Liquid Biopsy-Based Biomolecular Alterations for the Diagnosis of Triple-Negative Breast Cancer in Adults: A Scoping Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Protocol and Reporting
2.2. Information Sources and Search
2.3. Eligibility Criteria
2.4. Study Selection and Data Extraction
2.5. Synthesis of Results
3. Results
3.1. Study Selection and Characteristics
3.2. Patients’ Characteristics
3.3. Novel Protein-Based Molecular Biomarkers Associated with TNBC Diagnosis
3.4. Novel RNA-Based Molecular Biomarkers Associated with TNBC Diagnosis
3.5. Novel DNA-Based Molecular Biomarkers Associated with TNBC Diagnosis
4. Discussion
Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AUC | Area under the receiver operating characteristic curve |
| BC | Breast cancer |
| cfDNA | Cell-free DNA |
| CTC | Circulating tumor cell |
| ctDNA | Circulating tumor DNA |
| ddPCR | Digital droplet polymerase chain reaction |
| ELISA | Enzyme-linked immunosorbent assay |
| EVs | Extracellular vesicles |
| HILIC | Hydrophilic interaction liquid chromatography |
| lncRNA | Long non-coding RNA |
| MALDI-TOF-MS | Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry |
| miRNA | MicroRNA |
| MSP | Methylation-specific polymerase chain reaction |
| NGS | Next-generation sequencing |
| RT-qPCR | Reverse transcription quantitative polymerase chain reaction |
| SDS-PAGE | Sodium dodecyl sulfate polyacrylamide gel electrophoresis |
| SRM | Selected reaction monitoring |
| SWATH | Sequential window acquisition of all theoretical fragment ion spectra |
| TNBC | Triple-negative breast cancer |
| WB | Western blot |
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Tsang, J.Y.S.; Tse, G.M. Molecular Classification of Breast Cancer. Adv. Anat. Pathol. 2020, 27, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Tan, P.H.; Ellis, I.; Allison, K.; Brogi, E.; Fox, S.B.; Lakhani, S.; Lazar, A.J.; Morris, E.A.; Sahin, A.; Salgado, R.; et al. The 2019 World Health Organization Classification of Tumours of the Breast. Histopathology 2020, 77, 181–185. [Google Scholar] [CrossRef] [PubMed]
- Derakhshan, F.; Reis-Filho, J.S. Pathogenesis of Triple-Negative Breast Cancer. Annu. Rev. Pathol. Mech. Dis. 2021, 17, 181–204. [Google Scholar] [CrossRef]
- Kwon, M.R.; Chang, Y.; Park, B.; Ryu, S.; Kook, S.H. Performance Analysis of Screening Mammography in Asian Women under 40 Years. Breast Cancer 2023, 30, 241–248. [Google Scholar] [CrossRef]
- Stibbards-Lyle, M.; Malinovska, J.; Badawy, S.; Schedin, P.; Rinker, K.D. Status of Breast Cancer Detection in Young Women and the Potential of Liquid Biopsy. Front. Oncol. 2024, 14, 1398196. [Google Scholar] [CrossRef]
- Bilous, M. Breast Core Needle Biopsy: Issues and Controversies. Mod. Pathol. 2010, 23, S36–S45. [Google Scholar] [CrossRef]
- Schnitt, S.J. Problematic Issues in Breast Core Needle Biopsies. Mod. Pathol. 2019, 32, 71–76. [Google Scholar] [CrossRef]
