The Incremental Role of Stress Echocardiography in Valvular Heart Disease: A Narrative Review
Abstract
1. Introduction
2. Materials and Methods
3. Protocol Regarding Stress Echocardiography
3.1. Exercise Stress
- Treadmill (e.g., Bruce protocol): echocardiographic imaging is usually acquired immediately after the cessation of effort. It is imperative to complete measurements within 1–2 min before hemodynamic parameters return to baseline values [9].
- Semi-supine cycle ergometer: this offers the technical advantage of acquiring images and Doppler data during various levels of increasing workload, allowing for continuous monitoring of the cardiac response to exertion [9].
3.2. Pharmacological Stress
- Dobutamine: the most common agent, an inotrope that acts on beta-1 adrenergic receptors to increase heart rate and myocardial contractility. Protocols typically involve an initial low-dose infusion (5 µg/kg/min), gradually increased every 5–8 min up to doses of 20–40 µg/kg/min to recruit contractile reserve [8]. Should the target heart rate remain unachieved at the peak dobutamine dose, supplemental atropine (0.25–0.5 mg boluses; max 2.0 mg) is provided. Beta-blockers are subsequently administered for pharmacological reversal [10].
- Vasodilators (Dipyridamole or Adenosine): these are primarily employed for the assessment of coronary flow reserve [11,12]. In the event of persistent side effects or severe ischemia during vasodilator stress, intravenous aminophylline (50–250 mg) was administered as a specific competitive antagonist of adenosine receptors.
3.3. Monitoring and Endpoints
- Achievement of 85% of the age-predicted maximum heart rate.
- Completion of the established workload.
- Appearance of intolerable symptoms.
- Evidence of clear echocardiographic or electrocardiographic positivity.
4. Role of Stress Echocardiography in Valvular Heart Disease
4.1. Mitral Regurgitation
4.1.1. Primary or Degenerative Mitral Regurgitation
4.1.2. Secondary or Functional Mitral Regurgitation
4.2. Mitral Stenosis
5. Aortic Stenosis
5.1. Exercise Stress Echocardiography in Severe Aortic Stenosis Without Symptoms
5.2. Low-Flow-Low-Gradient Aortic Stenosis
6. Aortic Regurgitation
7. Pulmonary and Tricuspid Valve
8. Post Operative Assessment
9. Future Perspectives
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lancellotti, P.; Pellikka, P.A.; Budts, W.; Chaudhry, F.A.; Donal, E.; Dulgheru, R.; Edvardsen, T.; Garbi, M.; Ha, J.W.; Kane, G.C.; et al. The Clinical Use of Stress Echocardiography in Non-Ischaemic Heart Disease: Recommendations from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. J. Am. Soc. Echocardiogr. 2017, 30, 101–138. [Google Scholar] [CrossRef] [PubMed]
- Citro, R.; Bursi, F.; Bellino, M.; Picano, E. The Role of Stress Echocardiography in Valvular Heart Disease. Curr. Cardiol. Rep. 2022, 24, 1477–1485. [Google Scholar] [CrossRef] [PubMed]
