastroenterol. Hepatol. 2020, 32, 1141–1146. [Google Scholar] [CrossRef]
- Xu, H.; Yang, J.; Gao, W.; Li, L.; Li, P.; Zhang, L.; Gong, Y.N.; Peng, X.; Xi, J.J.; Chen, S.; et al. Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome. Nature 2014, 513, 237–241. [Google Scholar] [CrossRef]
- Khachatryan, Z.A.; Ktsoyan, Z.A.; Manukyan, G.P.; Kelly, D.; Ghazaryan, K.A.; Aminov, R.I. Predominant role of host genetics in controlling the composition of gut microbiota. PLoS ONE 2008, 3, e3064. [Google Scholar] [CrossRef] [Green Version]
- Weissbrod, O.; Rothschild, D.; Barkan, E.; Segal, E. Host genetics and microbiome associations through the lens of genome wide association studies. Curr. Opin. Microbiol. 2018, 44, 9–19. [Google Scholar] [CrossRef]
Knocked out Gene | Phenotype of WAT | References |
---|---|---|
Tlr2 | Protection against accumulation of macrophages | [50] |
Tlr3 | Protection against high-fat-diet–induced obesity Attenuated macrophage infiltration | [51] |
Tlr4 | Prevention of obesity Lower macrophage infiltration | [52] |
Tlr4 | Reduced adipose-tissue levels of inflammatory markers and macrophage content | [53] |
Tlr2 or Tlr4 but not Tlr5 | No weight loss in obese mice when fed a low-fat diet | [54] |
Tlr5 | Decreased weight reduction after low-fat diet | [55] |
Tlr7 or Tlr7 + Tlr8 | Protection against body weight gain | [56] |
Tlr9 | Higher weight and more body fat; dramatic increase in M1 macrophage number | [57] |
Cd14 | Lower adiposity | [58] |
Ffar2 | Lower body fat mass, lower macrophage content | [59] |
Ffar4 | Obesity, higher WAT inflammation | [60] |
Clec4e | Epididymal fat weight is significantly higher, WAT inflammation and fibrosis are attenuated, number of crownlike structures is significantly diminished | [61] |
Fcer1g | Attenuated diet-induced obesity and WAT inflammation | [62] |
Casp1 | Obesity with age- and sex-dependent differences | [63] |
Nlrp1 | Spontaneous obesity | [64] |
Il1a | Reduced adiposity | [65] |
Il1b | Larger fat depots with similar degree of adipocyte hypertrophy, higher levels of adipogenesis markers, enhanced M1 polarization | [66] |
Il6 | Absence of anti-obesity effects of exercise training | [67] |
Il6 | Maturity onset of obesity | [68] |
Il15 | Larger amounts of body fat | [69] |
Il17 | Lower weight and reduced WAT inflammation | [70] |
Il18 | Spontaneous obesity | [71] |
Il1rI | Maturity onset of obesity | [72] |
Il1rI | Reduced WAT inflammation | [73] |
Il1rn | Obesity resistance | [74] |
Il18 | Spontaneous obesity | [75] |
Il18r1 | Spontaneous weight gain | |
Tnfrsf1a + Tnfrsf1b | Higher obesity, increased macrophage infiltration, but with predominance of anti-inflammatory M2 macrophages | [76] |
Ccl2 | Protection against obesity | [77] |
Ccr2 | Partial protection against diet-induced obesity | [78] |
Crp (Rattus norvegicus) | Reduction in weight gain and food intake | [79] |
C3 | Reduction in weight gain, but no reduction in WAT inflammation | [80] |
C3aR | Transient resistance to diet-induced obesity | [81] |
C5ar1 | Increased WAT, larger adipocyte size, weaker accumulation of total and proinflammatory M1 macrophages | [82] |
C5ar2 | Hyperphagia (~60% increase in total food intake) yet maintained same body weight; on HFD, average adipocyte size is significantly reduced | [83] |
Mbl1 + Mbl2 | Increased adipocyte size, greater influx of macrophages | [84] |
Nfkb1 | Reduction in obesity | [85] |
Ikbkb in astrocytes | Protection against obesity | [86] |
Ikbke | Protection against obesity | [87] |
Ikbke | Protection against obesity and inflammation in WAT | [88] |
Jak2 in adipocytes | Susceptibility to HFD-induced obesity | [89] |
Stat5 in adipocytes | Increased adiposity | [90] |
Socs2 | Higher adipose-tissue mass independently of diet | [91] |
Gene | SNP ID, Risk Allele, and Location | Phenotype | Population | References |
---|---|---|---|---|
PRR, coreceptors, and regulators | ||||