- Azeredo-da-Silva, A.F.; Zanotto, B.S.; Martins, F.; Navarro, N.; Alencar, R.; Medeiros, C. Health Care Accessibility and Mobility in Breast Cancer: A Latin American Perspective. BMC Health Serv. Res. 2024, 24, 764. [Google Scholar] [CrossRef]
- Sánchez Galindo, B.; López-Torres Hidalgo, J.; López González, Á.; Sánchez Martínez, C.M.; Castaño Díaz, M.; Rabanales Sotos, J. Intervalos de tiempo para el diagnóstico y tratamiento en pacientes con cáncer de mama [Time intervals for diagnosis and treatment in breast cancer patients]. Aten Primaria 2025, 57, 103153. (In Spanish) [Google Scholar] [CrossRef]
- Madariaga, B.; Mondschein, S.; Torres, S. Inequities in Breast Cancer Outcomes in Chile: An Analysis of Case Fatality Ratios and Survival Rates (2007–2018). PLoS ONE 2025, 20, e0325252. [Google Scholar] [CrossRef] [PubMed]
- Acevedo, F.; Walbaum, B.; Medina, L.; Merino, T.; Camus, M.; Puschel, K.; Ramírez, K.; Manzor, M.; Veglia, P.; Martinez, R.; et al. Clinical Characteristics, Risk Factors, and Outcomes in Chilean Triple-Negative Breast Cancer Patients: A Real-World Study. Breast Cancer Res. Treat. 2023, 197, 449–459. [Google Scholar] [CrossRef] [PubMed]
- Tay, T.K.Y.; Tan, P.H. Liquid Biopsy in Breast Cancer: A Focused Review. Arch. Pathol. Lab. Med. 2021, 145, 678–686. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Guo, H.; Zhao, Y.; Liu, Z.; Wang, C.; Bu, J.; Sun, T.; Wei, J. Liquid Biopsy in Cancer: Current Status, Challenges and Future Prospects. Signal Transduct. Target. Ther. 2024, 9, 336. [Google Scholar] [CrossRef]
- Alba-Bernal, A.; Lavado-Valenzuela, R.; Domínguez-Recio, M.E.; Jiménez-Rodriguez, B.; Queipo-Ortuño, M.I.; Alba, E.; Comino-Méndez, I. Challenges and Achievements of Liquid Biopsy Technologies Employed in Early Breast Cancer. EBioMedicine 2020, 62, 103100. [Google Scholar] [CrossRef]
- Qiu, P.; Yu, X.; Zheng, F.; Gu, X.; Huang, Q.; Qin, K.; Hu, Y.; Liu, B.; Xu, T.; Zhang, T.; et al. Advancements in Liquid Biopsy for Breast Cancer: Molecular Biomarkers and Clinical Applications. Cancer Treat. Rev. 2025, 139, 102979. [Google Scholar] [CrossRef]
- Malik, S.; Zaheer, S. The Impact of Liquid Biopsy in Breast Cancer: Redefining the Landscape of Non-Invasive Precision Oncology. J. Liq. Biopsy 2025, 8, 100299. [Google Scholar] [CrossRef]
- Mazzeo, R.; Sears, J.; Palmero, L.; Bolzonello, S.; Davis, A.A.; Gerratana, L.; Puglisi, F. Liquid Biopsy in Triple-Negative Breast Cancer: Unlocking the Potential of Precision Oncology. ESMO Open 2024, 9, 103700. [Google Scholar] [CrossRef]
- Zaikova, E.; Cheng, B.Y.C.; Cerda, V.; Kong, E.; Lai, D.; Lum, A.; Bates, C.; Brok, W.D.; Kono, T.; Bourque, S.; et al. Circulating Tumour Mutation Detection in Triple-Negative Breast Cancer as an Adjunct to Tissue Response Assessment. NPJ Breast Cancer 2024, 10, 3. [Google Scholar] [CrossRef]
- Sheng, J.; Zong, X. Liquid Biopsy in TNBC: Significance in Diagnostics, Prediction, and Treatment Monitoring. Front. Oncol. 2025, 15, 1607960. [Google Scholar] [CrossRef]