- Praz, F.; Borger, M.A.; Lanz, J.; Marin-Cuartas, M.; Abreu, A.; Adamo, M.; Ajmone Marsan, N.; Barili, F.; Bonaros, N.; Cosyns, B.; et al. 2025 ESC/EACTS Guidelines for the Management of Valvular Heart Disease. Eur. Heart J. 2025, 46, 4635–4736. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Pellikka, P.A.; Arruda-Olson, A.; Chaudhry, F.A.; Chen, M.H.; Marshall, J.E.; Porter, T.R.; Sawada, S.G. Guidelines for Performance, Interpretation, and Application of Stress Echocardiography in Ischemic Heart Disease: From the American Society of Echocardiography. J. Am. Soc. Echocardiogr. 2020, 33, 1–41.e8. [Google Scholar] [CrossRef]
- Ha, J.-W.; Andersen, O.S.; Smiseth, O.A. Diastolic Stress Test. JACC Cardiovasc. Imaging 2020, 13, 272–282. [Google Scholar] [CrossRef]
- Picano, E.; Ciampi, Q.; Arbucci, R.; Cortigiani, L.; Zagatina, A.; Celutkiene, J.; Bartolacelli, Y.; Kane, G.C.; Lowenstein, J.; Pellikka, P. Stress Echo 2030: The New ABCDE Protocol Defining the Future of Cardiac Imaging. Eur. Heart J. Suppl. 2023, 25, C63–C67. [Google Scholar] [CrossRef]
- Ahmed-Jushuf, F.; Foley, M.J.; Rajkumar, C.A.; Chotai, S.; Simader, F.A.; Wang, D.; Macierzanka, K.; Sehmi, J.; Kanaganayagam, G.; Lloyd, G.; et al. Ischemia on Dobutamine Stress Echocardiography Predicts Efficacy of PCI. J. Am. Coll. Cardiol. 2025, 85, 1740–1753. [Google Scholar] [CrossRef] [PubMed]
- Mogensen, N.S.B.; Ali, M.; Carter-Storch, R.; Annabi, M.-S.; Grenier-Delaney, J.; Møller, J.E.; Øvrehus, K.A.; Pellikka, P.A.; Pibarot, P.; Clavel, M.-A.; et al. Dobutamine Stress Echocardiography in Low-Gradient Aortic Stenosis. J. Am. Soc. Echocardiogr. 2024, 37, 1023–1033. [Google Scholar] [CrossRef]
- Mauriello, A.; Marrazzo, G.; Del Vecchio, G.E.; Ascrizzi, A.; Roma, A.S.; Correra, A.; Sabatella, F.; Gioia, R.; Desiderio, A.; Russo, V.; et al. Echocardiography in Cardiac Arrest: Incremental Diagnostic and Prognostic Role during Resuscitation Care. Diagnostics 2024, 14, 2107. [Google Scholar] [CrossRef]
- Brana, Q.; Thibault, F.; Courtehoux, M.; Metrard, G.; Ribeiro, M.J.; Angoulvant, D.; Bailly, M. Regadenoson versus Dipyridamole: Evaluation of Stress Myocardial Blood Flow Response on a CZT-SPECT Camera. J. Nucl. Cardiol. 2022, 29, 113–122. [Google Scholar] [CrossRef]
- Songy, B. Adenosine–Caffeine: The Agonist—Antagonist Couple for Vasodilator Stress Tests. J. Nucl. Cardiol. 2023, 30, 581–584. [Google Scholar] [CrossRef] [PubMed]
- Patel, K.P.; Vandermolen, S.; Herrey, A.S.; Cheasty, E.; Menezes, L.; Moon, J.C.; Pugliese, F.; Treibel, T.A. Cardiac Computed Tomography: Application in Valvular Heart Disease. Front. Cardiovasc. Med. 2022, 9, 849540. [Google Scholar] [CrossRef]
- Gorecka, M.; Bissell, M.M.; Higgins, D.M.; Garg, P.; Plein, S.; Greenwood, J.P. Rationale and Clinical Applications of 4D Flow Cardiovascular Magnetic Resonance in Assessment of Valvular Heart Disease: A Comprehensive Review. J. Cardiovasc. Magn. Reson. 2022, 24, 49. [Google Scholar] [CrossRef] [PubMed]
- Ricci, F.; Khanji, M.Y.; Bisaccia, G.; Cipriani, A.; Di Cesare, A.; Ceriello, L.; Mantini, C.; Zimarino, M.; Fedorowski, A.; Gallina, S.; et al. Diagnostic and Prognostic Value of Stress Cardiovascular Magnetic Resonance Imaging in Patients with Known or Suspected Coronary Artery Disease. JAMA Cardiol. 2023, 8, 662. [Google Scholar] [CrossRef]