TLR2 | rs5743708 G, missense | Higher risk of morbid obesity | Turkey | [92] |
TLR4 | rs11536889 C, 3′ UTR | Protection against overweight | Argentina | [93] |
TLR4 | rs4986790 G + rs4986791 T, missense (cosegregated among Europeans) | Increased total body fat and visceral fat | whites | [94] |
TLR4 | rs1928295 T, intergenic | Higher BMI | Europeans | [95] |
TLR5 | rs5744168 A, stop gained | Protection against obesity, lower BMI | Saudi Arabia | [96] |
LRRFIP1 | rs11680012 C, missense and potentially splice site | Higher abdominal adiposity and higher levels of inflammation markers | Canada | [97] |
CD14 | rs2569190 C, intron | Higher BMI | Korea | [98] |
NLRC3 | rs758747 T, noncoding | Higher risk of obesity | Europeans | [95] |
NLRC3 | rs758747 T, noncoding | Higher BMI | Pakistan | [99] |
NLRC3 | rs758747 T, noncoding | Higher BMI | Pima Indians | [100] |
NLRP3 | rs10754558 G, 3′ UTR | Protection against obesity | Brazil | [101] |
FFAR4 | rs116454156 A, missense | Higher risk of obesity | Europeans | [102] |
Cytokines and cytokine receptors | ||||
IL1A | rs17561 A–rs1800587 A, missense: 2KB upstream | Increased BMI | Mexico, male adolescents | [103] |
IL1A | rs1800587 A, missense | Increased BMI | Korea, healthy obese women | [104] |
rs17561 A, 2KB upstream | ||||
IL1B | rs1143627 A/G heterozygotes, 5′ UTR | Lower BMI, total fat | Sweden, elderly men | [105] |
IL1B | rs1143627 AA, 5′ UTR | Higher risk of obesity | Japan | [106] |
IL1B | rs1143634 A, synonymous | Lower total fat mass and BMI | Sweden, men | [107] |
IL-1RN | rs2234663, allele II (2 VNTRs of 86 bp carriers), intron | Increased total fat | ||
IL-1RN | rs4252041 C, 3′ UTR | Higher total fat mass, body weight, and BMI | Sweden, men | [108] |
rs419598 C, synonymous | Higher total fat mass and body weight | |||
IL-1RN | rs2234663, IL-1RN*2 86 bp repeat VNTR, intron | Increased total body fat, higher overall adiposity | Malaysia | [109] |
IL4 | rs2234665, 70 bp repeat VNTR allele B2, intron | |||
IL6 | rs2069845 G, intron moderate linkage disequilibrium with rs1800795 | Increased risk of obesity, higher weight, BMI, waist and hip circumferences | India, children | [110] |
IL6R | rs7514452 C, 3′ UTR | |||
IL6 | rs1800795 GG, intron | Increased risk of obesity | Greece, children | [111] |
IL6 | rs1800795 G, intron | Increased risk of obesity. | Meta-analysis | [112] |
IL6 | rs1800796 C, intron | Greater waist circumference | Mexican-Americans | [113] |
IL6 | rs10242595 A, 3′ near gene | Decreased fat mass | white men | [114] |
IL6R | rs2228145 A, missense | Higher abdominal obesity | Japan, men | [115] |
IL6R | rs2228145 A, missense; rs4845623 A, intron; rs2229238 T, 3′ UTR | Higher BMI | Pima Indians | [116] |
IL6R | rs2228145 A, missense | Increased risk of obesity | Mediterranean whites | [117] |
IL6R | rs71586016 common 149-bp allele of microsatellite repeat polymorphism, intron | Higher BMI | Spain, women | [118] |
IL-10 | rs1800872 TT, IL-10 2KB upstream/IL-19 intron | Increased risk of obesity | Italia | [119] |
rs1800896, rs1800871, rs1800872 TAT/TAT genotype, IL-10 2KB upstream/IL-19 intron | Increased risk of obesity | |||
IL15 | rs2099884 T, intergenic | Higher BMI | USA, children | [120] |
IL15 | rs1589241 T, intron | Higher BMI | USA | [121] |
rs1057972 A, noncoding | ||||
IL15RA | rs3136618 T, intron | Women with normal-weight obesity (De Lorenzo syndrome) | whites | [122] |
IL18 | rs1946518 T, 2KB upstream | Increased risk of obesity | Korea, women | [123] |
IL18 | rs1946518 TT, 2KB upstream | Elevated risk of obesity and overweight | Pakistan | [124]. |
IL18 | rs3882891 G, intron | Protective against obesity depending on linoleic acid consumption | Germany | [125] |
IL18RAP | rs7559479 G, 3′ UTR | higher obesity risk and BMI | Spain | [126] |
rs2293225 T, 3′ UTR | lower obesity risk and BMI | |||
rs2293225 T, intron | Lower obesity risk | |||
IL33 | rs7044343 T, intron | Protective against central obesity | Mexico | [127]. |