- Levac, D.; Colquhoun, H.; O’Brien, K.K. Scoping Studies: Advancing the Methodology. Implement. Sci. 2010, 5, 69. [Google Scholar] [CrossRef] [PubMed]
- Li, C.I.; Mirus, J.E.; Zhang, Y.; Ramirez, A.B.; Ladd, J.J.; Prentice, R.L.; McIntosh, M.W.; Hanash, S.M.; Lampe, P.D. Discovery and Preliminary Confirmation of Novel Early Detection Biomarkers for Triple-Negative Breast Cancer Using Preclinical Plasma Samples from the Women’s Health Initiative Observational Study. Breast Cancer Res. Treat. 2012, 135, 611–618. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.N.; Sun, P.; Liu, J.N.; Yu, C.Y.; Qu, H.J.; Jiao, A.H.; Zhang, L.M. Analysis of the Differences of Serum Protein Mass Spectrometry in Patients with Triple-Negative Breast Cancer and Non-Triple-Negative Breast Cancer. Tumor Biol. 2014, 35, 9751–9757. [Google Scholar] [CrossRef] [PubMed]
- Suman, S.; Basak, T.; Gupta, P.; Mishra, S.; Kumar, V.; Sengupta, S.; Shukla, Y. Quantitative Proteomics Revealed Novel Proteins Associated with Molecular Subtypes of Breast Cancer. J. Proteom. 2016, 148, 183–193. [Google Scholar] [CrossRef]
- Gajbhiye, A.; Dabhi, R.; Taunk, K.; Jagadeeshaprasad, M.G.; RoyChoudhury, S.; Mane, A.; Bayatigeri, S.; Chaudhury, K.; Santra, M.K.; Rapole, S. Multipronged Quantitative Proteomics Reveals Serum Proteome Alterations in Breast Cancer Intrinsic Subtypes. J. Proteom. 2017, 163, 1–13. [Google Scholar] [CrossRef]
- Del Pilar Chantada-Vázquez, M.; López, A.C.; Vence, M.G.; Vázquez-Estévez, S.; Acea-Nebril, B.; Calatayud, D.G.; Jardiel, T.; Bravo, S.B.; Núñez, C. Proteomic Investigation on the Bio-Corona of Au, Ag and Fe Nanoparticles for the Discovery of Triple-Negative Breast Cancer Serum Protein Biomarkers. J. Proteom. 2020, 212, 103581. [Google Scholar] [CrossRef]
- Fang, J.; Tao, T.; Zhang, Y.; Lu, H. A Barcode Mode Based on Glycosylation Sites of Membrane-Type Mannose Receptor as a New Potential Diagnostic Marker for Breast Cancer. Talanta 2019, 191, 21–26. [Google Scholar] [CrossRef]
- Chanana, P.; Pandey, A.K.; Yadav, B.S.; Kaur, J.; Singla, S.; Dimri, K.; Trehan, R.; Krishan, P. Significance of Serum Vascular Endothelial Growth Factor and Cancer Antigen 15.3 in Patients with Triple-Negative Breast Cancer. J. Radiother. Pract. 2014, 13, 60–67. [Google Scholar] [CrossRef]
- Cui, R.; Zou, J.; Zhao, Y.; Zhao, T.; Ren, L.; Li, Y. The Dual-Crosslinked Prospective Values of RAI14 for the Diagnosis and Chemosurveillance in Triple-Negative Breast Cancer. Ann. Med. 2023, 55, 820–836. [Google Scholar] [CrossRef]
- Song, D.; Yue, L.; Zhang, J.; Ma, S.; Zhao, W.; Guo, F.; Fan, Y.; Yang, H.; Liu, Q.; Zhang, D.; et al. Diagnostic and Prognostic Significance of Serum Apolipoprotein C-I in Triple-Negative Breast Cancer Based on Mass Spectrometry. Cancer Biol. Ther. 2016, 17, 635–647. [Google Scholar] [CrossRef]