- Salatzki, J.; Ochs, A.; Kirchgäßner, N.; Heins, J.; Seitz, S.; Hund, H.; Mereles, D.; Friedrich, M.G.; Katus, H.A.; Frey, N.; et al. Safety of Stress Cardiac Magnetic Resonance in Patients with Moderate to Severe Aortic Valve Stenosis. J. Cardiovasc. Imaging 2023, 31, 26. [Google Scholar] [CrossRef]
- Lancellotti, P.; Magne, J. Stress Echocardiography in Regurgitant Valve Disease. Circ. Cardiovasc. Imaging 2013, 6, 840–849. [Google Scholar] [CrossRef]
- Magne, J.; Lancellotti, P.; Piérard, L.A. Exercise Pulmonary Hypertension in Asymptomatic Degenerative Mitral Regurgitation. Circulation 2010, 122, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Magne, J.; Donal, E.; Mahjoub, H.; Miltner, B.; Dulgheru, R.; Thebault, C.; Pierard, L.A.; Pibarot, P.; Lancellotti, P. Impact of Exercise Pulmonary Hypertension on Postoperative Outcome in Primary Mitral Regurgitation. Heart 2015, 101, 391–396. [Google Scholar] [CrossRef]
- Kusunose, K.; Popović, Z.B.; Motoki, H.; Marwick, T.H. Prognostic Significance of Exercise-Induced Right Ventricular Dysfunction in Asymptomatic Degenerative Mitral Regurgitation. Circ. Cardiovasc. Imaging 2013, 6, 167–176. [Google Scholar] [CrossRef]
- Hirasawa, K.; Izumo, M.; Akashi, Y.J. Stress Echocardiography in Valvular Heart Disease. Front. Cardiovasc. Med. 2023, 10, 1233924. [Google Scholar] [CrossRef]
- Garbi, M.; Chambers, J.; Vannan, M.A.; Lancellotti, P. Valve Stress Echocardiography. JACC Cardiovasc. Imaging 2015, 8, 724–736. [Google Scholar] [CrossRef]
- Baumgartner, H.; Hung, J.; Bermejo, J.; Chambers, J.B.; Edvardsen, T.; Goldstein, S.; Lancellotti, P.; LeFevre, M.; Miller, F.; Otto, C.M. Recommendations on the Echocardiographic Assessment of Aortic Valve Stenosis: A Focused Update from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. J. Am. Soc. Echocardiogr. 2017, 30, 372–392. [Google Scholar] [CrossRef]
- Lancellotti, P.; Magne, J.; Dulgheru, R.; Ancion, A.; Martinez, C.; Piérard, L.A. Clinical Significance of Exercise Pulmonary Hypertension in Secondary Mitral Regurgitation. Am. J. Cardiol. 2015, 115, 1454–1461. [Google Scholar] [CrossRef]
- Mauriello, A.; Correra, A.; Del Vecchio, G.E.; Grieco, M.; Amata, A.; Di Micco, P.; Imbalzano, E.; Paternoster, M.; Ascrizzi, A.; Quagliariello, V.; et al. Heart Failure and Wide QRS: Clinical and Pharmacological Perspectives. Biomedicines 2025, 13, 1462. [Google Scholar] [CrossRef] [PubMed]
- Izumo, M.; Suzuki, K.; Moonen, M.; Kou, S.; Shimozato, T.; Hayashi, A.; Akashi, Y.J.; Osada, N.; Omiya, K.; Miyake, F.; et al. Changes in Mitral Regurgitation and Left Ventricular Geometry during Exercise Affect Exercise Capacity in Patients with Systolic Heart Failure. Eur. J. Echocardiogr. 2011, 12, 54–60. [Google Scholar] [CrossRef]
- Spieker, M.; Sidabras, J.; Lagarden, H.; Christian, L.; Günther, N.; Angendohr, S.; Bejinariu, A.; Schulze, P.C.; Pfister, R.; Öztürk, C.; et al. Exercise-induced Dynamic Mitral Regurgitation Is Associated with Outcomes in Patients with Ischaemic Cardiomyopathy. ESC Heart Fail. 2025, 12, 1883–1892. [Google Scholar] [CrossRef] [PubMed]