IL1RL1 | rs3771180 T, intron; rs13431828 T, 5′ UTR; rs3214363 del T, intron; rs1420101 C, noncoding; rs12905 G, noncoding; rs3771175 A, noncoding; rs3821204 C, noncoding; rs12712142 C, noncoding; rs10204137 G, missense; rs4988958 C, synonymous; rs10206753 C, missense | Higher obesity risk | South Korea | [128] |
IL1RAP | rs9990107 A, 2KB upstream; rs3836449 delCAGGGTGCCCCT, intron | |||
IFNGR1 | rs13201877 G, intron | Higher obesity risk | Europeans | [95] |
IFNGR1 | rs13201877 G, intron | Higher obesity risk | Germany, children | [129] |
MIF | rs755622 CC, 2KB upstream | Higher abdominal obesity risk, higher risk of new-onset diabetes | Turkey | [130] |
MIF | rs5844572 ins ATTC 6 VNTR, 2KB upstream | Higher obesity risk | Japan | [131] |
RETN | rs1862513 CC, 2KB upstream | Higher BMI | India | [132] |
RETN | rs1862513 C, 2KB upstream | Higher BMI | Tunisia | [133] |
TNF superfamily | ||||
TNF | rs1800630 A, 2KB upstream; rs1799964 C, 2KB upstream | Higher obesity risk | Asian Indians, adolescents | [134]. |
TNF | rs1800629 A, 2KB upstream | Higher BMI | Egypt | [135]. |
TNF | rs1800629 GG, 2KB upstream | Higher risk of abdominal obesity | French | [136] |
LTA | rs915654 A, intron | Higher BMI, greater waist circumference | ||
TNFRSF13B | rs4343329 G, intergenic; rs7225344 G, intergenic; rs4985700 G, intron | Visceral fat mass | Europeans | [137] |
Complement system | ||||
CRP | rs1130864 AA, intron | Increased BMI | Mexico | [138] |
rs1130864 (Intron), rs1205 (3′ UTR), rs2794521 (2KB upstream), rs3093062 (2KB upstream) ACCC haplotype | ||||
C3 | rs2230199 G, missense | Higher BMI | Europeans | [139] |
Innate-immunity chemokine and chemokine receptors | ||||
CCL2 | rs1024611 A, noncoding | Lower BMI and body fat proportion | Mexico | [140] |
CCR2 | rs17998649 A, missense | Higher BMI | ||
CCL20 | rs6749704, T 2KB upstream | Obesity among patients with type 2 diabetes mellitus | Tatars | [141] |
CCL17 | rs223828 T, intron | |||
CX3CR1 | rs3732378 AA, missense | Higher obesity risk | Canada | [142] |
rs3732379 TT, missense | Greater mean waist circumference in women | |||
NF-κB and JAK/STAT signaling components | ||||
NFKB1 | rs28362491 ins/ins genotype and ins allele 94 ins/del ATTG, 2KB upstream | Morbid obesity | Turkey | [92] |
SOCS3 | rs4969170 G, intron | Higher BMI | European Americans | [143] |
STAT3 | rs4796793 C, 2KB upstream | |||
STAT3 | rs1053005 CC, 3′ UTR | Lower risks of both general obesity and central obesity | Chinese Han | [144] |
STAT3 | rs8069645 G, intron; rs744166 G, intron; rs1053005 C, 3′ UTR; rs2293152 CC, missense | Increased risk of abdominal obesity | Ireland | [145] |
SOCS1 | rs33977706 A, 2KB upstream | Lower BMI | Denmark | [146] |
rs243330 T, 2KB upstream | Higher obesity risk | |||
SOCS3 | rs8070204 G, 2KB upstream; rs7221341 C, 3′ UTR; rs2280148 G, 3′ UTR | Higher BMI | Hispanic Americans | [147] |
SOCS3 | rs2280148 G, 3′ UTR | Higher BMI | Turkish, children | [148] |
SOCS3 | rs4969168 A, 3′ UTR | Higher weight | Han Chinese | [149] |
SOCS3 | rs6501199 G, intergenic | Higher BMI | whites | [150] |
rs4436839 G, intergenic | Greater waist circumference | Asians | ||
IKBKB | rs3747811 TT, intron | Higher BMI | whites |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mikhailova, S.V.; Ivanoshchuk, D.E. Innate-Immunity Genes in Obesity. J. Pers. Med. 2021, 11, 1201. https://doi.org/10.3390/jpm11111201
Mikhailova SV, Ivanoshchuk DE. Innate-Immunity Genes in Obesity. Journal of Personalized Medicine. 2021; 11(11):1201. https://doi.org/10.3390/jpm11111201
Chicago/Turabian StyleMikhailova, Svetlana V., and Dinara E. Ivanoshchuk. 2021. "Innate-Immunity Genes in Obesity" Journal of Personalized Medicine 11, no. 11: 1201. https://doi.org/10.3390/jpm11111201
APA StyleMikhailova, S. V., & Ivanoshchuk, D. E. (2021). Innate-Immunity Genes in Obesity. Journal of Personalized Medicine, 11(11), 1201. https://doi.org/10.3390/jpm11111201