- Luo, R.; Zheng, C.; Song, W.; Tan, Q.; Shi, Y.; Han, X. High-Throughput and Multi-Phase Identification of Autoantibodies in Diagnosing Early-Stage Breast Cancer and Subtypes. Cancer Sci. 2022, 113, 770–783. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, P.; Gibbs, L.D.; Maji, S.; Lewis, C.M.; Suzuki, S.; Vishwanatha, J.K. Serum Exosomal Annexin A2 Is Associated with African-American Triple-Negative Breast Cancer and Promotes Angiogenesis. Breast Cancer Res. 2020, 22, 11. [Google Scholar] [CrossRef] [PubMed]
- Schummer, M.; Thorpe, J.; Giraldez, M.D.; Bergan, L.; Tewari, M.; Urban, N. Evaluating Serum Markers for Hormone Receptor-Negative Breast Cancer. PLoS ONE 2015, 10, e0142911. [Google Scholar] [CrossRef] [PubMed]
- Santana, M.F.M.; Sawada, M.I.B.A.C.; Junior, D.R.S.; Giacaglia, M.B.; Reis, M.; Xavier, J.; Côrrea-Giannella, M.L.; Soriano, F.G.; Gebrim, L.H.; Ronsein, G.E.; et al. Proteomic Profiling of HDL in Newly Diagnosed Breast Cancer Based on Tumor Molecular Classification and Clinical Stage of Disease. Cells 2024, 13, 1327. [Google Scholar] [CrossRef]
- Bilir, C.; Engin, H.; Can, M.; Likhan, S.; Demirtas, D.; Kuzu, F.; Bayraktaroglu, T. Increased Serum Tumor Necrosis Factor Receptor-Associated Factor-6 Expression in Patients with Non-Metastatic Triple-Negative Breast Cancer. Oncol. Lett. 2015, 9, 2819–2824. [Google Scholar] [CrossRef]
- Chung, J.M.; Jung, Y.; Kim, Y.P.; Song, J.; Kim, S.; Kim, J.Y.; Kwon, M.; Yoon, J.H.; Kim, M.D.; Lee, J.K.; et al. Identification of the Thioredoxin-Like 2 Autoantibody as a Specific Biomarker for Triple-Negative Breast Cancer. J. Breast Cancer 2018, 21, 87–90. [Google Scholar] [CrossRef]
- Sharma, U.; Barwal, T.S.; Khandelwal, A.; Malhotra, A.; Rana, M.K.; Singh Rana, A.P.; Imyanitov, E.N.; Vasquez, K.M.; Jain, A. LncRNA ZFAS1 Inhibits Triple-Negative Breast Cancer by Targeting STAT3. Biochimie 2021, 182, 99–107. [Google Scholar] [CrossRef]
- Shin, V.Y.; Siu, J.M.; Cheuk, I.; Ng, E.K.; Kwong, A. Circulating Cell-Free miRNAs as Biomarkers for Triple-Negative Breast Cancer. Br. J. Cancer 2015, 112, 1751–1759. [Google Scholar] [CrossRef]
- Kahraman, M.; Röske, A.; Laufer, T.; Fehlmann, T.; Backes, C.; Kern, F.; Kohlhaas, J.; Schrörs, H.; Saiz, A.; Zabler, C.; et al. MicroRNA in Diagnosis and Therapy Monitoring of Early-Stage Triple-Negative Breast Cancer. Sci. Rep. 2018, 8, 11584. [Google Scholar] [CrossRef]
- Kumar, V.; Gautam, M.; Chaudhary, A.; Chaurasia, B. Impact of Three miRNA Signature as Potential Diagnostic Marker for Triple-Negative Breast Cancer Patients. Sci. Rep. 2023, 13, 21643. [Google Scholar] [CrossRef]
- Liu, M.; Xing, L.Q.; Liu, Y.J. A Three-Long Noncoding RNA Signature as a Diagnostic Biomarker for Differentiating Between Triple-Negative and Non-Triple-Negative Breast Cancers. Medicine 2017, 96, e6222. [Google Scholar] [CrossRef] [PubMed]