- Kubota, M.; Adachi, H.; Hoshino, K.; Naito, S. Evidence That Mitral and/or Tricuspid Regurgitation Diminishes Stroke Volume Increase during Exercise. Eur. Heart J. 2024, 45, ehae666.2962. [Google Scholar] [CrossRef]
- Laufer-Perl, M.; Gura, Y.; Shimiaie, J.; Sherez, J.; Pressman, G.S.; Aviram, G.; Maltais, S.; Megidish, R.; Halkin, A.; Ingbir, M.; et al. Mechanisms of Effort Intolerance in Patients with Rheumatic Mitral Stenosis. JACC Cardiovasc. Imaging 2017, 10, 622–633. [Google Scholar] [CrossRef] [PubMed]
- Schwammenthal, E.; Vered, Z.; Agranat, O.; Kaplinsky, E.; Rabinowitz, B.; Feinberg, M.S. Impact of Atrioventricular Compliance on Pulmonary Artery Pressure in Mitral Stenosis. Circulation 2000, 102, 2378–2384. [Google Scholar] [CrossRef]
- Grimaldi, A.; Olivotto, I.; Figini, F.; Pappalardo, F.; Capritti, E.; Ammirati, E.; Maisano, F.; Benussi, S.; Fumero, A.; Castiglioni, A.; et al. Dynamic Assessment of “valvular Reserve Capacity” in Patients with Rheumatic Mitral Stenosis. Eur. Heart J. Cardiovasc. Imaging 2012, 13, 476–482. [Google Scholar] [CrossRef]
- Reis, G.; Motta, M.S.; Barbosa, M.M.; Esteves, W.A.; Souza, S.F.; Bocchi, E.A. Dobutamine Stress Echocardiography for Noninvasive Assessment and Risk Stratification of Patients with Rheumatic Mitral Stenosis. J. Am. Coll. Cardiol. 2004, 43, 393–401. [Google Scholar] [CrossRef]
- Goublaire, C.; Melissopoulou, M.; Lobo, D.; Kubota, N.; Verdonk, C.; Cimadevilla, C.; Codogno, I.; Brochet, E.; Vahanian, A.; Messika-Zeitoun, D. Prognostic Value of Exercise-Stress Echocardiography in Asymptomatic Patients with Aortic Valve Stenosis. JACC Cardiovasc. Imaging 2018, 11, 787–795. [Google Scholar] [CrossRef]
- Donal, E.; Thebault, C.; O’Connor, K.; Veillard, D.; Rosca, M.; Pierard, L.; Lancellotti, P. Impact of Aortic Stenosis on Longitudinal Myocardial Deformation during Exercise. Eur. J. Echocardiogr. 2011, 12, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Carter-Storch, R.; Dahl, J.S.; Christensen, N.L.; Søndergaard, E.V.; Irmukhamedov, A.; Pecini, R.; Hassager, C.; Marcussen, N.; Møller, J.E. Exercise Hemodynamics After Aortic Valve Replacement for Severe Aortic Stenosis. J. Am. Soc. Echocardiogr. 2018, 31, 1091–1100. [Google Scholar] [CrossRef]
- Pibarot, P.; Dumesnil, J.G. Low-Flow, Low-Gradient Aortic Stenosis with Normal and Depressed Left Ventricular Ejection Fraction. J. Am. Coll. Cardiol. 2012, 60, 1845–1853. [Google Scholar] [CrossRef] [PubMed]
- Vamvakidou, A.; Annabi, M.S.; Plonska-Gosciniak, E.; Almeida, A.; Guzzetti, E.; Burwash, I.; Bergler-Klein, J.; Mascherbauer, J.; Baumgartner, H.; Cavalcante, J.; et al. Dobutamine Echocardiography Impact on Managing Low-Gradient Aortic Stenosis and Solving the Issue with Inconclusive Studies. Eur. Heart J. Cardiovasc. Imaging 2025, 26, jeae333.438. [Google Scholar] [CrossRef]
- Dayan, V.; Pibarot, P. Aortic Valve Replacement in Low-Flow, Low-Gradient Aortic Stenosis: Left Ventricular Ejection Fraction Matters. J. Thorac. Cardiovasc. Surg. 2017, 154, 443–444. [Google Scholar] [CrossRef] [PubMed]