- Souza, K.C.B.; Evangelista, A.F.; Leal, L.F.; Souza, C.P.; Vieira, R.A.; Causin, R.L.; Neuber, A.C.; Pessoa, D.P.; Passos, G.A.S.; Reis, R.M.V.; et al. Identification of Cell-Free Circulating MicroRNAs for the Detection of Early Breast Cancer and Molecular Subtyping. J. Oncol. 2019, 2019, 8393769. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, A.M.; Said, M.M.; Hilal, A.M.; Medhat, A.M.; Abd Elsalam, I.M. Candidate Circulating MicroRNAs as Potential Diagnostic and Predictive Biomarkers for the Monitoring of Locally Advanced Breast Cancer Patients. Tumor Biol. 2020, 42, 1010428320963811. [Google Scholar] [CrossRef] [PubMed]
- Qattan, A.; Intabli, H.; Alkhayal, W.; Eltabache, C.; Tweigieri, T.; Amer, S.B. Robust Expression of Tumor Suppressor miRNAs let-7 and miR-195 Detected in Plasma of Saudi Female Breast Cancer Patients. BMC Cancer 2017, 17, 799. [Google Scholar] [CrossRef]
- Shaheen, J.; Shahid, S.; Shahzadi, S.; Akhtar, M.W.; Sadaf, S. Identification of Circulating miRNAs as Non-Invasive Biomarkers of Triple-Negative Breast Cancer in the Pakistani Population. Pak. J. Zool. 2019, 51, 1113–1121. [Google Scholar] [CrossRef]
- Du, Q.; Yang, Y.; Kong, X.; Lan, F.; Sun, J.; Zhu, H.; Ni, Y.; Pan, A. Circulating lncRNAs Acting as Diagnostic Fingerprints for Predicting Triple-Negative Breast Cancer. Int. J. Clin. Exp. Med. 2018, 11, 8139–8145. [Google Scholar]
- Ritter, A.; Hirschfeld, M.; Berner, K.; Rücker, G.; Jäger, M.; Weiss, D.; Medl, M.; Nöthling, C.; Gassner, S.; Asberger, J.; et al. Circulating Non-Coding RNA Biomarker Potential in Neoadjuvant Chemotherapy of Triple-Negative Breast Cancer? Int. J. Oncol. 2020, 56, 47–68. [Google Scholar] [CrossRef]
- Manoochehri, M.; Borhani, N.; Gerhäuser, C.; Assenov, Y.; Schönung, M.; Hielscher, T.; Christensen, B.C.; Lee, M.K.; Gröne, H.J.; Lipka, D.B.; et al. DNA Methylation Biomarkers for Noninvasive Detection of Triple-Negative Breast Cancer Using Liquid Biopsy. Int. J. Cancer 2023, 152, 1025–1035. [Google Scholar] [CrossRef]
- Swellam, M.; Abdelmaksoud, M.D.; Mahmoud, M.S.; Ramadan, A.; Abdel-Moneem, W.; Hefny, M.M. Aberrant Methylation of APC and RARβ2 Genes in Breast Cancer Patients. IUBMB Life 2015, 67, 61–68. [Google Scholar] [CrossRef]
- Lee, S.; Kim, H.Y.; Jung, Y.J.; Jung, C.S.; Im, D.; Kim, J.Y.; Lee, S.M.; Oh, S.H. Comparison of Mutational Profiles Between Triple-Negative and Hormone Receptor-Positive/Human Epidermal Growth Factor Receptor 2-Negative Breast Cancers in T2N0-1M0 Stage: Implications of TP53 and PIK3CA Mutations in Korean Early-Stage Breast Cancers. Curr. Probl. Cancer 2022, 46, 100843. [Google Scholar] [CrossRef]
- Manoochehri, M.; Jones, M.; Tomczyk, K.; Fletcher, O.; Schoemaker, M.J.; Swerdlow, A.J.; Borhani, N.; Hamann, U. DNA Methylation of the Long Intergenic Noncoding RNA 299 Gene in Triple-Negative Breast Cancer: Results from a Prospective Study. Sci. Rep. 2020, 10, 11762. [Google Scholar] [CrossRef]
- Vikramdeo, K.S.; Anand, S.; Sudan, S.K.; Pramanik, P.; Singh, S.; Godwin, A.K.; Singh, A.P.; Dasgupta, S. Profiling Mitochondrial DNA Mutations in Tumors and Circulating Extracellular Vesicles of Triple-Negative Breast Cancer Patients for Potential Biomarker Development. FASEB Bioadv. 2023, 5, 412–426. [Google Scholar] [CrossRef] [PubMed]
- Mendaza, S.; Ulazia-Garmendia, A.; Monreal-Santesteban, I.; Córdoba, A.; Azúa, Y.R.; Aguiar, B.; Beloqui, R.; Armendáriz, P.; Arriola, M.; Martín-Sánchez, E.; et al. ADAM12 Is a Potential Therapeutic Target Regulated by Hypomethylation in Triple-Negative Breast Cancer. Int. J. Mol. Sci. 2020, 21, 903. [Google Scholar] [CrossRef] [PubMed]
- Asleh, K.; Riaz, N.; Nielsen, T.O. Heterogeneity of Triple-Negative Breast Cancer: Current Advances in Subtyping and Treatment Implications. J. Exp. Clin. Cancer Res. 2022, 41, 265. [Google Scholar] [CrossRef] [PubMed]
- Gough, A.; Stern, A.M.; Maier, J.; Lezon, T.; Shun, T.Y.; Chennubhotla, C.; Schurdak, M.E.; Haney, S.A.; Taylor, D.L. Biologically Relevant Heterogeneity: Metrics and Practical Insights. SLAS Discov. 2017, 22, 213–237. [Google Scholar] [CrossRef]
- Hayes, D.F. Biomarker Validation and Testing. Mol. Oncol. 2015, 9, 960–966. [Google Scholar] [CrossRef]
- Fang, H.; Xie, J.; Zhang, M.; Zhao, Z.; Wan, Y.; Yao, Y. miRNA-21 promotes proliferation and invasion of triple-negative breast cancer cells through targeting PTEN. Am. J. Transl. Res. 2017, 9, 953–961. [Google Scholar] [PubMed] [PubMed Central]
- Shi, W.; Ma, D.; Cao, Y.; Hu, L.; Liu, S.; Yan, D.; Zhang, S.; Zhang, G.; Wang, Z.; Wu, J.; et al. SphK2/S1P Promotes Metastasis of Triple-Negative Breast Cancer through the PAK1/LIMK1/Cofilin1 Signaling Pathway. Front. Mol. Biosci. 2021, 8, 598218. [Google Scholar] [CrossRef]
- Cassandri, M.; Butera, A.; Amelio, I.; Lena, A.M.; Montanaro, M.; Mauriello, A.; Anemona, L.; Candi, E.; Knight, R.A.; Agostini, M.; et al. ZNF750 Represses Breast Cancer Invasion via Epigenetic Control of Prometastatic Genes. Oncogene 2020, 39, 4331–4343. [Google Scholar] [CrossRef]
- Cossu-Rocca, P.; Orrù, S.; Muroni, M.R.; Sanges, F.; Sotgiu, G.; Ena, S.; Pira, G.; Murgia, L.; Manca, A.; Uras, M.G.; et al. Analysis of PIK3CA Mutations and Activation Pathways in Triple-Negative Breast Cancer. PLoS ONE 2015, 10, e0141763. [Google Scholar] [CrossRef]
- Hall, J.A.; Brown, R.; Paul, J. An Exploration into Study Design for Biomarker Identification: Issues and Recommendations. Cancer Genom. Proteom. 2007, 4, 111–119. [Google Scholar]
- Ou, F.S.; Michiels, S.; Shyr, Y.; Adjei, A.A.; Oberg, A.L. Biomarker Discovery and Validation: Statistical Considerations. J. Thorac. Oncol. 2021, 16, 537–545. [Google Scholar] [CrossRef]

| Biomarker Category | Biomarker(s) | Alteration Type | Sample Size | n Cases | n Controls | Biofluid | Detection Method | AUC | p-Value | Ref. |
|---|---|---|---|---|---|---|---|---|---|---|
| Protein | Panel: KIT, ITGB1, EFNA5, SRP54, FAS, BRCA1, XBP1, and others | Up-regulated | 56 | 28 | 28 | Plasma | Antibody microarray | Various | p < 0.05 | [22] |
| Protein | TTR, SERPINA1, HP | Up-regulated; Down-regulated | 60 | 30 | 30 | Serum | 2D-DIGE; MALDI-TOF-MS | NR | p < 0.05 | [23] |
| Protein | FN1, A2M, C4BPA | Up-regulated | 28 | 8 | 20 | Plasma | iTRAQ; WB; ELISA | 0.853 | A2M, C4BPA: p < 0.0001; FN1: p < 0.018 | [24] |