- Clavel, M.-A.; Burwash, I.G.; Mundigler, G.; Dumesnil, J.G.; Baumgartner, H.; Bergler-Klein, J.; Sénéchal, M.; Mathieu, P.; Couture, C.; Beanlands, R.; et al. Validation of Conventional and Simplified Methods to Calculate Projected Valve Area at Normal Flow Rate in Patients with Low Flow, Low Gradient Aortic Stenosis: The Multicenter TOPAS (True or Pseudo Severe Aortic Stenosis) Study. J. Am. Soc. Echocardiogr. 2010, 23, 380–386. [Google Scholar] [CrossRef]
- Blais, C.; Burwash, I.G.; Mundigler, G.; Dumesnil, J.G.; Loho, N.; Rader, F.; Baumgartner, H.; Beanlands, R.S.; Chayer, B.; Kadem, L.; et al. Projected Valve Area at Normal Flow Rate Improves the Assessment of Stenosis Severity in Patients with Low-Flow, Low-Gradient Aortic Stenosis. Circulation 2006, 113, 711–721. [Google Scholar] [CrossRef]
- Annabi, M.-S.; Touboul, E.; Dahou, A.; Burwash, I.G.; Bergler-Klein, J.; Enriquez-Sarano, M.; Orwat, S.; Baumgartner, H.; Mascherbauer, J.; Mundigler, G.; et al. Dobutamine Stress Echocardiography for Management of Low-Flow, Low-Gradient Aortic Stenosis. J. Am. Coll. Cardiol. 2018, 71, 475–485. [Google Scholar] [CrossRef] [PubMed]
- Mauriello, A.; Correra, A.; Ascrizzi, A.; Del Vecchio, G.E.; Benfari, G.; Ilardi, F.; Lisi, M.; Malagoli, A.; Mandoli, G.E.; Pastore, M.C.; et al. Relationship Between Left Atrial Strain and Atrial Fibrillation: The Role of Stress Echocardiography. Diagnostics 2025, 15, 7. [Google Scholar] [CrossRef]
- Mauriello, A.; Correra, A.; Maratea, A.C.; Caturano, A.; Liccardo, B.; Perrone, M.A.; Giordano, A.; Nigro, G.; D’Andrea, A.; Russo, V. Serum Lipids, Inflammation, and the Risk of Atrial Fibrillation: Pathophysiological Links and Clinical Evidence. J. Clin. Med. 2025, 14, 1652. [Google Scholar] [CrossRef]
- Eleid, M.F.; Sorajja, P.; Michelena, H.I.; Malouf, J.F.; Scott, C.G.; Pellikka, P.A. Flow-Gradient Patterns in Severe Aortic Stenosis with Preserved Ejection Fraction. Circulation 2013, 128, 1781–1789. [Google Scholar] [CrossRef]
- Magne, J.; Mohty, D. Paradoxical Low-Flow, Low-Gradient Severe Aortic Stenosis: A Distinct Disease Entity. Heart 2015, 101, 993–995. [Google Scholar] [CrossRef]
- Murakami, T.; Ohno, Y.; Noda, S.; Hashimoto, K.; Horinouchi, H.; Ohmura, R.; Miyamoto, J.; Kamioka, N.; Ikari, Y. Uncommon Cause of Paradoxical Low-Flow Low-Gradient Severe Aortic Stenosis Due to Pulmonary Arterial Hypertension. J. Cardiol. Cases 2025, 32, 119–122. [Google Scholar] [CrossRef] [PubMed]
- Ciampi, Q.; Cortigiani, L.; Rivadeneira Ruiz, M.; Barbieri, A.; Manganelli, F.; Mori, F.; D’Alfonso, M.G.; Bursi, F.; Villari, B. ABCDEG Stress Echocardiography in Aortic Stenosis. Diagnostics 2023, 13, 1727. [Google Scholar] [CrossRef] [PubMed]
- de Assis, L.U.; Mariani, A.; Kostea, A.; Nuis, R.-J.; Daemen, J.; Van Mieghem, N.M. Transcatheter Aortic Valve Replacement for Aortic Regurgitation: A Case-Based Review. Am. J. Cardiol. 2025, 11, 3488–3500. [Google Scholar] [CrossRef]
- Saito, C.; Arai, K.; Ashihara, K.; Niinami, H.; Hagiwara, N. Utility of Dobutamine Stress Echocardiography in Aortic Valve Regurgitation and Reduced Left Ventricular Function. Echocardiography 2022, 39, 599–605. [Google Scholar] [CrossRef]