| Protein | Panel: CPN2, CO2, MYL6, HV101, APOA4, PI16, CXCL7, VTDB, IGJ, KNG1 | Up-regulated; Down-regulated | 39 | 19 | 20 | Serum | 2D-DIGE/MALDI; iTRAQ-LC-MS/MS; SWATH; WB; SRM | NR | p < 0.05 | [25] |
| Protein | Panel: APO1, CFH, VTNC, C3, C4A, C9, LGALS3BP, FCN3, RBP4, FN1, APOA4, ORM1, ZPI, TTR, APOC1, APOC3, IGHM, IG chains | Up-regulated; Down-regulated | 16 | 8 | 8 | Serum | NP exposure; SDS-PAGE; LC-MS/MS; SWATH/SRM | NR | p < 0.05 | [26] |
| Protein | MR | Glycosylation pattern change | 55 | 35 | 110 * | Serum | IP; SDS-PAGE; HILIC; MALDI-TOF-MS | NR | p < 0.01 | [27] |
| Protein | VEGF | Increased serum concentration | 65 | 30 | 35 | Serum | ELISA | NR | p = 0.01 (size) p = 0.03 (stage) | [28] |
| Protein | RAI14 | Increased serum concentration | 106 | 46 | 60 * | Serum | ELISA | 0.934 | p < 1 × 10−4 | [29] |
| Protein | ApoC-I | Increased serum concentration | 380 | 165 | 215 * | Serum | SELDI-TOF-MS; qRT-PCR; ELISA; WB | 0.908 | p < 1 × 10−4 | [30] |
| Protein | KJ901215, FAM49B, HYI, GARS, CRLF3 | Lower concentration panel | 389 | 123 | 776 * | Serum | Serology | 0.875 | p < 0.05 | [31] |
| Protein | ANXA2 | Higher circulating concentrations | 126 | 58 | 179 * | Serum | Western blot; ELISA | 1 | p < 1 × 10−4 | [32] |
| Protein | GDF15, PKM, SPARC, CA125, WFDC2, COL1A1, FN1, CTGF, S100A7, SPP1, CCL5, hsa-miR-135b, Anti-TP53, HOXA5, SFRP1 | Minimal diagnostic performance | 115 | 28 | 87 | Blood | ELISA | TP53 ≤ 0.63 | Non sig. | [33] |
| Protein | ApoA1, ApoA2, ApoC2, ApoC4, C3, CFB, IGLC2/3, GC, PLG, SERPINA3, IGHC1, C9, LRG1, C4B | Panel changes | 123 | 20 | 204 * | Plasma | Ultracentrifugation; LC-MS/MS | Various | Various | [34] |
| Protein | TRAF6 | Higher serum concentration | 39 | 13 | 61 * | Serum | ELISA | NR | p = 0.010 | [35] |
| Protein | Anti-TXNL2 | Higher concentration | 20 | 10 | 10 | Serum | HuProt microarray | NR | NR | [36] |
| RNA (lncRNA) | ZFAS1 | Up and down regulated | 80 | 40 | 40 | Peripheral blood | RT2 lncRNA PCR Array; qRT-PCR | NR | p < 1 × 10−4 | [37] |
| RNA (miRNA) | miR-199a-5p, miR-16, miR-21 | Down regulated | 327 | 72 | 255 * | Plasma | miRNA arrays; RT-qPCR | 0.88 | p < 0.0001 | [38] |
| RNA (miRNA) | miR-126-5p | Concentration change | 42 | 21 | 21 | Plasma | Microarray; RT-qPCR | 0.814 | p = 1.4 × 10−5 | [39] |
| RNA (miRNA) | miR-21, miR-155, miR-205 | Up and down regulated | 190 | 139 | 51 | Serum | RT-qPCR | 0.961 | p < 1 × 10−4 | [40] |
| RNA (lncRNA) | NRIL, HIF1A-AS2, UCA1 | Up regulated | 100 | 25 | 75 * | Serum | Microarray; RT-qPCR | 0.934 | p < 0.01 | [41] |
| RNA (miRNA) | miR-25-3p | Up regulated | 81 | 12 | 69 * | Serum | NanoString; nCounter | 0.74 | p ≤ 0.05 | [42] |
| RNA (miRNA) | miR-21 | Up regulated | 50 | 4 | 46 * | Plasma | qRT-PCR | NR | NR | [43] |
| RNA (miRNA) | Initial and diagnostic panel | Serum differential concentration | 127 | 36 | 91 * | Plasma | RT-qPCR | Panel = 0.929 | p = 0.0008–0.02 | [44] |