- Vinereanu, D.; Ionescu, A.A.; Fraser, A.G. Assessment of Left Ventricular Long Axis Contraction Can Detect Early Myocardial Dysfunction in Asymptomatic Patients with Severe Aortic Regurgitation. Heart 2001, 85, 30–36. [Google Scholar] [CrossRef]
- Vitel, E.; Galli, E.; Leclercq, C.; Fournet, M.; Bosseau, C.; Corbineau, H.; Bouzille, G.; Donal, E. Right Ventricular Exercise Contractile Reserve and Outcomes after Early Surgery for Primary Mitral Regurgitation. Heart 2018, 104, 855–860. [Google Scholar] [CrossRef] [PubMed]
- Johnson, C.; Kuyt, K.; Oxborough, D.; Stout, M. Practical Tips and Tricks in Measuring Strain, Strain Rate and Twist for the Left and Right Ventricles. Echo Res. Pract. 2019, 6, R87–R98. [Google Scholar] [CrossRef]
- Kingsley, C.; Ahmad, S.; Pappachan, J.; Khambekar, S.; Smith, T.; Gardiner, D.; Shambrook, J.; Baskar, S.; Moore, R.; Veldtman, G. Right Ventricular Contractile Reserve in Tetralogy of Fallot Patients with Pulmonary Regurgitation. Congenit. Heart Dis. 2018, 13, 288–294. [Google Scholar] [CrossRef]
- Zoghbi, W.A.; Jone, P.-N.; Chamsi-Pasha, M.A.; Chen, T.; Collins, K.A.; Desai, M.Y.; Grayburn, P.; Groves, D.W.; Hahn, R.T.; Little, S.H.; et al. Guidelines for the Evaluation of Prosthetic Valve Function with Cardiovascular Imaging: A Report from the American Society of Echocardiography Developed in Collaboration with the Society for Cardiovascular Magnetic Resonance and the Society of Cardiovascular Computed Tomography. J. Am. Soc. Echocardiogr. 2024, 37, 2–63. [Google Scholar] [CrossRef]
- Lancellotti, P.; Pibarot, P.; Chambers, J.; Edvardsen, T.; Delgado, V.; Dulgheru, R.; Pepi, M.; Cosyns, B.; Dweck, M.R.; Garbi, M.; et al. Recommendations for the Imaging Assessment of Prosthetic Heart Valves: A Report from the European Association of Cardiovascular Imaging Endorsed by the Chinese Society of Echocardiography, the Inter-American Society of Echocardiography, and the Brazilian Department of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2016, 17, 589–590. [Google Scholar] [CrossRef] [PubMed]
- Maznyczka, A.; Nuis, R.-J.; Shiri, I.; Ternacle, J.; Garot, P.; van den Dorpel, M.M.P.; Khokhar, A.A.; De Lucia, R.; Orini, M.; Kutty, S.; et al. Artificial Intelligence in Valvular Heart Disease. JACC Cardiovasc. Interv. 2025, 18, 2439–2457. [Google Scholar] [CrossRef] [PubMed]


| Clinical Scenario | Preferred Stress | Minimum Dataset | High-Risk Stress Findings | Typical Implication |
|---|---|---|---|---|
| Primary MR, severe at rest, “asymptomatic”/equivocal | Exercise (semi-supine bicycle preferred) | Symptoms/workload; BP/ECG; SPAP; LV reserve (ΔLVEF/longitudinal response); RV response when feasible | Symptoms; SPAP ≥ 60 mmHg; absent LV reserve; exercise-induced RV dysfunction | Earlier valve-centre referral/closer follow-up; supports timing decisions when uncertain |
| Primary MR mild–moderate at rest with disproportionate dyspnoea | Exercise | MR quantification (VC/PISA if feasible); SPAP; LV function/reserve; symptoms | MR worsening ≥ 1 grade; rising SPAP; limited reserve with objective limitation | Clarifies symptom attribution and “dynamic burden”; intensify surveillance/management |