| RNA (miRNA) | miR-135b | Minimal diagnostic performance | 115 | 28 | 87 | Blood | ELISA; RT-qPCR | NR | Non sig. | [33] |
| RNA (miRNA) | miR-376c, miR-155, miR-17a, miR-10b | Up regulated | 71 | 37 | 34 | Blood | RT-qPCR | 0.785 | p < 0.0001 | [45] |
| RNA (lncRNA) | ANRIL, SOX2OT, ANRASSF1 | Up regulated | 340 | 120 | 220 * | Plasma | qRT-PCR | 0.959 | ANRIL: p < 0.01; others: p < 0.05 | [46] |
| RNA (miRNA) | Serum: let-7a, let-7e, miR-21, miR-15a, miR-17, miR-18a, miR-19b, miR-30b, GlyCCC2; Urine: miR-18a, miR-19b, miR-30b, miR-222, miR-320, GlyCCC2 | Increase and decrease in concentration | 36 | 16 | 20 | Serum; Urine | RT-qPCR | NR | p < 0.05 | [47] |
| DNA (cfDNA methylation) | SPAG6, IFFO1, SPHK2; TBCD/ZNF750, LINC10606, CPXM1 | Hypermethylation and hypomethylation | 223 | 139 | 84 | Plasma | Illumina 450K/EPIC; XGBoost; ddPCR | Test = 0.78; Validation = 0.74 | p < 0.0001 | [48] |
| DNA (DNA methylation) | Promoter methylation: APC, RARB2 | Promoter methylation (RARB2 methylated in TNBC) | 216 | 71 | 145 * | Serum | MSP | NR | p = 0.007 (RARB2) | [49] |
| DNA (Mutations) | PIK3CA hotspot mutations | No plasma mutations | 32 | 10 | 22 | Plasma | RT-PCR | NR | --- | [50] |
| DNA (Methylation) | LINC00299 (cg06588802) | Hypermethylation (leukocyte DNA) | 313 | 154 | 159 | Buffy coat | ddPCR | NR | p = 0.0025; p = 0.001 (tertile 1) | [51] |
| DNA (mtDNA) | mtDNA variants (ND1, ND2, ND3, ND4, ND4L, ND5, ND6, CYTB, CO1, CO2, CO3, RNR2, ATP6, ATP8) | EV concentration; tumor-specific/shared EV mutations | 18 | 9 | 9 | Serum | NGS (Illumina NovaSeq, PE150) | NR | p < 0.0001 (EV concentration) | [52] |
| DNA (cfDNA methylation) | Promoter methylation: ADAM12 | Hypomethylation | 19 | 6 | 13 | Plasma | Illumina 450K; Pyrosequencing | NR | NR | [53] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Navarrete-Fernández, O.; Mora, E.; Rivadeneira, J.; Herrera, V.; Riffo-Campos, Á.L. Liquid Biopsy-Based Biomolecular Alterations for the Diagnosis of Triple-Negative Breast Cancer in Adults: A Scoping Review. Diagnostics 2026, 16, 360. https://doi.org/10.3390/diagnostics16020360
Navarrete-Fernández O, Mora E, Rivadeneira J, Herrera V, Riffo-Campos ÁL. Liquid Biopsy-Based Biomolecular Alterations for the Diagnosis of Triple-Negative Breast Cancer in Adults: A Scoping Review. Diagnostics. 2026; 16(2):360. https://doi.org/10.3390/diagnostics16020360
Chicago/Turabian StyleNavarrete-Fernández, Orieta, Eddy Mora, Josue Rivadeneira, Víctor Herrera, and Ángela L. Riffo-Campos. 2026. "Liquid Biopsy-Based Biomolecular Alterations for the Diagnosis of Triple-Negative Breast Cancer in Adults: A Scoping Review" Diagnostics 16, no. 2: 360. https://doi.org/10.3390/diagnostics16020360
APA StyleNavarrete-Fernández, O., Mora, E., Rivadeneira, J., Herrera, V., & Riffo-Campos, Á. L. (2026). Liquid Biopsy-Based Biomolecular Alterations for the Diagnosis of Triple-Negative Breast Cancer in Adults: A Scoping Review. Diagnostics, 16(2), 360. https://doi.org/10.3390/diagnostics16020360