| Secondary MR with suspected dynamic worsening | Exercise | Stress MR quantification (EROA/RegVol if feasible); SPAP; LV geometry/function; flow reserve response | ΔEROA ≥ 13 mm2 and/or major regurgitant increase; SPAP ≥ 60 mmHg; poor flow reserve response | Identifies high-risk dynamic MR → optimise HF therapy/device strategy; heart-team discussion |
| Ischaemic MR/LV dysfunction, recurrent pulmonary oedema or unclear mechanism | Exercise (or selected pharmacologic if unable) | MR dynamics; SPAP; LV reserve; consider ischaemia mechanism | Marked stress MR increase consistent with trigger physiology | Integrated strategy (revascularization ± MR approach) |
| Valvular Disease | Indication | Stress Protocol | Recommended Parameters |
|---|---|---|---|
| AS | Classical LFLG severe AS | Dobutamine | Mean PG, FR, SV, and LV systolic reserve; calculate AVAproj |
| AS | Asymptomatic severe AS | Exercise | Symptoms/workload, mean PG, AVA, and exercise-induced PH (Ex-PH) |
| AS | Equivocal symptomatic moderate AS | Exercise | Adjuncts may help: Zva, GLS, and PR during exercise |
| MR | Primary MR | Exercise | Symptoms/workload; MR increase; Ex-PH; consider LV (LVEF/GLS) and RV (TAPSE) reserve |
| MR | Secondary MR | Exercise | Symptoms/workload; MR increase; Ex-PH |
| MS | Rheumatic MS | Exercise | Increase in mean transmitral PG and Ex-PH |
| Post-operative | Suspected PPM/prosthesis degeneration | Exercise or dobutamine | Transprosthetic PG, EOA, DVI, and LV systolic reserve |
| Post-operative | Mitral annuloplasty | Exercise or dobutamine | Transmitral PG and Ex-PH |
| Others | AR | Exercise | Not established; LV reserve/GLS, ESV, and TAPSE may be useful |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Correra, A.; Mauriello, A.; Del Giudice, C.; Fonderico, C.; Di Peppo, M.; Russo, V.; D’Andrea, A.; Esposito, G.; Brunetti, N.D. The Incremental Role of Stress Echocardiography in Valvular Heart Disease: A Narrative Review. Diagnostics 2026, 16, 148. https://doi.org/10.3390/diagnostics16010148
Correra A, Mauriello A, Del Giudice C, Fonderico C, Di Peppo M, Russo V, D’Andrea A, Esposito G, Brunetti ND. The Incremental Role of Stress Echocardiography in Valvular Heart Disease: A Narrative Review. Diagnostics. 2026; 16(1):148. https://doi.org/10.3390/diagnostics16010148
Chicago/Turabian StyleCorrera, Adriana, Alfredo Mauriello, Carmen Del Giudice, Celeste Fonderico, Matilde Di Peppo, Vincenzo Russo, Antonello D’Andrea, Giovanni Esposito, and Natale Daniele Brunetti. 2026. "The Incremental Role of Stress Echocardiography in Valvular Heart Disease: A Narrative Review" Diagnostics 16, no. 1: 148. https://doi.org/10.3390/diagnostics16010148
APA StyleCorrera, A., Mauriello, A., Del Giudice, C., Fonderico, C., Di Peppo, M., Russo, V., D’Andrea, A., Esposito, G., & Brunetti, N. D. (2026). The Incremental Role of Stress Echocardiography in Valvular Heart Disease: A Narrative Review. Diagnostics, 16(1), 148. https://doi.org/10.3390/diagnostics16010148

